JP4025373B2 - Method for producing carboxylic acid - Google Patents

Method for producing carboxylic acid Download PDF

Info

Publication number
JP4025373B2
JP4025373B2 JP53732398A JP53732398A JP4025373B2 JP 4025373 B2 JP4025373 B2 JP 4025373B2 JP 53732398 A JP53732398 A JP 53732398A JP 53732398 A JP53732398 A JP 53732398A JP 4025373 B2 JP4025373 B2 JP 4025373B2
Authority
JP
Japan
Prior art keywords
acid
olefin
branched
catalyst
carbon monoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP53732398A
Other languages
Japanese (ja)
Other versions
JP2001513099A (en
JP2001513099A5 (en
Inventor
ブレート,アントニウス,ヨハンネス,マリア
ハーン,レネ,ヨハン
ランゲ,ジヤン−パウル
ペトルス,レオナルドス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Priority claimed from PCT/EP1998/001128 external-priority patent/WO1998038149A1/en
Publication of JP2001513099A publication Critical patent/JP2001513099A/en
Publication of JP2001513099A5 publication Critical patent/JP2001513099A5/ja
Application granted granted Critical
Publication of JP4025373B2 publication Critical patent/JP4025373B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/10Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide
    • C07C51/14Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide on a carbon-to-carbon unsaturated bond in organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/10Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide
    • C07C51/12Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide on an oxygen-containing group in organic compounds, e.g. alcohols

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

A process for manufacture of branched carboxylic acids from branched olefins by means of reaction with carbon monoxide and a solid acid catalyst, characterized in that a branched olefin, or a precursor thereof, is reacted in continuously backmixed reactor, with continuously supplied carbon monoxide and water, while continuously, an effluent is withdrawn comprising branched carboxylic acid, non-converted olefin, carbon monoxide and water, in the presence of an acidic ion exchanger, having sufficient acid groups to provide requisite protons for conversion of said olefin or a precursor of it, and carbon monoxide, into branched carboxylic acids.

Description

本発明は、カルボン酸の製造方法に関する。本発明は、特に反応体としての一酸化炭素、及び固体酸触媒を用いたコッホ(Koch)合成による分岐カルボン酸の製造方法に関する。
今までに使用可能な方法の特徴は、固体酸触媒を魅力のないほど過酷な条件下で使用するか、固体酸触媒を腐食性ルイス酸共触媒と組み合わせるか、または固体酸触媒を非水反応系で使用するかしてはじめて、固体酸触媒を使用することにある。
特に、国際出願WO96/20154により、固体樹脂触媒を用いた非水反応系での分岐オレフィン及び一酸化炭素からのトリアルキル酢酸の製造方法が公知であり、固体樹脂触媒は、分岐オレフィン及び一酸化炭素をトリアルキル酢酸へ変換するために必要な水素を付与するのに十分な酸基を有するカチオン樹脂からなる。
該カチオン樹脂は、特に65重量%硫酸の酸性度と少なくとも等価の酸性度を持つように規定された。
前記方法は2工程で行うことしかできず、その第1工程では、化学量論量の分岐オレフィン及び水が、所望の生成物を満足できる収率で導くことにならないことが当業者に認識される。さらに、前記方法は、2工程からなる1サイクル中に、活性水素1モル当たり1モル以上の転換オレフィンを固体触媒上で製造することができない。
一方、WO92/18592により、分岐オレフィン(特にイソブテン)及び一酸化炭素からのトリアルキル酢酸(特にピバリン酸)の製造方法が公知であり、固体酸触媒を微量のルイス酸(例えば三フッ化ホウ素)とともに使用する。
さらに、EP−A−0249976からは、分岐カルボン酸の製造方法が公知であり、それは、触媒であるゼオライト(zeolith)の存在下、温度200〜500℃、圧力200〜700バールで、オレフィンを一酸化炭素及び水とともに接触転換することによる。
さらに、触媒としてペンタシル形のゼオライトを使用する。例示された実施態様によれば、高い温度(300℃)及び圧力(300−500バール)のみが使用されている。
前記開示の反応条件は、安全及び環境に関する必要な対策のために高い操業コストのもとになることが理解される。
したがって、いまだ、分岐オレフィン及び一酸化炭素を出発とする分岐カルボン酸の製造方法のさらなる改善についての強い要望が存在する。
本発明の目的は、分岐カルボン酸の改善された製造方法であって、一方で、比較的緩和な条件を使用し、他方で、高転換率及び分岐酸に対して高選択率を示す方法を提供することである。広範な研究及び実験の結果、意外にもこのような目的とする改善された方法が発見された。
したがって、本発明は、一酸化炭素及び固体酸触媒を用いた反応により分岐オレフィンから分岐カルボン酸を製造する方法において、分岐オレフィン又はその前駆体を連続逆混合反応器(backmixed reactor)内で反応させ、ここで、連続的に供給される一酸化炭素及び水を用いて効率的逆混合(backmixing)を得るのに充分な供給成分及び生成物の攪拌を、分岐カルボン酸、非転換オレフィン、一酸化炭素及び水を含む流出物を抜き出しながら、前記オレフィン又はその前駆体及び一酸化炭素を分岐カルボン酸に転換するために必要な水素を付与するのに十分な酸基を有する酸性イオン交換体の存在下に行うことを特徴とする、前記製造方法に関する。
特に、本発明は、式

