JPS58116428A - Preparation of isoprene - Google Patents

Preparation of isoprene

Info

Publication number
JPS58116428A
JPS58116428A JP21189981A JP21189981A JPS58116428A JP S58116428 A JPS58116428 A JP S58116428A JP 21189981 A JP21189981 A JP 21189981A JP 21189981 A JP21189981 A JP 21189981A JP S58116428 A JPS58116428 A JP S58116428A
Authority
JP
Japan
Prior art keywords
isoprene
reaction
formaldehyde
source
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21189981A
Other languages
Japanese (ja)
Inventor
Kinichi Okumura
奥村 欽一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP21189981A priority Critical patent/JPS58116428A/en
Publication of JPS58116428A publication Critical patent/JPS58116428A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To prepare isoprene, in high yield, by the liquid-phase reaction of an isobutylene source with a formaldehyde source in the presence of an acidic catalyst, wherein the reaction is carried out in the presence of a large amount of water in the reaction system in two steps at low temperature and high temperature under specific conditions. CONSTITUTION:Isoprene is prepared by the liquid-phase reaction of an isobutylene source with a formaldehyde source in the presence of water and an acidic catalyst. The amount of charged water is adjusted to >=4pts.wt., preferably 5- 100pts.wt., especially 10-50pts.wt. per 1pt.wt. of formaldehyde generated from the aldehyde source, and the temperature is changed in two steps; i.e. an isoprene precursor is synthesized at <=145 deg.C, preferably 60-140 deg.C, and then the temperature of the reaction system is raised to >=150 deg.C, preferably 150-230 deg.C to decompose the precursor to isoprene. Isoprene can be prepared in high selectivity and yield by the one-step liquid-phase reaction, suppressing the production of hardly handleable by-products.

Description

【発明の詳細な説明】 本発明は液相−投法によるイソプレンの製造法に関し、
さらに詳しくは、インブチレン源とホルムアルデヒド源
とを酸性触媒および多量の水の存在下に逐次的な温度で
液相反応させること罠より高収率でイソグレンをll造
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing isoprene by a liquid phase injection method.
More specifically, the present invention relates to a method for producing isogrene in a higher yield than in conventional methods, by subjecting a source of inbutylene and a source of formaldehyde to a liquid phase reaction at sequential temperatures in the presence of an acidic catalyst and a large amount of water.

イソブチレン、第5級ブタノール(以下、TDAと略称
する)、メチルターシャリ−ブチルエーテル(以下、M
 T B ’にと略称する)などの如きイソブチレン源
と、ホルムアルデヒド、バラホルムアルデヒドなどの如
きホルムアルデヒド源とから酸性触媒の存在下に液相一
段反応によってイソグレンを製造する方法は従来から公
知である(4f4えば特公昭4B−28884号、同4
9−10926号、同50−10283号など)。
Isobutylene, 5th-butanol (hereinafter abbreviated as TDA), methyl tert-butyl ether (hereinafter M
A method for producing isogrene by a liquid phase one-step reaction in the presence of an acidic catalyst from an isobutylene source such as T B' and a formaldehyde source such as formaldehyde, paraformaldehyde, etc. has been conventionally known (abbreviated as 4f4). For example, Special Publication No. 4B-28884, No. 4
No. 9-10926, No. 50-10283, etc.).

かかる−投法は、すでに工業化されているイソブチレン
とホルムアルデヒドから4.4−ジメチル−1,5−ジ
オキサンを経由してイソプレンを合成する、いわゆる二
段法に比教して反応工程が少ないという基本的な利点を
有しているが、その反面、選択率が未だ充分でなく数機
いの困難な副生物を多量生成するという弊害がある。
The basic principle of this method is that it requires fewer reaction steps than the so-called two-step method, which synthesizes isoprene from isobutylene and formaldehyde via 4,4-dimethyl-1,5-dioxane, which has already been commercialized. However, on the other hand, it has the disadvantage that the selectivity is still insufficient and a large amount of difficult by-products are produced.

