JPH0329048B2 - - Google Patents

Info

Publication number
JPH0329048B2
JPH0329048B2 JP58144658A JP14465883A JPH0329048B2 JP H0329048 B2 JPH0329048 B2 JP H0329048B2 JP 58144658 A JP58144658 A JP 58144658A JP 14465883 A JP14465883 A JP 14465883A JP H0329048 B2 JPH0329048 B2 JP H0329048B2
Authority
JP
Japan
Prior art keywords
acid
formaldehyde
isobutylene
reaction
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58144658A
Other languages
Japanese (ja)
Other versions
JPS6036426A (en
Inventor
Kinichi Okumura
Masaaki Sasamoto
Kimiaki Tanaka
Toshiro Yamada
Ryoji Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP14465883A priority Critical patent/JPS6036426A/en
Publication of JPS6036426A publication Critical patent/JPS6036426A/en
Publication of JPH0329048B2 publication Critical patent/JPH0329048B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はイソプレンの新規な合成法に関し、さ
らに詳しくは、イソブチレン源とホルムアルデヒ
ド源とを酸触媒と金属イオンの共存下に液相で反
応せしめるイソプレンの製造法に関する。 イソブチレン、第3級ブタノール(以下、
TBAと略称する),メチルターシヤリーブチルエ
ーテル(以下、MTBEと略称する)などの如き
イソブチレン源と、ホルムアルデヒド、パラホル
ムアルデヒドなどの如きホルムアルデヒド源とか
ら、液相一段反応によつてイソプレンを合成する
方法は従来から公知である。 例えばその具体例として、イソブチレンまたは
TBAとホルムアルデヒドとを鉱酸または有機酸
の存在下に反応させる方法(特公昭49−10928号、
同50−10283号、同52−30483号)などが知られて
いる。 しかし、かかる従来法は触媒活性の点で必ずし
も充分でないうえ、概してイソプレンの選択率に
劣つており、とくに取扱いの困難な副生物を多量
生成するという問題があつた。 そこで本発明者らは従来技術のかかる欠点を改
良すべく鋭意検討を進めた結果、酸触媒とともに
特定な金属イオンを共存させるとこれらの欠点を
一挙に解決し得ることを見出し、本発明を完成す
るに到つた。 かくして本発明によれば、イソブチレン,第3
級ブタノールおよびアルキルターシヤリーブチル
エーテルから選ばれた少なくとも一つのイソブチ
レン源とホルムアルデヒド源とを水の存在下に液
相で酸触媒を用いて反応しイソプレンを製造する
にあたり、周期律表a、b、a及びb族
元素から選ばれた少なくとも一種の金属イオンを
反応系に存在せしめることを特徴とするイソプレ
ンの製造法が提供される。 本発明において反応原料として用いられるイソ
ブチレン源は、イソブチレン、TBAまたはアル
キルターシヤリーブチルエーテルであり、アルキ
ルターシヤリーブチルエーテルの具体例として
は、MTBEが例示される。これらのイソブチレ
ン源は単独で使用してもよいが、二種以上の混合
物の形で使用することもできる。 一方、用いられるホルムアルデヒド源は反応系
内においてホルムアルデヒドを発生し得るもので
あればいずれでもよく、その具体例として、メタ
ノールの酸化によつて得られたホルムアルデヒド
を含むガス、ホルムアルデヒド水溶液、ホルムア
ルデヒドの重合物(例えば、パラホルムアルデヒ
ド、トリオキサン)、ホルムアルデヒドの前駆体
(例えばメチラール)などが挙げられる。 またホルムアルデヒド水溶液にパラホルムアル
デヒドを溶解してホルムアルデヒド濃度を高めた
ものや、安定剤としてメタノールを含むホルムア
ルデヒド水溶液であつても同様に使用することが
できる。 本発明においては、かかるイソブチレン源とホ
ルムアルデヒド源との反応に際して鉱酸および有
機酸から選ばれた少なくとも一種の酸触媒が使用
される。 かかる酸触媒の具体例として、例えば硫酸、硝
酸、リン酸、次亜リン酸、亜リン酸などのごとき
無機酸、クロルスルホン酸、ギ酸、シユウ酸、コ
ハク酸、クエン酸、フタル酸、パラトルエンスル
ホン酸、トリフルオロメタンスルホン酸などのご
とき有機酸があげられる。 これらの酸触媒は通常単独で使用されるが、必
要に応じて二種以上の触媒を適宜併用することも
できる。触媒の使用量は触媒の種類や反応温度、
反応時間などの条件によつて必ずしも一定ではな
いが、簡単な予備実験を行うことにより適宜決定
することができる。通常、その濃度は反応装置内
の水層形成成分、即ち水、酸およびホルムアルデ
ヒドに対して0.1〜30重量パーセントである。 本発明においては反応にあたつて系内に周期律
表第a,b,aまたはb族の金属イオン
を共存させることが必須の要件である。かかる金
属イオンの具体的な例として、例えばリチウム、
ナトリウム、カリウム、ルピジウム、セシウム、
銅、銀、マグネシウム、カルシウム、ストロンチ
ウム、バリウム、亜鉛などの金属イオンが例示さ
れ、これらのイオンはそれぞれ金属の亜硝酸塩、
硝酸塩、亜硫酸塩、硫酸塩、硫酸水素塩、酢酸
塩、ホウ酸塩、炭酸塩、ギ酸塩、シユウ酸塩、塩
化物、燐酸塩、酸化物、水酸化物などを系に加え
ることによつて容易に形成される。 酸触媒と金属イオンの使用割合は適宜選択され
るが、通常は酸触媒1モルあたり金属イオン
0.001〜10モル、好ましくは0.1〜2モルであり、
とくに系中のPHが5以下となるような範囲で用い
ることが好ましい。 本発明における反応は水の存在下に行われる水
の使用量は通宜選択しうるが、通常ホルムアルデ
ヒド源から生じるホルムアルデヒド1重量部当り
0.5重量部以上、好ましくは1〜50重量部である。
また必要に応じて水とともにアルコール、ケトン
などの極性溶剤や脂肪族または芳香族系の炭化水
素溶剤を共存させることもできる。 反応に供されるイソブチレン源とホルムアルデ
ヒド源の仕込みモル比は適宜選択しうるが、通常
ホルムアルデヒド源1モル当りイソブチレン源1
モル以上、好ましくは1.1〜20モルである。 また反応温度は通常60〜230℃の範囲内で選択
されるが、温度条件を2段階に分けて実施するこ
ともできる。反応圧力は、反応系が液相を形成す
るに必要な範囲であればよく、そのため使用する
原料、溶剤、採用する温度等の条件により必ずし
も一定ではないが、通常10〜150Kg/cm2の範囲で
あり、反応時間は通常0.05〜5時間の範囲であ
る。 さらに本発明の実施形態としては、撹拌翼つき
反応槽、外部循環型反応器、充填型反応塔、回転
円板塔型反応塔、多段塔型反応器、多管式反応器
などのいずれの形式でも、また回分、半回分、連
続のいずれの操作方式でも採用することができ
る。 本発明によれば、取り扱いの厄介な副生物、と
くにゲラニオーレンの生成を大幅に抑制すること
ができ、同時にイソプレンの選択率を著しく高め
ることができる。 次に実施例を挙げて本発明をさらに具体的に説
明する。なお、実施例中の部及び%はとくに断り
のないかぎり重量基準である。 実施例71 外部振盪式のステンレス製オートクレーブに25
%ホルムアルデヒド水溶液4部、水10部、
TBA14部、85%リン酸1部および表1に示す金
属化合物を所定量仕込んだのち、イソブチレン7
部を仕込み、次いでこのオートクレーブを160℃
に昇温された油浴槽に浸たすと同時に振盪を開始
し、25分間反応を行つた。 反応終了後、オートクレーブを冷却し、次いで
開封したオートクレーブに四塩化炭素を加えて有
機層を抽出し、この有機層に含まれるイソプレン
および水層に残る未反応ホルムアルデヒドをガス
クロマトグラフイーによつて分折した。結果を表
1に示す。 また比較のため金属化合物のみを使用した場合
およびリン酸のみを使用した場合についても同様
にして実験を行い、その結果を表1に併記した。