Figure 0004025373
(式中、各記号Rは、1〜10個の炭素原子を有する基を表す)
のトリアルキル酢酸の改善された製造方法に関する。
トリアルキル酢酸中の炭素原子の合計数は、より好ましくは5〜19、さらに好ましくは5〜14の範囲であり、C4−C14オレフィンに由来する。
本明細書を通して使用される用語「分岐オレフィン又はその前駆体」は、分岐オレフィン自体の他に、該特定オレフィンを容易に導くことの可能なアルコール類、エステル類又はエーテル類を本製造方法の出発材料として使用できることを意味し、これは、本方法を従来技術の方法よりも一層フレキシブルにする。
本製法によって、一般に少なくとも1個の第三炭素原子を含有するすべてのオレフィン又はその前駆体を転換することができる。
前記した連続逆混合反応器の好適な例は、連続攪拌槽型反応器(CTSTR)、流動床反応器又は再循環反応器である。
前記した反応のタイプは、例えばChemical Reaction Enginering 第二版、O Levenspielから公知である。
連続攪拌槽反応器又は再循環反応器が好ましい反応器である。
本発明の方法の重要な利点は、所望の分岐カルボン酸に関して、従来技術の方法に比べて高転換度及び高選択率の改善された組合せを示すとともに、比較的緩和な条件にて操作されることである。
本発明の方法にため使用する触媒は、固体酸性イオン交換体であり、容積単位触媒当たり十分量の酸活性サイト、及び、各酸サイトの強酸活性度を示す。
該触媒は、スルホン酸、リン酸又はトリハロ酢酸基を持っている樹脂からなる群から選択することができる。
好ましくは、スルホン化樹脂が用いられる。より好ましくは、樹脂がスチレンとジビニルベンゼンとのコポリマー、フェノールをベースとする樹脂、ポリ(テトラフルオロエチレン)ポリマー又はシロキサンポリマーであるスルホン化樹脂が用いられる。
活性スルホン酸基を有する好適触媒では、該樹脂は、十分な水素を提供可能なスルホン酸カチオン交換樹脂、すなわち、1活性サイト当たり少なくとも65重量%硫酸、好ましい少なくとも70重量%硫酸と等価な酸強度を有する樹脂を与えるように処理される。
スルホン酸基を含み、スチレン、ジビニルベンゼン及びフェノールからのコポリマーに由来し、又は(テトラフルオロエチレン)ポリマーもしくはシロキサンポリマーに由来する触媒固体樹脂が好ましい。
より好ましいものは、スチレン及びジビニルベンゼンに由来し、>2meq/ml乾燥樹脂、好ましくは>3meq/ml乾燥樹脂のスルホン基密度を有する触媒であるとともに、該コポリマーのジビニルベンゼン含有量は、4〜30重量%、好ましくは8〜18重量%である。
市販の有効な触媒の中でより好ましい特定例は、AMBERLYST 36又は38、NAFION 又はDELOXAN触媒である(AMBERLYST 36又は38、NAFION及びDELOXANは商標である)。
最も好ましいものは、AMBERLYST 36又は38、NAFIONタイプの触媒である。CSTRの反応温度は、25℃〜200℃の範囲にあり、好ましくは100℃〜150℃の範囲にある。
反応器の圧力は、10〜200バール、好ましくは50〜100バールの範囲にある。
反応の間、所望の反応を妨害しない不活性有機溶媒、好ましくは他の反応混合物成分から容易に分離でき、かつ再循環できる溶媒を使用することができる。有機溶媒として、非極性のものを極性溶媒、例えばケトン類、エーテル、置換芳香族、エステル類及びカルボン酸と同じように使用することができる。
本製造方法のより好ましい実施態様によれば、主として製造される分岐酸は、反応器内に溶媒として存在し、そして反応器内の液体レベルを一定に維持するために、そこから水、CO、非転換オレフィン及び副生成物とともに定常的に排出される。
好ましい一実施態様によれば、CSTRは、溶媒/触媒の重量比が0.1〜0.5w/w、好ましくは0.2〜0.3w/wの溶媒及び触媒で満たされる。各成分は、連続的に反応器内に導入され、そして反応混合物が連続的に排出される。
出発オレフィンの供給量は、0.01〜10g/g/hrの範囲にあるとともに、水/オレフィンのモル比は、0.5〜2モル/モル、好ましくは約1の範囲にあり、そしてCO/オレフィンのモル比は、0.5〜1000モル/モル、好ましくは1〜100の範囲にある。
上記に特定した量を大幅に下回る水量を使用する際には、該方法は、低い選択率のために魅力的でなくなり、化学量論的(水:オレフィン=1:1)供給物を使用するときに、選択率及び転換率が驚くほど改善されることが理解される。
本発明を、以下の実施例でさらに説明するが、これらの特定の実施態様の範囲に限定するものではない。
実施例1
56gの乾燥AMBERLYST 15を300mLのCSTR反応器に投入し、145mLのn−ヘキサン酸(溶媒)に懸濁させ、10バールCO下、ガスキャップ(gas cap)を定常的にパージしながら155℃に昇温し、続いて80バールCO流(50g/hr)の下155℃に1時間おくことにより活性化した。次いで、プロピレン三量体、水及びCOを含有する供給物(水:三量体のモル比は1:1)を、該反応器に、1100rpmの連続攪拌のもとで8.5、1.2及び50g/h(WHSVが0.15、0.021及び0.9g/g/h)で入れ、該反応器の液体レベルを、過剰の液体生成物を除去することにより一定に保った。
これらの条件の下で、反応は、75−85%転換率、及び炭素数10を有する分岐カルボン酸(VERSATIC酸 10)に対して93−95%選択率をもって、およそ24時間進行した。
比較例1
20gのAMBERLYST 15を攪拌バッチ反応器に投入し、真空下100℃で2時間乾燥し、50gのプロパン酸(溶媒)、6gのプロピレン三量体3及び0.8gの水の溶液にに懸濁させ、最後に150℃へ80バールCOの下で65hr加熱した。
これらの条件の下で、反応は、91%転換率、及び炭素数10を有する分岐カルボン酸(VERSATIC酸 10)に対して8%選択率をもって進行した。
実施例2
実施例1に記載したのと同様にして、120mLのヘキサン酸に溶かしたNAFION NR 50触媒(59g)を使用して、以下の条件で、プロピレン三量体をCO及び水とともに炭素数10を含む分岐カルボン酸へ転換した。
プロピレン三量体 8.8g/h(WHSV=0.16 g/g/h)
水 1.2g/h(WHSV=0.021g/g/h)
CO 52 g/h(WHSV=0.9 g/g/h)
温度 155℃
圧力 80バール
転換率は88モル%であり、選択率は91モル%であった。
実施例3
13.6gの乾燥AMBERLYST 38を240mLの攪拌オートクレーブに投入し、真空下、150℃で2hr乾燥し、室温まで冷却し、74gのピバリン酸(溶媒)に懸濁させ、70バールCO下に加圧し、次いで150℃の反応温度まで昇温した。加熱期間中、23.4gのDIBC(ジ−イソブチル−カルビノール)をゆっくり連続的に該オートクレーブ内に17時間にわたって導入した。運転の終期に反応器を冷却し、分析のために取り出した。
これらの条件の下で、反応は、100%転換率、及び炭素数10を有する分岐カルボン酸(VERSATIC酸 10)に対して〜56%選択率をもって進行した。
比較例2