またかかる−投法′の異体例として反応を低重及び高温
の二段階で行う方法も公知である。例えば特公昭55−
2415号には、インブチレン源とホルムアルデヒドを
スルファニル酸、オルタニル酸などのごとき特定なアζ
ノ基含有スルホン酸を触媒として少量の水の存在下に7
0〜130C及び160〜200Cの二段階で反応する
方法が記載されている。
Also known is a method in which the reaction is carried out in two stages, one at low pressure and one at high temperature, as a variant of this method. For example, special public service in 1977-
No. 2415, the inbutylene source and formaldehyde are combined with specific acids such as sulfanilic acid, orthanilic acid, etc.
7 in the presence of a small amount of water using a sulfonic acid containing a group as a catalyst.
A two-stage reaction process at 0-130C and 160-200C is described.

この方法はもっばらホルムアルデヒドの重合による装置
の詰り防止を目的とするものであるが、本発明者らがこ
の方法を追試した結果では、生成物中に多量の副生物が
存在し、また触媒とホルムアルデヒドが反応して原単位
を低下させることが確認された。
This method is primarily intended to prevent clogging of the equipment due to formaldehyde polymerization, but the inventors' additional tests of this method revealed that a large amount of by-products were present in the product and that the catalyst was not clogged. It was confirmed that formaldehyde reacts and lowers the basic unit.

そこで本発明者は従来技術に見られるこれらの欠点を改
良すべく鋭意検討を進めた結果、低温及び高温での二段
反応を多量の水の存在下に実施すると、意外にも副生物
が大巾に減少し高選択率かつ高収率でインプレンが得ら
れることを見い出した。
Therefore, the present inventor conducted intensive studies to improve these shortcomings seen in the prior art, and found that when a two-step reaction at low and high temperatures was carried out in the presence of a large amount of water, unexpectedly large amounts of by-products were produced. It has been found that imprene can be obtained with high selectivity and high yield.

かくして本発明(によれば、イソブチレン源(A) ト
ホルムアルデヒド源(B)を水(0)及び酸性触媒(D
)の存在下に液相で反応してイソプレンを製造するに際
し、(0)成分の仕込み量が(B)成分から生ずるホル
ムアルデヒド1重量部当94重量部以上で、かつ反応温
度が145C以下の条件下に液相反応してイソプレン前
駆体を合成し、次いで反応系を1000以上に昇温して
イノプレン前駆体をイソプルシンに分解す為ことを4#
做とする液−相一投法によるイソプレンの製造法が提供
される。
Thus, according to the present invention, a source of isobutylene (A), a source of formaldehyde (B), water (0) and an acidic catalyst (D
) When producing isoprene by reacting in a liquid phase in the presence of (0), the amount of component (0) charged is 94 parts by weight or more per 1 part by weight of formaldehyde generated from component (B), and the reaction temperature is 145C or less. Below, the isoprene precursor is synthesized by a liquid phase reaction, and then the temperature of the reaction system is raised to 1000 °C or higher to decompose the inoprene precursor into isoprusine.
A method for producing isoprene by a liquid-phase one-shot process is provided.

本発明に訃いて反応原料として用いられるインブチレン
源は、インブチレン、TBAfiたはアル中ルターシャ
リーブテルエーテルであり、アルキルターシャリ−ブチ
ルエーテルの具体例としては、MTBIが例示される。
The inbutylene source used as a reaction raw material in the present invention is inbutylene, TBAfi, or tert-butyl ether in alcohol, and a specific example of the alkyl tert-butyl ether is MTBI.

これらのイソブチレン源は単独で使用してもよいが、二
種以上の混合物の形で使用することもできる〇 一方、用いられるホルムアルデヒド源は反応系内におい
てホルムアルデヒドを発生し得るものであればいずれで
もよく、その具体例として、メタノールの酸化によって
得られたホルムアルデヒドを含むガス、ホルムアルデヒ
ド水溶液、ホルムアルデヒドの重合物(例えば、バラホ
ルムアルデヒド、トリオキサン)、ホルムアルデヒドの
前駆体(例えばメテラール、4.4−ジメデルーt5−
ジオキサン)などが挙けられる。またホルムアルデヒド
水溶液にパラホルムアルデヒドを溶解してホルムアルデ
ヒド濃度を高めたものや、安定剤としてメタノールを含
むホルムアルデヒド水溶液であっても同様に使用するこ
とができるO なかでも取扱−の容易さ、入手の容易さ、反応系に水が
必要なことなどの見地からホルムアルデヒド水溶液が賞
月される。
These isobutylene sources may be used alone or in the form of a mixture of two or more types.On the other hand, any formaldehyde source that can be used can generate formaldehyde in the reaction system. Examples include formaldehyde-containing gas obtained by oxidation of methanol, formaldehyde aqueous solution, formaldehyde polymers (e.g. formaldehyde, trioxane), formaldehyde precursors (e.g. metheral, 4,4-dimedel-t5). −
dioxane), etc. In addition, it can be used in the same way even if the formaldehyde concentration is increased by dissolving paraformaldehyde in an aqueous formaldehyde solution, or an aqueous formaldehyde solution containing methanol as a stabilizer. Formaldehyde aqueous solutions are preferred because of the need for water in the reaction system.