The present invention relates to a novel method for synthesizing isoprene, and more particularly to a method for producing isoprene in which an isobutylene source and a formaldehyde source are reacted in a liquid phase in the presence of an acid catalyst and metal ions. Isobutylene, tertiary butanol (hereinafter referred to as
A method for synthesizing isoprene from isobutylene sources such as TBA (abbreviated as TBA), methyl tertiary butyl ether (hereinafter abbreviated as MTBE), and formaldehyde sources such as formaldehyde, paraformaldehyde, etc. through a one-step liquid phase reaction. It is conventionally known. For example, specific examples include isobutylene or
A method of reacting TBA and formaldehyde in the presence of a mineral acid or an organic acid (Special Publication No. 10928/1983,
No. 50-10283 and No. 52-30483) are known. However, such conventional methods are not necessarily sufficient in terms of catalytic activity, are generally inferior in selectivity to isoprene, and have the problem of producing large amounts of by-products that are particularly difficult to handle. Therefore, the present inventors conducted intensive studies to improve these drawbacks of the conventional technology, and as a result, discovered that these drawbacks could be solved all at once by coexisting a specific metal ion with an acid catalyst, and completed the present invention. I came to the point. Thus, according to the invention, isobutylene,
In producing isoprene by reacting at least one isobutylene source selected from class butanol and alkyl tertiary butyl ether with a formaldehyde source in the liquid phase in the presence of water using an acid catalyst, the periodic table a, b, a Provided is a method for producing isoprene, characterized in that at least one metal ion selected from group B elements is present in the reaction system. The isobutylene source used as a reaction raw material in the present invention is isobutylene, TBA or alkyl tert-butyl ether, and a specific example of the alkyl t-butyl ether is MTBE. These isobutylene sources may be used alone or in the form of a mixture of two or more. On the other hand, the formaldehyde source used may be any source that can generate formaldehyde in the reaction system, and specific examples thereof include a formaldehyde-containing gas obtained by oxidizing methanol, an aqueous formaldehyde solution, and a formaldehyde polymer. (eg, paraformaldehyde, trioxane), precursors of formaldehyde (eg, methylal), and the like. Further, an aqueous formaldehyde solution in which paraformaldehyde is dissolved to increase the formaldehyde concentration, or an aqueous formaldehyde solution containing methanol as a stabilizer can be similarly used. In the present invention, at least one acid catalyst selected from mineral acids and organic acids is used in the reaction between the isobutylene source and the formaldehyde source. Specific examples of such acid catalysts include inorganic acids such as sulfuric acid, nitric acid, phosphoric acid, hypophosphorous acid, phosphorous acid, etc., chlorosulfonic acid, formic acid, oxalic acid, succinic acid, citric acid, phthalic acid, para-toluene. Examples include organic acids such as sulfonic acid and trifluoromethanesulfonic acid. These acid catalysts are usually used alone, but two or more types of catalysts can be used in combination as necessary. The amount of catalyst used depends on the type of catalyst, reaction temperature,
Although it is not necessarily constant depending on conditions such as reaction time, it can be appropriately determined by conducting a simple preliminary experiment. Typically, the concentration is from 0.1 to 30 percent by weight based on the aqueous phase forming components in the reactor, namely water, acid and formaldehyde. In the present invention, it is essential to coexist metal ions of groups a, b, a, or b of the periodic table in the reaction system. Specific examples of such metal ions include lithium,