実施例1を運転したが、ただし20.4gDIBCを攪拌反応器に一度に添加(すなわちバッチ)してから70バールCOに加圧し、温度を150℃に上げた。反応を再び17時間行った。
これらの条件の下で、反応は、約100%転換率、及び炭素数10を有する分岐カルボン酸(VERSATIC酸 10)に対して〜13%選択率をもって進行した。
実施例4
実施例1を、今回、触媒としてAMBERLYST 36を使用して運転した。触媒、供給物及び溶媒の量は約4倍小さく、すなわち、それぞれ3.1、7.4及び19gであった。
これらの条件の下で、反応は、〜85%転換率、及び炭素数10を有する分岐カルボン酸(VERSATIC酸 10)に対して〜32%選択率をもって進行した。
比較例3
比較例2を、バッチプロセスとして4倍量の触媒、供給物及び溶媒、すなわち、それぞれ12.1、20.3及び79gにして運転した。しかし、該供給物は、反応器を70バールCOに加圧し、温度を150℃に上げる前に一度に添加した。
これらの条件の下で、反応は、〜93%転換率、及び炭素数10を有する分岐カルボン酸(VERSATIC酸 10)に対して〜2.7%選択率をもって進行した。The present invention relates to a method for producing a carboxylic acid. The present invention particularly relates to a method for producing a branched carboxylic acid by Koch synthesis using carbon monoxide as a reactant and a solid acid catalyst.
Features of the methods that can be used to date include using solid acid catalysts under unattractive harsh conditions, combining solid acid catalysts with corrosive Lewis acid cocatalysts, or reacting solid acid catalysts with non-aqueous reactions Only when it is used in the system is the use of a solid acid catalyst.
In particular, according to international application WO 96/20154, a method for producing a trialkylacetic acid from a branched olefin and carbon monoxide in a non-aqueous reaction system using a solid resin catalyst is known, and the solid resin catalyst comprises a branched olefin and monoxide. It consists of a cationic resin having sufficient acid groups to provide the hydrogen necessary to convert carbon to trialkylacetic acid.
The cationic resin was specifically defined to have an acidity at least equivalent to an acidity of 65% by weight sulfuric acid.
Those skilled in the art will recognize that the process can only be performed in two steps, and in that first step, stoichiometric amounts of branched olefin and water will not lead to the desired product in satisfactory yield. The Furthermore, the process cannot produce more than 1 mole of converted olefin per mole of active hydrogen on a solid catalyst in one cycle consisting of two steps.
On the other hand, WO92 / 18592 discloses a method for producing a trialkylacetic acid (especially pivalic acid) from a branched olefin (especially isobutene) and carbon monoxide, and a solid acid catalyst is used as a trace amount of Lewis acid (eg boron trifluoride). Use with.
Furthermore, EP-A-0249976 discloses a process for the production of branched carboxylic acids, which comprises olefins at a temperature of 200-500 ° C. and a pressure of 200-700 bar in the presence of a catalyst, zeolith. By catalytic conversion with carbon oxide and water.
Furthermore, a pentasil-type zeolite is used as a catalyst. According to the illustrated embodiment, only high temperatures (300 ° C.) and pressures (300-500 bar) are used.
It is understood that the disclosed reaction conditions are a source of high operating costs due to necessary safety and environmental measures.
Therefore, there is still a strong demand for further improvements in the process for producing branched carboxylic acids starting from branched olefins and carbon monoxide.