かかるインブチレン源とホルムアルデヒド源の使用比率
は反応条件に応じて適宜選択されるが、通常はホルムア
ルデヒド源から生じる理論量のホルムアルデヒド1モル
当ジイソブチレン源から生じる理論量のインブチレン2
モル以上、好ましくは3モル以上であり、インブチレン
源の使用量が少ない場合にはホルムアルデヒドの転化率
が低下し、また副生物の生成も増加する傾向を示す。一
方、イソブチレン源の使用量が過度に大きくなると未反
応インブチレンの回収に要する経費が嵩むタメ、cの見
地からホルムアルデヒド1モル当フィンブチレン20モ
ル以下とするのが適切で・ある0本発明においては、イ
ソブチレン源とホルムアルデヒド源の反応を行うに際し
て反応系中に多量の水を存在せしめ、かつ低温及び高温
での二段反応を行うことが必須の要件である。
The ratio of the inbutylene source and formaldehyde source to be used is appropriately selected depending on the reaction conditions, but usually the theoretical amount of inbutylene 2 generated from the diisobutylene source is calculated per 1 mole of formaldehyde generated from the formaldehyde source.
If the amount is mol or more, preferably 3 mol or more, and the amount of the inbutylene source used is small, the conversion rate of formaldehyde tends to decrease and the production of by-products tends to increase. On the other hand, if the amount of isobutylene source used is excessively large, the cost required to recover unreacted imbutylene increases, so from the viewpoint of c. When carrying out the reaction between an isobutylene source and a formaldehyde source, it is essential to have a large amount of water present in the reaction system and to carry out a two-stage reaction at low and high temperatures.

第一〇要件である水の量は、ホルムアルデヒド源から生
じるホルムアルデヒド1重量部当641量部以上、好ま
しくは5〜100重量部、さらに好ましくは10〜50
重量部であり、水の量が少なすぎる場合には副生物の生
成を抑制することができない。なお、ここで「ホルムア
ルデヒド源から生じるホルムアルデヒドJとは原料とし
て供給するホルムアルデヒド源から遊離するホルムアル
デヒドの理論値を意味する。
The amount of water, which is the tenth requirement, is 641 parts by weight or more, preferably 5 to 100 parts by weight, more preferably 10 to 50 parts by weight, per 1 part by weight of formaldehyde generated from the formaldehyde source.
parts by weight, and if the amount of water is too small, the production of by-products cannot be suppressed. Note that "formaldehyde J generated from a formaldehyde source" herein means the theoretical value of formaldehyde liberated from a formaldehyde source supplied as a raw material.

次に第二の要件として反応を予め1450以下、好まし
くは60〜140Cの温度で実施しく以゛下、低温反応
と称する)、次いで1000以上、好ましくはf5(F
 〜250C(08度で実施する(以下、高温反応と称
する)ことが必要である。
Next, the second requirement is to carry out the reaction in advance at a temperature of 1450C or less, preferably 60 to 140C (hereinafter referred to as low temperature reaction), then 1000C or more, preferably f5 (F5
It is necessary to carry out the reaction at ~250C (hereinafter referred to as high temperature reaction).