Sodium, potassium, lupidium, cesium,
Examples include metal ions such as copper, silver, magnesium, calcium, strontium, barium, and zinc, and these ions are metal nitrites and metal ions, respectively.
By adding nitrates, sulfites, sulfates, hydrogen sulfates, acetates, borates, carbonates, formates, oxalates, chlorides, phosphates, oxides, hydroxides, etc. to the system. Easily formed. The ratio of acid catalyst and metal ion used is selected as appropriate, but usually metal ion is used per mole of acid catalyst.
0.001 to 10 mol, preferably 0.1 to 2 mol,
In particular, it is preferable to use it within a range where the pH in the system is 5 or less. The reaction in the present invention is carried out in the presence of water. Although the amount of water used can be selected as appropriate, it is usually based on 1 part by weight of formaldehyde generated from the formaldehyde source.
The amount is 0.5 parts by weight or more, preferably 1 to 50 parts by weight.
Further, if necessary, a polar solvent such as alcohol or ketone, or an aliphatic or aromatic hydrocarbon solvent may be allowed to coexist with water. The molar ratio of the isobutylene source and formaldehyde source used in the reaction can be selected as appropriate, but usually 1 mol of isobutylene source per 1 mol of formaldehyde source.
The amount is 1.1 to 20 moles or more, preferably 1.1 to 20 moles. Further, the reaction temperature is usually selected within the range of 60 to 230°C, but the reaction can also be carried out by dividing the temperature conditions into two stages. The reaction pressure may be within the range necessary for the reaction system to form a liquid phase, and therefore is not necessarily constant depending on conditions such as the raw materials, solvent, and temperature employed, but is usually in the range of 10 to 150 kg/ cm2 . The reaction time is usually in the range of 0.05 to 5 hours. Furthermore, as an embodiment of the present invention, any format such as a reaction tank with stirring blades, an external circulation type reactor, a packed type reaction column, a rotating disk column type reaction column, a multi-stage column type reactor, a multi-tube type reactor, etc. However, batch, semi-batch, or continuous modes of operation can also be employed. According to the present invention, the production of by-products that are difficult to handle, especially geraniolene, can be significantly suppressed, and at the same time, the selectivity of isoprene can be significantly increased. Next, the present invention will be explained in more detail with reference to Examples. In addition, parts and percentages in the examples are based on weight unless otherwise specified. Example 71 25 in a stainless steel autoclave with external shaking
% formaldehyde aqueous solution 4 parts, water 10 parts,
After adding 14 parts of TBA, 1 part of 85% phosphoric acid, and the specified amounts of the metal compounds shown in Table 1, 7 parts of isobutylene was added.
and then heat the autoclave to 160°C.
Shaking was started at the same time as the sample was immersed in an oil bath whose temperature had been raised to 100%, and the reaction was carried out for 25 minutes. After the reaction is completed, the autoclave is cooled, then carbon tetrachloride is added to the opened autoclave to extract the organic layer, and isoprene contained in this organic layer and unreacted formaldehyde remaining in the aqueous layer are separated by gas chromatography. did. The results are shown in Table 1. For comparison, experiments were also conducted in the same manner when only the metal compound was used and when only phosphoric acid was used, and the results are also listed in Table 1.