The object of the present invention is an improved process for the production of branched carboxylic acids, on the one hand using relatively mild conditions and on the other hand a process which exhibits high conversion and high selectivity for branched acids. Is to provide. As a result of extensive research and experimentation, an improved method for this purpose was unexpectedly discovered.
Therefore, the present invention provides a method for producing a branched carboxylic acid from a branched olefin by a reaction using carbon monoxide and a solid acid catalyst, and reacting the branched olefin or a precursor thereof in a continuous backmixed reactor. Where sufficient feed components and product agitation to obtain efficient backmixing with continuously fed carbon monoxide and water, branched carboxylic acid, non-converted olefin, monoxide Presence of an acidic ion exchanger having sufficient acid groups to provide the hydrogen necessary to convert the olefin or precursor thereof and carbon monoxide to a branched carboxylic acid while extracting an effluent containing carbon and water. The present invention relates to the above manufacturing method.
In particular, the present invention provides a formula
Figure 0004025373
(In the formula, each symbol R represents a group having 1 to 10 carbon atoms)
To an improved process for the preparation of trialkylacetic acids.
The total number of carbon atoms in the trialkyl acetic acid, more preferably 5 to 19, more preferably in the range of 5 to 14, derived from the C 4 -C 14 olefins.
As used throughout this specification, the term “branched olefin or precursor thereof” refers to, in addition to the branched olefin itself, alcohols, esters or ethers that can easily lead to the specific olefin. It means that it can be used as a material, which makes the method more flexible than prior art methods.
In general, all olefins or precursors thereof containing at least one tertiary carbon atom can be converted by this process.
Suitable examples of the continuous backmixing reactor described above are a continuous stirred tank reactor (CTSTR), a fluidized bed reactor or a recycle reactor.
The type of reaction described above is known, for example, from Chemical Reaction Engineering 2nd edition, O Levenspiel.
A continuous stirred tank reactor or a recycle reactor is a preferred reactor.
An important advantage of the process of the present invention is that it exhibits an improved combination of high conversion and high selectivity with respect to the desired branched carboxylic acid compared to prior art processes and is operated at relatively mild conditions. That is.
The catalyst used for the process of the present invention is a solid acidic ion exchanger and exhibits a sufficient amount of acid active sites per volume unit catalyst and the strong acid activity of each acid site.
The catalyst can be selected from the group consisting of resins having sulfonic acid, phosphoric acid or trihaloacetic acid groups.
Preferably, a sulfonated resin is used. More preferably, a sulfonated resin is used in which the resin is a copolymer of styrene and divinylbenzene, a phenol-based resin, a poly (tetrafluoroethylene) polymer or a siloxane polymer.