予め行う低温反応の過程ではイソプレンとホルムアルデ
ヒドの反応によって4.4−ジメチル−−5−ジオ:?
サン、3−メチル−先3−ブタンジオール、3−メチル
−3−ブテン−1−オールなどのごときイソプレン前駆
体が合成される。この際、反応温度を145C以下に抑
えることが重要であり、この温度を越えると最終生成物
であるイソプレンの生成量がこの段階で増加するため、
系中に存在するホルムアルデヒドまたは44−ジメチル
ホルム−15−ジオキサンの分解によって発生するホル
ムアルデヒドとイソプレンとの反応によって処理の困難
なビラン類の副生が増加する0逆に反応温度が過度に低
くなると反応性が低下するため実用的でない。また低温
反応におゆる反応温度は必ずしも一定に保つ必要はなぐ
、145C以下の範囲であれば逐次的に上昇させても、
また二段以上に分割して段階的に上昇さ□せてもよい。
In the preliminary low-temperature reaction process, the reaction between isoprene and formaldehyde produces 4,4-dimethyl--5-dio:?
Isoprene precursors such as San, 3-methyl-pre-3-butanediol, 3-methyl-3-buten-1-ol, etc. are synthesized. At this time, it is important to keep the reaction temperature below 145C; if this temperature is exceeded, the amount of final product isoprene produced increases at this stage.
Due to the reaction between formaldehyde and isoprene generated by the decomposition of formaldehyde or 44-dimethylform-15-dioxane present in the system, the by-product of bilanes, which is difficult to treat, increases.On the other hand, if the reaction temperature is too low, the reaction will increase. It is not practical as it reduces performance. Also, in low-temperature reactions, the reaction temperature does not necessarily need to be kept constant; it can be raised sequentially as long as it is below 145C.
Alternatively, it may be divided into two or more stages and raised in stages.

一方、高温反応の過程においては低温反応によって生成
したイソプレン前駆体の分解によってイソプレンが生成
する。この際、反応温度が150Cに過度に高くなると
イソプレンの重合物やカーボン状またはタール状の副生
物が増加する@本発明に訃いてはイソブチレン源とホル
ムアルデヒド源との反応に際して酸性触媒が使用される
On the other hand, in the process of high-temperature reaction, isoprene is produced by decomposition of an isoprene precursor produced by low-temperature reaction. At this time, if the reaction temperature becomes too high to 150C, isoprene polymers and carbon-like or tar-like by-products will increase. In the present invention, an acidic catalyst is used in the reaction between the isobutylene source and the formaldehyde source. .

かかる酸性触媒は水が存在する反応条件下で酸性を示す
物質であればいずれでもよく、その具体例として塩酸、
硫酸、硝酸、リン酸、次亜y7酸、亜リン酸、タングス
テン酸、モリブデン酸、テルル酸、臭化水素酸、クロル
スルホン酸、ケイタングステン酸、スズ酸、次亜塩素酸
などのごとき無機駿、ギ酸、シュウ酸、コハク酸、クエ
ン酸、フタル酸、ハンドルエンスルホニ/II、トリフ
ルオロメタンスルホン酸、スルホン酸系イオン交換*m
irなどのごとき有機酸、カリ明パン、クロム明パンな
どのごとき複塩、硫酸アンモニウム、リン酸アンモニウ
ム、塩化アンチモアなどのごとき非金属無機強酸塩、硫
酸第二鉄、硫酸ニッケル、塩化スズ、ビaりン酸第二鋼
、りン酸ホウ素、リン酸ジルコニウムなどのごとき金属
塩などがあげられる。
The acidic catalyst may be any substance that exhibits acidity under reaction conditions in the presence of water; specific examples include hydrochloric acid,
Inorganic compounds such as sulfuric acid, nitric acid, phosphoric acid, hypochlorous acid, phosphorous acid, tungstic acid, molybdic acid, telluric acid, hydrobromic acid, chlorosulfonic acid, silicotungstic acid, stannic acid, hypochlorous acid, etc. , formic acid, oxalic acid, succinic acid, citric acid, phthalic acid, handleenesulfonic acid/II, trifluoromethanesulfonic acid, sulfonic acid ion exchange*m
Organic acids such as ir, double salts such as potash bright bread, chromium bright bread, etc., non-metallic inorganic strong acid salts such as ammonium sulfate, ammonium phosphate, antimore chloride, ferric sulfate, nickel sulfate, tin chloride, via Examples include metal salts such as steel phosphate II, boron phosphate, and zirconium phosphate.