【表】 実施例72 実施例1において85%リン酸に代えて表2の酸
を使用することおよび金属化合物として硫酸ナト
リウムを0.2部使用すること以外は実施例1と同
様にして実験を行つた。結果を表2に示す。また
比較例として、硫酸ナトリウムを使用しない場合
および酸を使用しない場合についても同様にして
実験を行い、その結果を表2に併記した。
[Table] Example 72 An experiment was conducted in the same manner as in Example 1, except that the acid shown in Table 2 was used in place of 85% phosphoric acid in Example 1, and 0.2 part of sodium sulfate was used as the metal compound. . The results are shown in Table 2. Furthermore, as a comparative example, experiments were conducted in the same manner without using sodium sulfate and without using acid, and the results are also listed in Table 2.

【表】 実施例73 実施例1の実験番号1−1と同様の組成で原料
等を仕込んだオートクレーブを120℃に昇温され
た油浴槽に浸たすと同時に振盪を開始し、1時間
後に油浴槽よりオートクレーブをとり出し、さら
に160℃に昇温された別の油浴槽にそのオートク
レーブを浸たすと同時に振盪を開始し15分間反応
を行つた。その結果、ホルムアルデヒド転化率は
100%であり、ホルムアルデヒド基準のイソプレ
ン収率は84.4%であり、ゲラニオーレン収率は
0.3%であつた。
[Table] Example 73 An autoclave containing raw materials with the same composition as in Experiment No. 1-1 of Example 1 was immersed in an oil bath heated to 120°C, shaking was started at the same time, and after 1 hour The autoclave was taken out from the oil bath, and the autoclave was further immersed in another oil bath whose temperature had been raised to 160° C. At the same time, shaking was started and reaction was carried out for 15 minutes. As a result, the formaldehyde conversion rate is
100%, the isoprene yield based on formaldehyde is 84.4%, and the geraniolene yield is
It was 0.3%.