In a preferred catalyst having active sulfonic acid groups, the resin is an acid strength equivalent to a sulfonic acid cation exchange resin capable of providing sufficient hydrogen, ie, at least 65 wt% sulfuric acid per active site, preferably at least 70 wt% sulfuric acid. It is processed to give a resin having
Preference is given to catalytic solid resins which contain sulfonic acid groups and are derived from copolymers from styrene, divinylbenzene and phenol, or from (tetrafluoroethylene) polymers or siloxane polymers.
More preferred are catalysts derived from styrene and divinylbenzene and having a sulfone group density of> 2 meq / ml dry resin, preferably> 3 meq / ml dry resin, and the copolymer has a divinylbenzene content of 4 to 4 30% by weight, preferably 8 to 18% by weight.
More preferred specific examples of commercially available effective catalysts are AMBERLYST 36 or 38, NAFION or DELOXAN catalysts (AMBERLYST 36 or 38, NAFION and DELOXAN are trademarks).
Most preferred are AMBERLYST 36 or 38, NAFION type catalysts. The reaction temperature of CSTR is in the range of 25 ° C to 200 ° C, preferably in the range of 100 ° C to 150 ° C.
The reactor pressure is in the range of 10 to 200 bar, preferably 50 to 100 bar.
During the reaction, an inert organic solvent that does not interfere with the desired reaction, preferably a solvent that can be easily separated from the other reaction mixture components and can be recycled can be used. As the organic solvent, nonpolar ones can be used in the same manner as polar solvents such as ketones, ethers, substituted aromatics, esters and carboxylic acids.
According to a more preferred embodiment of the production method, the primarily produced branched acid is present as a solvent in the reactor and from there water, CO, to maintain a constant liquid level in the reactor. It is constantly discharged with non-converted olefins and by-products.
According to one preferred embodiment, the CSTR is filled with solvent and catalyst with a solvent / catalyst weight ratio of 0.1 to 0.5 w / w, preferably 0.2 to 0.3 w / w. Each component is continuously introduced into the reactor and the reaction mixture is continuously discharged.
The starting olefin feed is in the range of 0.01 to 10 g / g / hr, the water / olefin molar ratio is in the range of 0.5 to 2 mol / mol, preferably about 1, and CO 2. / Olefin molar ratio is in the range of 0.5 to 1000 mol / mol, preferably 1 to 100.
When using an amount of water that is significantly below the amount specified above, the process becomes less attractive due to low selectivity and uses a stoichiometric (water: olefin = 1: 1) feed. It is sometimes understood that selectivity and conversion are surprisingly improved.
The invention will be further described in the following examples, which are not intended to limit the scope of these specific embodiments.
Example 1
56 g of dry AMBERLYST 15 was charged into a 300 mL CSTR reactor, suspended in 145 mL of n-hexanoic acid (solvent) and brought to 155 ° C. under constant gas purge under 10 bar CO. Activation was achieved by warming, followed by 1 hour at 155 ° C. under 80 bar CO flow (50 g / hr). A feed containing propylene trimer, water and CO (water: trimer molar ratio is 1: 1) is then added to the reactor at 8.5, 1. At 2 and 50 g / h (WHSV 0.15, 0.021 and 0.9 g / g / h), the reactor liquid level was kept constant by removing excess liquid product.
