JPS58116739A - Controlling method for particle size of film polycrystal - Google Patents

Controlling method for particle size of film polycrystal

Info

Publication number
JPS58116739A
JPS58116739A JP21287181A JP21287181A JPS58116739A JP S58116739 A JPS58116739 A JP S58116739A JP 21287181 A JP21287181 A JP 21287181A JP 21287181 A JP21287181 A JP 21287181A JP S58116739 A JPS58116739 A JP S58116739A
Authority
JP
Japan
Prior art keywords
crystal
temperature
film
heat treatment
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21287181A
Other languages
Japanese (ja)
Other versions
JPS6244403B2 (en
Inventor
Yoshihiro Matsuo
嘉浩 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21287181A priority Critical patent/JPS58116739A/en
Publication of JPS58116739A publication Critical patent/JPS58116739A/en
Publication of JPS6244403B2 publication Critical patent/JPS6244403B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering

Abstract

PURPOSE:To control the particle diameter of film polycrystal by applying ion injection technique to the acceleration of forming crystalline nuclei in an amorphous material. CONSTITUTION:Crystalline nuclei formation accelerating substance which is made of elements except the component elements of an amorphous material is ion implanted to many specific regions which are predetermined in film amorphous material. Then, it is first heated at the sufficiently low temperature lower than the crystal nuclei forming temperature TN of the amorphous material, thereby forming crystal nuclei only in the specific region. Thereafter, it is subjected to secondary heat treatment at the crystal growing temperature TC of the amorphous material, thereby growing the cyrstal with the nuclei as centers of the specific region.

Description

【発明の詳細な説明】 本発明は膜非晶質体の加熱処理により得られる膜長結晶
体の粒子サイズの制御方法に関するものである。この方
法の特徴は非晶質体を結晶化させるための加熱処理工程
の前にあらかじめ結晶核を形成させるべき場所に結晶核
形成に有効な物質をイオン注入しておくことにある。本
発明の方法を適用できる物質は有機物質以外の無機物質
(イオン結合性結晶、共有結合性結晶)、半金鵬、金楓
などのすべての結晶性固体物質を含むものであもまた、
本発明の方法を適用できる膜の厚みの範囲はほぼ0.0
1μm〜100μmである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the particle size of a long crystalline film obtained by heat treatment of a film amorphous material. The feature of this method is that before the heat treatment step for crystallizing the amorphous material, ions of a substance effective for forming crystal nuclei are implanted in advance at the location where crystal nuclei are to be formed. Substances to which the method of the present invention can be applied include all crystalline solid substances such as inorganic substances other than organic substances (ionic bonding crystals, covalent bonding crystals), Hankinho, Jinkaede, etc.
The film thickness range to which the method of the present invention can be applied is approximately 0.0
It is 1 μm to 100 μm.

本発明の第1の目的は、膜長結晶体の個々の結晶粒子の
大きさを希望する大きさにすることのできる方法を提供
することにある。
A first object of the present invention is to provide a method by which the size of each crystal grain of a long film crystal can be adjusted to a desired size.

本発明の第2の目的は、膜長結晶体のすべての結晶粒子
を実質的に同じ大きさで、かつほぼ0.01μm〜10
0μmの粒径範囲で自由に選択できる万すでに、磁性体
、誘電体、圧電体、抵抗体、導電体などの厚膜・薄膜多
結晶体は各センサなどの機能材料として、エレクトロニ
クス、エネルギー変換、ライフサイエンス関連の各分野
において一部実用化され、さらに今後より広く使用され
ようとしている。そして、これらの材料の機能、特性の
あるものは、それを構成する多結晶体の結晶粒子の大き
さに強く依存することが知られている。
A second object of the present invention is to make all crystal grains of a long film crystal material substantially the same size and approximately 0.01 μm to 10 μm.
Thick film and thin film polycrystalline materials such as magnetic materials, dielectric materials, piezoelectric materials, resistors, and conductive materials, which can be freely selected within the particle size range of 0 μm, are used as functional materials for various sensors, electronics, energy conversion, It has been put into practical use in some areas related to life science, and is expected to be used more widely in the future. It is known that the functions and properties of these materials strongly depend on the size of the crystal grains of the polycrystalline materials that constitute them.