なかでもリン酸、リン酸塩などのごときリン化合物、ヘ
テロポリ酸、有機酸及びそれらの塩が装置の腐食防止の
見地から賞月される・ これらの酸性触媒は通常単独で使用されるが、必要に応
じて二種以上の触媒を適宜併用することもできる。触媒
の使用量は触媒の種類や反応温度。
Among them, phosphorus compounds such as phosphoric acid and phosphates, heteropolyacids, organic acids, and their salts are prized from the viewpoint of corrosion prevention of equipment.These acidic catalysts are usually used alone, but when necessary Two or more types of catalysts can also be used in combination as appropriate. The amount of catalyst used depends on the type of catalyst and reaction temperature.

反応時間などの条件によって必ずしも一定ではないが、
簡単な予備実験を行うことによシ適宜決定することがで
きる。
Although it is not necessarily constant depending on conditions such as reaction time,
It can be determined appropriately by conducting simple preliminary experiments.

また反応時間や反応圧力は適宜選択すればよく、低温反
応においては通常反応時間が10分〜5時間、好ましく
は50分〜5時間であり、反応圧力Fi1〜80 ka
/r:m”である。他方、高温反応においては通常反応
時間が5分〜2時間、好ましくは10分〜1時間であり
反応圧力は5〜j50ke/?曾である。さらに本発明
においては水とともにアルコール、ケトンなどの極性溶
剤や脂肪族または芳香族系の炭化水素溶剤を共存させる
こともできる〇本発明によれば、イソプレン前駆体を単
離することなく簡略化されたプロセスでイソプレンを高
収率に製造することができる0さらに処理の困−な副生
物の生成を大幅に抑制することができる。
In addition, the reaction time and reaction pressure may be selected as appropriate; in low-temperature reactions, the reaction time is usually 10 minutes to 5 hours, preferably 50 minutes to 5 hours, and the reaction pressure Fi1 to 80 ka.
/r:m''. On the other hand, in high-temperature reactions, the reaction time is usually 5 minutes to 2 hours, preferably 10 minutes to 1 hour, and the reaction pressure is 5 to j50ke/? A polar solvent such as an alcohol or a ketone or an aliphatic or aromatic hydrocarbon solvent can also be allowed to coexist with water.According to the present invention, isoprene can be produced in a simplified process without isoprene precursor isolation. 0 can be produced in high yield, and the production of by-products that are difficult to process can be significantly suppressed.

次に実施例を挙げて本発明をさらに具体的に説明する。Next, the present invention will be explained in more detail with reference to Examples.

なお、実施例中の部及び慢はとくに断夛のないかぎり重
量基準である〇 実施例1 外部振睦式のステンレス製オートクレーブに25饅ホル
ムアルデヒド水溶液4部、水50部、TBム14部およ
び85チ17 ン酸1部を仕込んだのち、インブチレン
11部を仕込み、次いで表1に示す条件に従って低温反
応及び高温反応を行ったO 反応終了後、オートクレーブを冷却し、次いで開封した
オートクレーブに四塩化炭素を加えて有機層を抽出し、
この有機層に含まれるイソプレンおよび水層に残る未反
応ホルムアルデヒドをガスクロマドグラフィーによって
分析した。また比較のため反応温度を変化させない場合
についても同様にして実験を行った。結果を表IK示す
In addition, parts and weights in the examples are based on weight unless otherwise noted. Example 1 In an external shaking stainless steel autoclave, 4 parts of a 25% formaldehyde aqueous solution, 50 parts of water, 14 parts of TB and 85% of aqueous formaldehyde solution were added. After charging 1 part of chinoic acid, 11 parts of inbutylene was charged, and then a low temperature reaction and a high temperature reaction were performed according to the conditions shown in Table 1. Add carbon and extract the organic layer,
Isoprene contained in this organic layer and unreacted formaldehyde remaining in the aqueous layer were analyzed by gas chromatography. For comparison, experiments were also conducted in the same manner without changing the reaction temperature. The results are shown in Table IK.