Under these conditions, the reaction proceeded for approximately 24 hours with 75-85% conversion and 93-95% selectivity to branched carboxylic acid having 10 carbon atoms (VERSATIC acid 10).
Comparative Example 1
20 g of AMBERLYST 15 is charged into a stirred batch reactor, dried under vacuum at 100 ° C. for 2 hours and suspended in a solution of 50 g propanoic acid (solvent), 6 g propylene trimer 3 and 0.8 g water. And finally heated to 150 ° C. under 80 bar CO for 65 hr.
Under these conditions, the reaction proceeded with 91% conversion and 8% selectivity over a branched carboxylic acid having 10 carbon atoms (VERSATIC acid 10).
Example 2
In the same manner as described in Example 1, NAFION NR 50 catalyst (59 g) dissolved in 120 mL of hexanoic acid was used and the propylene trimer contained 10 carbon atoms with CO and water under the following conditions: Conversion to branched carboxylic acid.
Propylene trimer 8.8 g / h (WHSV = 0.16 g / g / h)
Water 1.2 g / h (WHSV = 0.021 g / g / h)
CO 52 g / h (WHSV = 0.9 g / g / h)
Temperature 155 ° C
The pressure 80 bar conversion was 88 mol% and the selectivity was 91 mol%.
Example 3
13.6 g of dried AMBERLYST 38 is placed in a 240 mL stirred autoclave, dried under vacuum at 150 ° C. for 2 hr, cooled to room temperature, suspended in 74 g of pivalic acid (solvent) and pressurized under 70 bar CO. Then, the temperature was raised to a reaction temperature of 150 ° C. During the heating period, 23.4 g DIBC (di-isobutyl-carbinol) was slowly and continuously introduced into the autoclave over 17 hours. At the end of the run, the reactor was cooled and removed for analysis.
Under these conditions, the reaction proceeded with 100% conversion and ˜56% selectivity over a branched carboxylic acid having 10 carbon atoms (VERSATIC acid 10).
Comparative Example 2
Example 1 was run, except that 20.4 g DIBC was added to the stirred reactor all at once (ie, batch) and then pressurized to 70 bar CO and the temperature was raised to 150 ° C. The reaction was run again for 17 hours.
Under these conditions, the reaction proceeded with about 100% conversion and ˜13% selectivity over a branched carboxylic acid having 10 carbon atoms (VERSATIC acid 10).
Example 4
Example 1 was now run using AMBERLYST 36 as the catalyst. The amount of catalyst, feed and solvent was about 4 times smaller, ie 3.1, 7.4 and 19 g, respectively.
Under these conditions, the reaction proceeded with ~ 85% conversion and ~ 32% selectivity over a branched carboxylic acid having 10 carbon atoms (VERSATIC acid 10).
Comparative Example 3
Comparative Example 2 was run as a batch process with 4 volumes of catalyst, feed and solvent, ie 12.1, 20.3 and 79 g, respectively. However, the feed was added all at once before the reactor was pressurized to 70 bar CO and the temperature was raised to 150 ° C.
Under these conditions, the reaction proceeded with ˜93% conversion and ˜2.7% selectivity over a branched carboxylic acid having 10 carbon atoms (VERSATIC acid 10).