しかし、結晶粒子の大きさを自由に制御する方法はまだ
確立されていない。
However, a method for freely controlling the size of crystal grains has not yet been established.

これまで、たとえば基板とのエピタキシャル成長、加熱
処理条件、添加物による粒成長側−などが一般的に行な
われて来ているが、この場合粒径制御は平均的に行なわ
れているだけである。すなわち、試料全体の粒径分布の
形はその製造方法で一義的に定まっており、自由に変え
ることができなかった。もちろん、試料中の場所によっ
て粒径を自由に変えることなどはできなかったし、また
試料全体の粒径を精度よく均一にすることもてきなかっ
た。
Hitherto, for example, epitaxial growth with a substrate, heat treatment conditions, grain growth using additives, etc. have generally been carried out, but in this case grain size control has only been carried out on an average basis. That is, the shape of the particle size distribution of the entire sample is uniquely determined by the manufacturing method and cannot be changed freely. Of course, it was not possible to freely change the particle size depending on the location in the sample, and it was also not possible to make the particle size uniform throughout the sample with high precision.

ところで、半導体中の不純物111度の制御ヲ主たる目
的としてイオン注入技術が開発されているが、現在、こ
の技術を光学ガラスへの適用による先導波路の製作、磁
気バブルドメインの磁化容易軸方向の制御、金楓材料の
表面処理などへの応用が試みられている。
By the way, ion implantation technology has been developed with the main purpose of controlling the impurity level of 111 degrees in semiconductors, and currently this technology is being applied to optical glass to create guiding waveguides and to control the easy axis direction of magnetization of magnetic bubble domains. , and its application to surface treatment of gold maple materials has been attempted.

本発明はイオン注入技術を非晶質体中の結晶核形成の促
進に応用す乞ことにより、膜長結晶体のプロセスからな
る。
The present invention consists of a long crystalline process by applying ion implantation techniques to promote crystal nucleation in amorphous bodies.

(1)非晶質膜の作製。(1) Preparation of amorphous film.

(2)結晶核形成物質のイオン注入。(2) Ion implantation of a crystal nucleating substance.

(3)結晶化のための加熱処理。(3) Heat treatment for crystallization.

まず、プロセス(1)の非晶質膜の作製についてである
が、これには従来から知られている方法を適用すること
ができる。たとえばスパッタリング蒸着、真空蒸着、化
学蒸着(CVD)などの気相からの合成法、あるいは溶
融体の超急冷法などの液相からの合成法などである。
First, regarding the production of an amorphous film in process (1), conventionally known methods can be applied to this process. Examples include synthesis methods from the gas phase such as sputtering deposition, vacuum evaporation, and chemical vapor deposition (CVD), and synthesis methods from the liquid phase such as ultra-quenching of a melt.