Claims (1)

【特許請求の範囲】[Claims] 1 イソブチレン,第3級ブタノールおよびアル
キルターシヤリーブチルエーテルから選ばれた少
なくとも一つのイソブチレン源とホルムアルデヒ
ド源とを水の存在下に液相で酸触媒を用いて反応
しイソプレンを製造するにあたり、周期律表Ia、
b、a及びb族元素から選ばれた少なくと
も一種の金属イオンを反応系に存在せしめること
を特徴とするイソプレンの製造法。
1 In producing isoprene by reacting at least one isobutylene source selected from isobutylene, tertiary butanol, and alkyl tertiary butyl ether with a formaldehyde source in the liquid phase in the presence of water using an acid catalyst, the periodic table Ia,
A method for producing isoprene, characterized in that at least one metal ion selected from Group B, Group A, and Group B elements is allowed to exist in the reaction system.
JP14465883A 1983-08-08 1983-08-08 Production of isoprene Granted JPS6036426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14465883A JPS6036426A (en) 1983-08-08 1983-08-08 Production of isoprene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14465883A JPS6036426A (en) 1983-08-08 1983-08-08 Production of isoprene

Publications (2)

Publication Number Publication Date
JPS6036426A JPS6036426A (en) 1985-02-25
JPH0329048B2 true JPH0329048B2 (en) 1991-04-23

Family

ID=15367209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14465883A Granted JPS6036426A (en) 1983-08-08 1983-08-08 Production of isoprene

Country Status (1)

Country Link
JP (1) JPS6036426A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106117001B (en) * 2016-06-14 2019-04-12 山东玉皇化工有限公司 A kind of method that the tert-butyl alcohol and formaldehyde prepare isoprene

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4828884A (en) * 1971-08-19 1973-04-17
JPS4839404A (en) * 1971-09-25 1973-06-09
JPS4839405A (en) * 1971-09-25 1973-06-09
JPS4881803A (en) * 1972-02-10 1973-11-01
JPS4892307A (en) * 1972-03-15 1973-11-30
JPS4910926A (en) * 1972-05-30 1974-01-30

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4828884A (en) * 1971-08-19 1973-04-17
JPS4839404A (en) * 1971-09-25 1973-06-09
JPS4839405A (en) * 1971-09-25 1973-06-09
JPS4881803A (en) * 1972-02-10 1973-11-01
JPS4892307A (en) * 1972-03-15 1973-11-30
JPS4910926A (en) * 1972-05-30 1974-01-30

Also Published As

Publication number Publication date
JPS6036426A (en) 1985-02-25

Similar Documents

Publication Publication Date Title
US4786741A (en) Preparation of alkylene carbonates
US2414385A (en) Hydroxylation of unsaturated organic compounds containing an alcohol or ether group
JPS63275534A (en) Manufacture of methanol and composition as catalyst therefor
US4228305A (en) Process for preparing acetic acid derivatives
JPH0341451B2 (en)
US2372602A (en) Process for preparation of pentaerythritol
JPS5858332B2 (en) Manufacturing method of phenol
JPH04504862A (en) Production method of citral
JPH0329048B2 (en)
JP2829116B2 (en) Process for producing unsaturated ketone from acetone and paraformaldehyde
JPH01190645A (en) Production of aromatic hydroxide derivative by reaction of baeyer-villiger reaction
US2122813A (en) Production of polyhydric alcohols
JPS5846035A (en) Preparation of hydroxycarboxylic acid derivative
JP3949726B2 (en) Process for producing 2-butyl-2-ethyl-1,3-propanediol
US2402566A (en) Hydroxylation of unsaturated carboxylic acid compounds and the like
JPS582210B2 (en) Method for producing 2,3-dimethyl-2,3-butanediol
US2862978A (en) Synthetic glycerine production with intermediate removal of acrolein
US4055601A (en) Process for the oxidation of primary allylic alcohols
US5618985A (en) Process for the preparation of 2-n-butyl-2-ethyl-1,3-propane diol
US3931278A (en) Process for preparing 5-oxohexane-nitrile
SU384333A1 (en) The method of producing propylene oxide
US2483566A (en) Catalytic acylation of aromatic compounds
US2294955A (en) Process for the manufacture of unsaturated aldehydes
JPS60224641A (en) Production of isoprene
JPS58116428A (en) Preparation of isoprene