Claims (10)

一酸化炭素及び固体酸触媒を用いた反応により分岐オレフィンから分岐カルボン酸を製造する方法において、分岐オレフィン又はその前駆体を連続的逆混合反応器内で反応させ、ここで、連続的に供給される一酸化炭素及び水を用いて効率的な逆混合を得るのに充分な供給成分及び生成物の攪拌を、分岐カルボン酸、非転換オレフィン、一酸化炭素及び水を含む流出物を抜き出しながら、前記オレフィン又はその前駆体及び一酸化炭素を分岐カルボン酸に転換するために必要な水素を付与するのに十分な酸基を有する酸性イオン交換体の存在下に25〜200℃の範囲の温度及び10〜200バールの範囲の圧力にて行うことを特徴とする、前記製造方法。In a method for producing a branched carboxylic acid from a branched olefin by a reaction using carbon monoxide and a solid acid catalyst, the branched olefin or a precursor thereof is reacted in a continuous backmixing reactor, wherein the continuous olefin is fed continuously. Sufficient feed components and product agitation to obtain efficient backmixing using carbon monoxide and water, withdrawing effluent containing branched carboxylic acid, non-converted olefin, carbon monoxide and water, A temperature in the range of 25-200 ° C. in the presence of an acidic ion exchanger having sufficient acid groups to provide the hydrogen necessary to convert the olefin or precursor thereof and carbon monoxide to a branched carboxylic acid; Said production method, characterized in that it is carried out at a pressure in the range of 10 to 200 bar. 50〜100バールの範囲の圧力にて行うことを特徴とする、請求項1に記載の方法。The process according to claim 1, characterized in that it is carried out at a pressure in the range of 50 to 100 bar. 100〜150℃の範囲の温度にて行うことを特徴とする、請求項1又は2に記載の方法。The process according to claim 1 or 2, characterized in that it is carried out at a temperature in the range of 100-150 ° C.
Figure 0004025373
(式中、各記号Rは、1〜10個の炭素原子を有する基を表す)
のトリアルキル酢酸を製造することを特徴とする、請求項1〜3のいずれか一項に記載の方法。
formula
Figure 0004025373
(In the formula, each symbol R represents a group having 1 to 10 carbon atoms)
A process according to any one of claims 1 to 3, characterized in that it produces a trialkylacetic acid.
トリアルキル酢酸中の炭素原子の合計数が5〜14の範囲にあることを特徴とする、請求項1〜4のいずれか一項に記載の方法。The method according to any one of claims 1 to 4, characterized in that the total number of carbon atoms in the trialkylacetic acid is in the range of 5-14. 固体酸触媒として、スルホン化樹脂、スルホン化ポリ(テトラフルオロエチレン)及びスルホン化シロキサンポリマーからなる群から選ばれる固体酸性イオン交換体を使用することを特徴とする、請求項1〜5のいずれか一項に記載の方法。6. The solid acidic ion exchanger selected from the group consisting of sulfonated resin, sulfonated poly (tetrafluoroethylene) and sulfonated siloxane polymer is used as the solid acid catalyst. The method according to one item. 触媒として、スルホン化された、スチレンとジビニルベンゼンとのコポリマー又はフェノール系樹脂から選ばれる酸性イオン交換体を使用することを特徴とする、請求項1〜6のいずれか一項に記載の方法。7. The process according to claim 1, wherein the catalyst is a sulfonated acidic ion exchanger selected from styrene and divinylbenzene copolymers or phenolic resins. 1活性サイト当たり少なくとも65重量%硫酸と等価な酸強度を有するスルホン酸カチオン交換樹脂を与えるように、該樹脂を処理することを特徴とする、請求項6又は7に記載の方法。To give a sulfonic acid cation exchange resin having at least 65 wt% sulfuric acid equivalent to the acid strength per active site, characterized by treating the resin The method according to claim 6 or 7. 触媒としてのスルホン化コポリマーが、スチレン及びジビニルベンゼンに由来し、>2meq/ml乾燥樹脂のスルホン基密度を有する触媒であるとともに、該コポリマーは、4〜30重量%、好ましくは8〜18重量%のジビニルベンゼン含有量を有することを特徴とする、請求項1〜8のいずれか一項に記載の方法。Sulfonated copolymer as catalyst is derived from styrene and divinylbenzene,> 2 meq / with ml of dry tree catalyst having a sulfonic group density of fat, the copolymer is 4 to 30 wt%, preferably from 8 to 18 weight The process according to claim 1, characterized in that it has a% divinylbenzene content. 反応の間に主として製造される分岐酸は、反応器内に溶媒として存在することを特徴とする、請求項1〜9のいずれか一項に記載の方法。10. A process according to any one of the preceding claims, characterized in that the branched acid produced mainly during the reaction is present as a solvent in the reactor.
JP53732398A 1997-02-25 1998-02-24 Method for producing carboxylic acid Expired - Fee Related JP4025373B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP97200537.5 1997-02-25
EP97200537 1997-02-25
PCT/EP1998/001128 WO1998038149A1 (en) 1997-02-25 1998-02-24 Process for the manufacture of carboxylic acids