次のプロセス(2)は、これらの従来法によって作製さ
れた膜厚100人〜100μmの非晶質膜の中に結晶核
形成物質をイオン注入するプロセスである。ここでイオ
ン注入技術は従来から半導体の不純物制御などに用いら
れてきたイオン注入法を適用することができる。ここで
、注入すべきイオンとして、膜非晶質体の結晶化におい
て結晶核形成を促進する物質のイオンを使用する。すな
わ秋加熱処理により膜非晶質体そのものが結晶核形成を
する温度をTNとし、結晶核形成促進物質を注入した領
域の非晶質体が加熱処理により結晶核形成をする温度を
TNlとすると、T Nt (T Nなる関係を作り出
す物質のイオンを使用する。実用的にはTNIはTNよ
りも6o℃程度、あるいはそれ以上の温度差だけ低いこ
とが望ましい。結晶核形成を促進させるべき領域、すな
わちイオン注入すべき特定領域の大きさは基本的には生
成した結晶核が安定に存在しうる最低の大きさく物質に
よって異なるが通常数10人といわれている)以上であ
ればよい。また、イオン注入すべき領域の大きさが10
00人を越えると、その領域内で多数個の結晶核発生の
確率が高くなり、結晶成長が複雑になって、粒子サイズ
の制御にとって好ましくない。通常、数百へ以内の大き
さであれば、その領域内に発生する結晶核の数は単数あ
るいは複数個であp1各領域の結晶核からの結晶成長が
均一に進み、最終的に得られる多結晶体のすべての粒子
サイズを均一にすることができる。なお、多結晶体全体
の粒子サイズを均一にするには、イオン注入すべき特定
領域の幾何学的配置を均一にすることが必要である。す
なわち、互いに隣接する特定領域間の距離をすべて等間
隔にし、望ましくは、特定領域の配置が膜面に対して垂
直な六回対称軸を有していることが必要である。もちろ
ん、膜の深さ方向にも特定領域を点在させることもでき
、このときには特定領域の配置が最密充填の関係にある
ことが必要である。このような条件の下に、さらに隣接
する特定領域間の間隔を変えることによって、饅終的に
得られる多結晶体の粒子サイズを自由には隣接特定領域
間の距離にほぼ等しい。このようにイオン注入すべき領
域の幾何学的配置を制(財)することにより、加熱処理
後最終的に得られる膜長結晶体の粒子サイズを均一にか
つその大きさを自由に設計することができる。また、膜
中の場所によって結晶粒子の大きさを変えることができ
ることは本発明の大きな特長である。
The next process (2) is a process in which a crystal nucleating substance is ion-implanted into the amorphous film having a thickness of 100 to 100 μm prepared by these conventional methods. Here, as the ion implantation technique, an ion implantation method that has been conventionally used for controlling impurities in semiconductors can be applied. Here, as the ions to be implanted, ions of a substance that promotes crystal nucleation during crystallization of the amorphous film are used. In other words, TN is the temperature at which the amorphous film itself forms crystal nuclei by heat treatment, and TN1 is the temperature at which the amorphous body in the region into which the crystal nucleation promoting substance is injected forms crystal nuclei by heat treatment. Then, an ion of a substance that creates the relationship T Nt (TN The size of the region, that is, the specific region into which ions are to be implanted, basically needs to be at least the minimum size at which the generated crystal nuclei can stably exist (although it varies depending on the material, it is usually said to be several dozen). Also, the size of the region to be ion-implanted is 10
If the number exceeds 0.00, the probability that a large number of crystal nuclei will occur in that region increases, crystal growth becomes complicated, and this is not preferable for particle size control. Usually, if the size is within several hundred, the number of crystal nuclei generated in that region is single or multiple. All grain sizes of the polycrystalline material can be made uniform. Note that in order to make the grain size of the entire polycrystalline body uniform, it is necessary to make the geometrical arrangement of specific regions into which ions are to be implanted uniform. That is, it is necessary that the distances between adjacent specific regions are all equal, and preferably that the arrangement of the specific regions has a six-fold symmetry axis perpendicular to the film surface. Of course, specific regions can also be scattered in the depth direction of the film, and in this case, it is necessary that the specific regions are arranged in a close-packed relationship. Under these conditions, by further changing the distance between adjacent specific regions, the grain size of the polycrystalline material finally obtained can be made approximately equal to the distance between adjacent specific regions. By controlling the geometrical arrangement of the region to be ion-implanted in this way, it is possible to uniformly and freely design the grain size of the film-length crystal finally obtained after heat treatment. I can do it. Another great feature of the present invention is that the size of crystal grains can be changed depending on the location in the film.

さらに、プロセス(3)の結晶化のための加熱処理を行
なう。換弁晶質体の結晶核形成温度をTN。
Furthermore, heat treatment for crystallization in process (3) is performed. TN is the crystal nucleation temperature of the crystalloids.

換弁晶質体の結晶成長温度’r”csイオン注入した特
定領域の結晶核生成速度が最大となる温度をTNIとす
ると、第1図に示すように、まずTNよりも十分に低い
温度で第1加熱処理Ai行ない、しかる後Tcの温度ま
で急速昇温し、そのTcの@度で保持し、第2加熱処理
Bを施す。ここで、第1加熱処理Aの温度、すなわちT
Nよりも十分に低い温度がTNIであること、および温
度差TN−TN、が5o℃以上あることが望ましい。第
1加熱処理AP目的は、換弁晶質全体に結晶核生成を行
なわせるごとなく、結晶核形成物質をイオン注入した特
定領域内においてのみ結晶核生成を行なわしめることに
ある。すなわち、第1加熱処理Aによって、換弁晶質体
中の特定領域内のみに結晶核が形成される。ひきつづき
、TNよりも十分低い温度(たとえばTNI )からT
cまで急速昇温を行なうのであるが、これは特定領域外
の換弁晶質体中に結晶核が発生するのを防止するためで
ある。このために、温度TN近傍を急速に通過させるこ
とが必要である。
If the temperature at which the crystal nucleation rate in a specific region into which ions are implanted is the maximum is TNI, then as shown in Figure 1, the crystal growth temperature of the diaphragm crystalloid is 'r'cs. 1 heat treatment Ai is performed, and then the temperature is rapidly raised to the temperature Tc, held at the temperature of Tc, and a second heat treatment B is performed.Here, the temperature of the first heat treatment A, that is, T
It is desirable that the temperature of TNI is sufficiently lower than that of N, and that the temperature difference TN-TN is 50° C. or more. The purpose of the first heat treatment AP is to cause crystal nucleation to occur only in a specific region into which a crystal nucleating substance is ion-implanted, without causing crystal nucleation to occur in the entire crystalline substance. That is, by the first heat treatment A, crystal nuclei are formed only in a specific region of the crystalloid. Continuing, from a temperature well below TN (e.g. TNI)
The temperature is rapidly raised to c, in order to prevent the formation of crystal nuclei in the exfoliated crystalloids outside the specific region. For this reason, it is necessary to rapidly pass around the temperature TN.

第2加熱処理Bの目的は、第1加熱処理Aで生じた各特
定領域の結晶核を中心に均一に結晶成長させることにあ
る。膜全体を完全に多結晶体化させるに必要な第2加熱
処理Bの時間は物質によって定まる結晶成長速度および
設計された粒子サイズ(特定領域間の距離)によって決
定される。この完全結晶化に必要な時間内で第2加熱処
理Bを止めれば、結晶質・非晶質混合体の膜を得ること
ができ、また、結晶粒子間に及在する非晶質の量を第2
加熱処理Bの処理時間を変えることにより任意に調節す
ることができる。
The purpose of the second heat treatment B is to uniformly grow crystals centering on the crystal nuclei in each specific region generated in the first heat treatment A. The time required for the second heat treatment B to completely convert the entire film into a polycrystalline material is determined by the crystal growth rate determined by the substance and the designed particle size (distance between specific regions). If the second heat treatment B is stopped within the time required for complete crystallization, a film of a crystalline/amorphous mixture can be obtained, and the amount of amorphous between crystal grains can be reduced. Second
It can be arbitrarily adjusted by changing the treatment time of heat treatment B.

以下、本発明の方法の実施例について詳細に説明する。Examples of the method of the present invention will be described in detail below.

金属材料の例として磁性体Go−Zr 合金を、半金属
材料(共有結合結晶)の例として半導体Stをまた酸化
物材料(イオン結合性の強い結晶)の例として強誘電体
B a T i Osをそれぞれとりあげて実験を行な
った。
An example of a metal material is the magnetic Go-Zr alloy, an example of a semimetal material (covalently bonded crystal) is the semiconductor St, and an example of an oxide material (a crystal with strong ionic bonding) is the ferroelectric material B a Ti Os. We conducted experiments using each of them.

実施例1 0090%−2rl0%合金を溶融、超急冷して得^膜
厚12μmの非晶質膜を作製した。この換弁晶質体の結
晶核生成温度(TN)は470 ’Cであり、結晶成長
温度(TO)は650℃である。この非晶質膜を高融点
ガラス基板に固定し、11IIXIIx111I11の
大きさに切り出し、その膜表面を半導体集積回路の製造
で常用されているマスク法でマスクし、電子ビームエツ
チングにより、第2図に示すように直径300人の穴C
を16μmの等間距離でもって幾何学的配置を形成した
。しかる後、Cuイオンを高電圧加速し、イオン注入を
行なった。イオン注入量は10  atom/cc で
あった。深さ方向のCuイオン濃度分布の最大となる深
さは膜表面より2μmの所であった。また、Cuイオン
注入した特定領域の結晶核生成温度(TN、)はCo9
0%−Zr10%の非晶質体そのものの結晶核生成温度
(TN)である4 70 ’Cに比べて、約1oo℃低
い360℃であった。なお、CO系金鵬非晶質体に対す
る結晶核形成物質としてはCu以外にAu。
Example 1 A 0090%-2rl0% alloy was melted and ultra-quenched to produce an amorphous film with a thickness of 12 μm. The crystal nucleation temperature (TN) of this crystalloid is 470'C, and the crystal growth temperature (TO) is 650C. This amorphous film was fixed on a high melting point glass substrate, cut into a size of 11IIXII x 111I11, the surface of the film was masked using a mask method commonly used in the manufacture of semiconductor integrated circuits, and electron beam etching was performed as shown in Figure 2. Hole C with diameter 300 as shown
A geometrical arrangement was formed with equal distances of 16 μm. Thereafter, Cu ions were accelerated at a high voltage and ion implantation was performed. The amount of ion implantation was 10 atoms/cc. The maximum depth of the Cu ion concentration distribution in the depth direction was 2 μm from the film surface. In addition, the crystal nucleation temperature (TN, ) of the specific region into which Cu ions were implanted is Co9
The crystal nucleation temperature (TN) of the 0%-10% Zr amorphous material itself was 470'C, which was 360°C, about 100°C lower. In addition to Cu, Au is used as a crystal nucleating substance for the CO-based Kinho amorphous material.

Aqなどが有効であった。このようにして得た、速加熱
昇温(,500,勺)I、、650℃の温度で1時間加
熱処理し、室温まで冷却した。得られた膜表面、および
研摩により膜内部を観察した結果、粒径(直径)16μ
m±1μmの均一粒子からなる2次元多結晶体膜であっ
た。
Aq etc. were effective. The thus obtained product was heat-treated at a temperature of 650° C. for 1 hour, and then cooled to room temperature. As a result of observing the obtained film surface and the inside of the film after polishing, the particle size (diameter) was 16 μm.
It was a two-dimensional polycrystalline film consisting of uniform particles of m±1 μm.

実施例2 市販の非晶質シリコン膜(膜厚1oμm)よシ、1 M
 X 1 mmの大きさの試′#+を切り出し、換弁晶
質体の試料とした。このSt非晶質体のアニールによる
結晶核生成@度(TN)は約goo℃であり、その結晶
成長温度(TO)は約SOO℃であった。この換弁晶質
体試料に実施例1に同様マスクし、電子線レジスト法に
より直径300人の穴をあけ、イオン注入すべき特定領
域とした。なお特定領域の幾何学的配置は第2図と同様
であるが、特定領域(直径300人のエッチ穴)間の間
隔距離は10μm とした。この様にして得た試料にB
イオンを注入した。注入量は10  atoVccであ
り、深さ方向の最大濃度を示す位置は表面より2μmの
所であった。この深さ方向の注入距離は加速電圧で決ま
るが、将来実験装置の性能向上により、10μm以上の
深さまでイオンを注入することが可能となるであろう。
Example 2 Commercially available amorphous silicon film (thickness: 10 μm), 1 M
A sample '#+ with a size of 1 mm was cut out and used as a sample of a crystalloid. The crystal nucleation temperature (TN) due to annealing of this St amorphous material was about goo°C, and the crystal growth temperature (TO) was about SOO°C. This crystalloid sample was masked in the same manner as in Example 1, and a hole with a diameter of 300 mm was made using the electron beam resist method to define a specific region into which ions were to be implanted. The geometrical arrangement of the specific regions was the same as that in FIG. 2, but the distance between the specific regions (300 etched holes in diameter) was 10 μm. In the sample obtained in this way, B
Ions were implanted. The implantation amount was 10 atoVcc, and the position showing the maximum concentration in the depth direction was 2 μm from the surface. The implantation distance in the depth direction is determined by the accelerating voltage, but with improved performance of experimental equipment in the future, it will be possible to implant ions to a depth of 10 μm or more.

このBイオンを注入した特定領域のアニールによる結晶
核生成温度はきわめて低く50℃である。なお、Bの他
に結晶核形成に有効な物質としてはP(約160 ’C
) + As (330℃)などがある。このようにし
て得られたB原子注入後の非晶質Sf t−まず60 
℃で10時間加熱処理し、しかる後800 ℃まで急速
加熱(126℃/秒)し、soo℃の温度で1時間加熱
処理した。得られた膜試料の表面および内部を電子顕微
鏡により観察した結果、粒径が1opm士1μntの均
一粒子からなる2次元多結晶体膜であった。
The crystal nucleation temperature due to annealing in the specific region into which B ions are implanted is extremely low, 50°C. In addition to B, P (approximately 160'C
) + As (330℃), etc. The thus obtained amorphous Sf after B atom implantation t-first 60
C. for 10 hours, then rapidly heated to 800.degree. C. (126.degree. C./second), and heat-treated at a temperature of soo.degree. C. for 1 hour. As a result of observing the surface and interior of the obtained film sample using an electron microscope, it was found to be a two-dimensional polycrystalline film consisting of uniform particles with a grain size of 1 opm to 1 μnt.

実施例3 アルミナ基板上にB a T i Oaを室温でスパッ
タ蒸着し、膜厚O,SμmのB a T iOsを非晶
質膜を作製した。この非晶質体のアニールによる結晶核
生成温度(TN)は約sso℃であり、その結晶成長温
度(TQ)は約850℃であった。この非晶質膜をo、
s、 x o、s、に切り出し、その表面を実施例1と
同様にマスクし、電子線レジスト法により直径100人
の穴をあけ、イオン注入すべき特定領域とした。なお、
特定領域の幾何学的配置は第2図と同じであるが、特定
領域(直径100へのエッチ穴)間の間隔は1μmとし
た。このようにして得られた試料にへ8イオンを注入し
た。注入量は10 ” a t am/c cであp1
深さ方向の最大濃度を示す位置は表面より0.36μm
の所であった。As イオンを注入した特定領域のアニ
ールによる結晶核生成温度は470−Cであった。A8
注人後の非晶質BaTi0a をまず470℃で3時間
加熱保持し、その温度から850℃まで急速加熱(66
℃/秒)し、860℃の温度で10分間加熱保持した後
、室温まで冷却した。得られた膜試料の表面および内部
を電子顕微鏡で観察した結果、粒径が1μm士0.06
μm の均一粒子からなる2次元多結晶体膜であった。
Example 3 B a T i Oa was sputter-deposited on an alumina substrate at room temperature to produce an amorphous B a T iOs film having a film thickness of O.S μm. The crystal nucleation temperature (TN) due to annealing of this amorphous material was about sso°C, and the crystal growth temperature (TQ) was about 850°C. This amorphous film is o,
s, x o, s, the surface thereof was masked in the same manner as in Example 1, and holes with a diameter of 100 mm were made using the electron beam resist method to define specific regions for ion implantation. In addition,
The geometrical arrangement of the specific areas was the same as in FIG. 2, but the spacing between the specific areas (etched holes with a diameter of 100) was 1 μm. Eight ions were implanted into the sample thus obtained. The injection volume was 10 ” at am/cc and p1
The position showing the maximum concentration in the depth direction is 0.36 μm from the surface
It was there. The crystal nucleation temperature by annealing of the specific region into which As ions were implanted was 470-C. A8
The amorphous BaTi0a after pouring was first heated and held at 470°C for 3 hours, and then rapidly heated (66°C) from that temperature to 850°C.
°C/sec), heated and maintained at a temperature of 860 °C for 10 minutes, and then cooled to room temperature. As a result of observing the surface and inside of the obtained membrane sample with an electron microscope, the particle size was 0.06 to 1 μm.
It was a two-dimensional polycrystalline film consisting of uniform particles of μm.

以上のように、本発明の方法によれば、個々の結晶粒子
の大きさのそろった膜長結晶体をきわめて再現性よく容
易に作製することができる。
As described above, according to the method of the present invention, a long crystal body in which individual crystal grains have uniform sizes can be easily produced with extremely good reproducibility.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる方法を実施するための加熱スケ
ジュールの一例を示す図、第2図は同じく結晶核形成物
質をイオン注入すべき領域の配置例を示す図である。 代理人の氏名 弁理士 中 尾 敏 男 はが1名第1
図 両開 第 2r11 00’−0O000 o  o  Oo  Oo  。
FIG. 1 is a diagram showing an example of a heating schedule for implementing the method according to the present invention, and FIG. 2 is a diagram showing an example of the arrangement of regions into which crystal nucleation substances are to be ion-implanted. Name of agent: Patent attorney Toshio Nakao (1st person)
Figure double opening No. 2r11 00'-0O000 o o Oo Oo.

Claims (1)

【特許請求の範囲】 0)膜非晶質体の中のあらかじめ定められた多数個の特
定領域に、上記非晶質体の構成元素以外からなる結晶核
形成促進物質をイオン注入した後、上記非晶質体の結晶
核生成源1(TN)よりも十分に低い温度で第1加熱処
理することによりまず上記特定領域のみを結晶核生成さ
せ、しかる後に上記非晶質体の結晶成長温度(Tc)で
第2加熱処理して上記特定領域の結晶核を中心に結晶成
長させることを特徴とする膜条結晶体の粒子サイズの制
御方法。 (2)第2加熱処理において膜非結晶質体の全領域を結
晶化させることを特徴とする特許請求の範囲第1項に記
載の膜条結晶体の粒子サイズの制御方法0 (3)第2加熱処理において、まず上記非晶質体の結晶
核生成温度(T1)よりも十分に低い温度から上記非晶
質体の結晶成長温度(TC)までの温度範囲を急速加熱
し、しかる後に上記非晶質体の結晶成長温度(Tc)K
て保持することを特徴とする特(4)膜非晶質体の中の
あらかじめ定められた多数個の特定領域の大きさが10
人〜1000入の範囲内にあることを特徴とする特許請
求の範囲第1項の特定領域の幾何学的配置が、互いにも
つとも近くにある特定領域の中心点間の距離がすべて等
しく、かつ上記中心点の配置が膜面に対して垂直な六回
対称軸を有することを特徴とする特許請求の範囲第1項
に記載の膜条結晶体の粒子サイズの制御方法。 (6)第1の加熱処理において、非晶質体の結晶核生成
温度(TN)よりも十分に低い温度が、その温度におい
てイオン注入後の特定領域内での結晶核生成速度が最大
となる温度(TN・)であることを特徴とする特許請求
の範囲第1項に記載の膜長結晶体の粒子サイズの制御方
法。
[Scope of Claims] 0) After ion-implanting a crystal nucleation promoting substance consisting of a constituent element other than the constituent elements of the amorphous body into a large number of predetermined specific regions in the film amorphous body, the above-mentioned A first heat treatment is performed at a temperature sufficiently lower than the crystal nucleation source 1 (TN) of the amorphous body to first generate crystal nuclei only in the specific region, and then the crystal growth temperature (TN) of the amorphous body is A method for controlling the grain size of a film strip crystal, characterized by performing a second heat treatment at Tc) to grow crystals centered on the crystal nuclei in the specific region. (2) A method for controlling the particle size of a film strip crystalline material according to claim 1, characterized in that the entire region of the film amorphous material is crystallized in the second heat treatment. 2. In the heat treatment, first, rapid heating is performed in a temperature range from a temperature sufficiently lower than the crystal nucleation temperature (T1) of the amorphous body to the crystal growth temperature (TC) of the amorphous body, and then the above-mentioned Crystal growth temperature (Tc) K of amorphous material
(4) The size of a predetermined number of specific regions in the film amorphous body is 10
The geometrical arrangement of the specific areas according to claim 1, characterized in that the distances between the center points of the specific areas that are close to each other are all equal, and 2. The method for controlling the grain size of a membrane strip crystal according to claim 1, wherein the center point has a six-fold axis of symmetry perpendicular to the membrane surface. (6) In the first heat treatment, the temperature is sufficiently lower than the crystal nucleation temperature (TN) of the amorphous material, at which temperature the crystal nucleation rate within the specific region after ion implantation becomes maximum. 2. The method of controlling the grain size of a long crystalline material according to claim 1, wherein the temperature (TN.) is controlled.
JP21287181A 1981-12-29 1981-12-29 Controlling method for particle size of film polycrystal Granted JPS58116739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21287181A JPS58116739A (en) 1981-12-29 1981-12-29 Controlling method for particle size of film polycrystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21287181A JPS58116739A (en) 1981-12-29 1981-12-29 Controlling method for particle size of film polycrystal

Publications (2)

Publication Number Publication Date
JPS58116739A true JPS58116739A (en) 1983-07-12
JPS6244403B2 JPS6244403B2 (en) 1987-09-21

Family

ID=16629652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21287181A Granted JPS58116739A (en) 1981-12-29 1981-12-29 Controlling method for particle size of film polycrystal

Country Status (1)

Country Link
JP (1) JPS58116739A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60200887A (en) * 1984-03-23 1985-10-11 Nippon Sheet Glass Co Ltd Manufacture of magnetic film
JPS63185016A (en) * 1987-01-27 1988-07-30 Sony Corp Forming method for semiconductor thin film
US5733369A (en) * 1986-03-28 1998-03-31 Canon Kabushiki Kaisha Method for forming crystal
US5846320A (en) * 1986-03-31 1998-12-08 Canon Kabushiki Kaisha Method for forming crystal and crystal article obtained by said method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60200887A (en) * 1984-03-23 1985-10-11 Nippon Sheet Glass Co Ltd Manufacture of magnetic film
JPH0457637B2 (en) * 1984-03-23 1992-09-14 Nippon Sheet Glass Co Ltd
US5733369A (en) * 1986-03-28 1998-03-31 Canon Kabushiki Kaisha Method for forming crystal
US5853478A (en) * 1986-03-28 1998-12-29 Canon Kabushiki Kaisha Method for forming crystal and crystal article obtained by said method
US5846320A (en) * 1986-03-31 1998-12-08 Canon Kabushiki Kaisha Method for forming crystal and crystal article obtained by said method
JPS63185016A (en) * 1987-01-27 1988-07-30 Sony Corp Forming method for semiconductor thin film

Also Published As

Publication number Publication date
JPS6244403B2 (en) 1987-09-21

Similar Documents

Publication Publication Date Title
Givargizov Oriented crystallization on amorphous substrates
WO2004100238A1 (en) Monocrystalline diamond layer and method for the production thereof
US20020092823A1 (en) Thin film lithium niobate structure and method of making the same
JPS58116739A (en) Controlling method for particle size of film polycrystal
JPS6050757B2 (en) Method for manufacturing single crystal film
JPS6130018B2 (en)
JP2002115056A (en) Manufacturing method of metal thin film consisting of large single crystal grain
JPH02260524A (en) Crystalline semiconductor film and formation thereof
JP3345363B2 (en) Method for forming polycrystalline silicon thin film and method for manufacturing thin film transistor
JPS5840820A (en) Formation of silicon single crystal film
DE10352655A1 (en) Heteroepitaxial layer and process for its preparation
JPS58151390A (en) Formation of single crystal film on amorphous substrate
JP3520571B2 (en) Single crystal growth method
JP2777599B2 (en) Manufacturing method of single crystal thin film
JPS58184720A (en) Manufacture of semiconductor film
JP2825676B2 (en) Crystal formation method
JP2615406B2 (en) Method for manufacturing silicon substrate having silicon carbide buried layer
JPH02192496A (en) Crystal article and method for forming the same
JPH02143414A (en) Formation of single crystal film
JP2833878B2 (en) Method of forming semiconductor thin film
JPS60150614A (en) Manufacture of magnetic thin film
JPS60200887A (en) Manufacture of magnetic film
JPH01149349A (en) Electron emitting element
JPS6276710A (en) Manufacture of magnetic thin film
JPS61261286A (en) Production of substrate for semiconductor device