実施例2 85チリン酸の仕込み量を13部に変えたこと以外線実
施例1の実験番号(1−5)  と同様にして低温反応
を行ったのち、表2に示す所定の条件下で高温反応を行
った。結果を表2に示す。
Example 2 A low-temperature reaction was carried out in the same manner as in Experiment No. (1-5) of Example 1, except that the amount of 85-thiphosphoric acid charged was changed to 13 parts, and then a high-temperature reaction was carried out under the predetermined conditions shown in Table 2. The reaction was carried out. The results are shown in Table 2.

表  2 実権例3 仕込み原料中の水とホルムアルデヒドとの比を変えるこ
と以外は11部總例1の実験番号(1,5)と同じ様に
して反応を行った0結果を表5に示す。
Table 2 Actual Example 3 The reaction was carried out in the same manner as in Experiment No. (1, 5) of Example 1 (11 parts) except that the ratio of water and formaldehyde in the raw materials was changed. Table 5 shows the results.

表   3 この結果から、水の量が少ない場合にはピランの副生量
が多く、イソプレンの収率が大巾に低下することがわか
る。
Table 3 These results show that when the amount of water is small, the amount of pyran by-product is large and the yield of isoprene is significantly reduced.

実施例4 低温反応を予め90Gで120分、次いで140Cで3
0分の二段階で行うように変更すること以外は実施例1
の実験番号(1−1)  に準じて反応を行った。その
結果、ホルムアルデヒドの転化率は100sでTo)、
イソプレン収率は798モル襲、ビランの収率は五2モ
ル−であった□実権例5 実権例1で用いたリン酸水溶液に代えて表3に示す各種
触媒を所定量使用し、実権例1の実験番号(1−1)に
準じて反応を行った。結果を表4に示す。
Example 4 Low temperature reaction was carried out in advance at 90G for 120 minutes and then at 140C for 3
Example 1 except that the process is performed in two stages of 0/0.
The reaction was carried out according to Experiment No. (1-1). As a result, the conversion rate of formaldehyde was 100 s (To),
The yield of isoprene was 798 mol, and the yield of biran was 52 mol. The reaction was carried out according to Experiment No. 1 (1-1). The results are shown in Table 4.

表    4 実施例6 実施例1で用いたTBAをよびインブチレンの量を変え
てそれぞれ7部および6部とする以外は実権例1の実験
番号(1−5)K準じて反応を行った。その結果、イソ
プレン収本社7&9モルチであり、ビラン収率は4.3
モルチであった。
Table 4 Example 6 The reaction was carried out in accordance with Experiment No. (1-5)K of Actual Example 1, except that the amounts of TBA and inbutylene used in Example 1 were changed to 7 parts and 6 parts, respectively. As a result, the isoprene yield was 7 & 9 mol and the bilane yield was 4.3.
It was morchi.

実施例7 反応器として内径6m、長さ9.1商の蛇管状ステンレ
ス管を使用し、その入口方向から7.1m1lの部分を
120CK維持し、残シの17I11の部分を190C
K:維持した。次いでこの反応器にホルム7にデヒド2
,1%、水8(10%%TBA  12.5%。
Example 7 A serpentine stainless steel pipe with an inner diameter of 6 m and a length of 9.1 quotient was used as a reactor, a 7.1 ml portion from the inlet direction was maintained at 120 CK, and the remaining 17 I 11 portion was maintained at 190 C.
K: Maintained. Next, 7 parts of form and 2 parts of dehyde were added to this reactor.
, 1%, water 8 (10%% TBA 12.5%.

リン酸5.4優から成る水溶液およびイソブチレンをそ
れぞれ145#/Hおよび551/Hの流量で供給し、
25 ktl /rx” G の圧力下で連続的に反応
を行った。その結果、ホルムアルデヒドの転化率は10
0慢であり、イソプレン収率は87.4モルチであった
Supplying an aqueous solution consisting of 5.4% phosphoric acid and isobutylene at flow rates of 145 #/H and 551/H, respectively;
The reaction was carried out continuously under a pressure of 25 ktl/rx"G. As a result, the conversion rate of formaldehyde was 10
The yield of isoprene was 87.4 mol.

実施例8 実権例7で用いたイソブチレンに代えてMTBKを85
#/Hの割合で供給すること以外は実権例7に準じて反
応を行った・その結果、ホルムアルデヒドの転化率は1
00%であシ、イソプレン収出願人  日本ゼオン株式
会社
Example 8 MTBK was used in place of isobutylene used in Example 7.
The reaction was carried out according to Actual Example 7 except that the ratio of #/H was supplied. As a result, the conversion rate of formaldehyde was 1
00% resin, isoprene yield Applicant: Zeon Corporation

Claims (1)

【特許請求の範囲】[Claims] t インブチレン源(A)とホルムアルデヒ)[(B)
ヲ水(0)及び酸性触媒(→の存在下に液相で反応して
イソプレンを製造するに際し、(C)成分の仕込み量が
(B)成分から生ずるホルムアルデヒド1重量部当り4
N量部以上で、かつ反応温度が145C以下の条件下に
液相反応してイソプレン前駆体を合成し、次いで反応系
を1000以上に昇温してイソプレン前駆体をイソプレ
ンに分解することを特徴とする液相−投法によるイソプ
レンのIll造法。
t inbutylene source (A) and formaldehy) [(B)
When producing isoprene by reacting in the liquid phase in the presence of water (0) and an acidic catalyst (→), the amount of component (C) charged is 4 parts by weight of formaldehyde generated from component (B).
The isoprene precursor is synthesized by a liquid phase reaction under conditions where the amount of N is 1 part or more and the reaction temperature is 145C or less, and then the reaction system is heated to 1000C or more to decompose the isoprene precursor into isoprene. Ill production method of isoprene by liquid phase injection method.
JP21189981A 1981-12-28 1981-12-28 Preparation of isoprene Pending JPS58116428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21189981A JPS58116428A (en) 1981-12-28 1981-12-28 Preparation of isoprene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21189981A JPS58116428A (en) 1981-12-28 1981-12-28 Preparation of isoprene

Publications (1)

Publication Number Publication Date
JPS58116428A true JPS58116428A (en) 1983-07-11

Family

ID=16613479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21189981A Pending JPS58116428A (en) 1981-12-28 1981-12-28 Preparation of isoprene

Country Status (1)

Country Link
JP (1) JPS58116428A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4733901A (en) * 1985-04-22 1988-03-29 Nissan Motor Company, Limited Vehicle body structure with a rear luggage compartment
US5967584A (en) * 1997-08-27 1999-10-19 Prince Corporation Expandable trunk storage system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5291807A (en) * 1976-01-22 1977-08-02 Arekusandorobuichi Buradeimiru Process for preparing isoprene

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5291807A (en) * 1976-01-22 1977-08-02 Arekusandorobuichi Buradeimiru Process for preparing isoprene

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4733901A (en) * 1985-04-22 1988-03-29 Nissan Motor Company, Limited Vehicle body structure with a rear luggage compartment
US5967584A (en) * 1997-08-27 1999-10-19 Prince Corporation Expandable trunk storage system

Similar Documents

Publication Publication Date Title
CA1181431A (en) Process for making bis(hydroxyphenyl)methanes
JP7043427B2 (en) Method for producing γ, δ-unsaturated alcohol
EP3039004B1 (en) A process for preparation of unsaturated ketone
JPS58116428A (en) Preparation of isoprene
JP2829116B2 (en) Process for producing unsaturated ketone from acetone and paraformaldehyde
US5118883A (en) Preparation of glycols from formaldehyde
JPS5925337A (en) Preparation of isoprene
JP2000026356A (en) Production of hydroxypivalaldehyde
GB507571A (en) Manufacture of cyclic acetals of formaldehyde
US6294691B1 (en) Process for the manufacture of carboxylic acids
JPH0236575B2 (en)
JPS60224641A (en) Production of isoprene
JPH0222050B2 (en)
US2294955A (en) Process for the manufacture of unsaturated aldehydes
JPH0329048B2 (en)
JP3526611B2 (en) Method for producing glycolic acid
JPS59225128A (en) Preparation of isoprene
JP4025373B2 (en) Method for producing carboxylic acid
JPS5869824A (en) Preparation of isoprene
JPH0254836B2 (en)
JPH0245439A (en) Production of bisphenol
JPS59184136A (en) Production of isoprene
JP2003286280A (en) Method for producing 1,3-dioxane
JPS60226834A (en) Preparation of isoprene
JPH0229659B2 (en)