Publications (3)

Publication Number Publication Date
JP2001513099A JP2001513099A (en) 2001-08-28
JP2001513099A5 JP2001513099A5 (en) 2005-10-06
JP4025373B2 true JP4025373B2 (en) 2007-12-19

Family

ID=26146173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53732398A Expired - Fee Related JP4025373B2 (en) 1997-02-25 1998-02-24 Method for producing carboxylic acid

Country Status (8)

Country Link
EP (1) EP0968166B1 (en)
JP (1) JP4025373B2 (en)
KR (1) KR100497943B1 (en)
AT (1) ATE219043T1 (en)
AU (1) AU726899B2 (en)
CA (1) CA2282350A1 (en)
DE (1) DE69805980T2 (en)
NZ (1) NZ336802A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW491834B (en) * 1998-09-21 2002-06-21 Shell Int Research Process for the manufacture of quaternary carboxylic acids
WO2000024700A1 (en) * 1998-10-22 2000-05-04 Resolution Research Nederland B.V. PROCESS FOR THE MANUFACTURE OF α,α-BRANCHED CARBOXYLIC ACIDS

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3620581A1 (en) * 1986-06-19 1987-12-23 Basf Ag METHOD FOR THE PRODUCTION OF CARBONIC ACIDS
US5250726A (en) * 1992-08-24 1993-10-05 E. I. Du Pont De Nemours And Company Process for the preparation of 3-pentenoic acid from butadiene
JPH10511666A (en) * 1994-12-28 1998-11-10 エクソン・ケミカル・パテンツ・インク Production of trialkylacetic acid using solid cationic resin catalyst system

Also Published As

Publication number Publication date
DE69805980T2 (en) 2003-01-23
KR100497943B1 (en) 2005-07-01
ATE219043T1 (en) 2002-06-15
AU726899B2 (en) 2000-11-23
EP0968166A1 (en) 2000-01-05
KR20000075656A (en) 2000-12-26
JP2001513099A (en) 2001-08-28
AU6400198A (en) 1998-09-18
DE69805980D1 (en) 2002-07-18
NZ336802A (en) 2000-09-29
EP0968166B1 (en) 2002-06-12
CA2282350A1 (en) 1998-09-03

Similar Documents

Publication Publication Date Title
JP5360719B2 (en) Method for producing solid acid catalyst comprising sulfonic acid group-containing carbonaceous material and use thereof
KR100633971B1 (en) Process for the manufacture of ?,?-branched carboxylic acids
KR100618363B1 (en) Olefin hydration process
US5981796A (en) Process for the manufacture of carboxylic acids
JP4025373B2 (en) Method for producing carboxylic acid
WO2010071011A1 (en) Method for producing acetic acid ester
US5371298A (en) Preparation of dialkyl peroxides
GB2542869B (en) Process for the production of glycolic acid in the presence of a silica catalyst
KR100618260B1 (en) Process for the manufacture of quaternary carboxylic acids
US6294691B1 (en) Process for the manufacture of carboxylic acids
WO1998038149A1 (en) Process for the manufacture of carboxylic acids
EP0054576B1 (en) Process for producing esters from olefins
JPS5925337A (en) Preparation of isoprene
JP2001288144A (en) Carbonylation catalyst and method for producing formic acid ester
JPH03220136A (en) Production of tertiary olefin
JPS6145986B2 (en)

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071005

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees