JP2000026356A - Production of hydroxypivalaldehyde - Google Patents

Production of hydroxypivalaldehyde

Info

Publication number
JP2000026356A
JP2000026356A JP10196261A JP19626198A JP2000026356A JP 2000026356 A JP2000026356 A JP 2000026356A JP 10196261 A JP10196261 A JP 10196261A JP 19626198 A JP19626198 A JP 19626198A JP 2000026356 A JP2000026356 A JP 2000026356A
Authority
JP
Japan
Prior art keywords
isobutyraldehyde
hydroxypivalaldehyde
reaction
exchange resin
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10196261A
Other languages
Japanese (ja)
Inventor
Shu Yoshida
周 吉田
Satoshi Nagai
聡 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP10196261A priority Critical patent/JP2000026356A/en
Publication of JP2000026356A publication Critical patent/JP2000026356A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • C07C45/68Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • C07C45/72Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by reaction of compounds containing >C = O groups with the same or other compounds containing >C = O groups
    • C07C45/75Reactions with formaldehyde

Abstract

PROBLEM TO BE SOLVED: To efficiently obtain hydroxypivalaldehyde that is useful as a raw material for polymers, medicines and as a synthetic intermediate for organic compounds by reaction of formaldehyde with isobutyraldehyde in the presence of a basic ion-exchange resin catalyst. SOLUTION: In the presence of a basic ion-exchange resin catalyst, 1 mole of formaldehyde is allowed to react with preferably 1.5-2.0 moles of isobutyraldehyde, preferably at 90-100 deg.C under a pressure for 2-8 hours to give the objective hydroxypivalaldehyde. In a preferred embodiment, the formaldehyde is used as a formalin solution of >=37 wt.% concentration and contains no or a small amount of methanol. The ion-exchange resin is filtered off from the resultant reaction mixture of hydroxypivalaldehyde before the low-boiling fraction mainly comprising unreacting isobutyraldehyde is distilled off. As this ion-exchange resin, can be used weak and strong basic ion-exchanges and a dimethylamine type ion-exchanger is preferred that has heat resistance over 100 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はヒドロキシピバルア
ルデヒドを製造する方法に関するものである。本化合物
は高分子原料、医薬品原料、有機合成中間体として工業
上有用な化合物であり、従来ホルムアルデヒドとイソブ
チルアルデヒドとのアルドール縮合反応によって製造さ
れている。
TECHNICAL FIELD The present invention relates to a method for producing hydroxypivalaldehyde. This compound is an industrially useful compound as a raw material for a polymer, a raw material for a medicine, or an intermediate for organic synthesis, and has conventionally been produced by an aldol condensation reaction between formaldehyde and isobutyraldehyde.

【0002】[0002]

【従来の技術】アルドール縮合反応は、酸性塩基性の何
れでも進行するが、ヒドロキシピバルアルデヒドが酸性
条件下において二量体から四量体へと縮合を起こすこと
から、ヒドロキシピバルアルデヒドの合成は一般に塩基
性条件下で行われる。従来、ヒドロキシピバルアルデヒ
ドをイソブチルアルデヒドとホルマリンとのアルドール
縮合反応により合成する際の触媒としてはアルカリ金属
若しくはアルカリ土類金属の水酸化物のごとき強塩基性
物質またはトリエチルアミンのような第3級アミンが使
用される。しかしながらアルカリ金属またはアルカリ土
類金属の水酸化物を触媒として用いると激しい発熱を伴
い、従来の方法では除熱しづらく温度制御が困難となる
ため、副反応生成物が増加しヒドロキシピバルアルデヒ
ドの収率及び純度が低下する問題点があった。また第3
級アミンを用いると微量の含窒素副生成物が生成しその
除去が困難である。いずれの場合も残存触媒を除去する
ためには蒸留などの工程が必要となる。
2. Description of the Related Art The aldol condensation reaction proceeds under any acidic basic conditions, but hydroxypivalaldehyde is condensed from a dimer to a tetramer under acidic conditions. Is generally performed under basic conditions. Conventionally, as a catalyst for synthesizing hydroxypivalaldehyde by an aldol condensation reaction between isobutyraldehyde and formalin, a strong basic substance such as an alkali metal or alkaline earth metal hydroxide or a tertiary amine such as triethylamine has been used. Is used. However, when a hydroxide of an alkali metal or an alkaline earth metal is used as a catalyst, severe heat is generated, and it is difficult to remove the heat by the conventional method, making it difficult to control the temperature. There was a problem that the rate and purity were reduced. Also the third
When a secondary amine is used, a trace amount of a nitrogen-containing by-product is generated, and it is difficult to remove the by-product. In any case, a step such as distillation is required to remove the remaining catalyst.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、上記
したような従来技術に伴う問題点を解決し、高純度のヒ
ドロキシピバルアルデヒドを簡便な方法で効率よく製造
する方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problems associated with the prior art described above and to provide a method for efficiently producing high-purity hydroxypivalaldehyde by a simple method. It is in.

【0004】[0004]

【課題を解決するための手段】本発明者らは前記課題を
解決すべく鋭意検討を重ねた結果、塩基性イオン交換樹
脂を触媒として用いてイソブチルアルデヒドとホルマリ
ンとをアルドール縮合反応させることにより高純度のヒ
ドロキシピバルアルデヒドを効率よく製造できることを
見出した。すなわち、本発明は、塩基性イオン交換樹脂
を触媒としてイソブチルアルデヒドとホルマリンとをア
ルドール縮合反応させることを特徴とするヒドロキシピ
バルアルデヒドの製造方法に関するものである。
Means for Solving the Problems The inventors of the present invention have made intensive studies to solve the above-mentioned problems, and as a result, have obtained an aldol condensation reaction between isobutyraldehyde and formalin using a basic ion exchange resin as a catalyst. It has been found that hydroxypivalaldehyde of high purity can be produced efficiently. That is, the present invention relates to a method for producing hydroxypivalaldehyde, which comprises subjecting isobutyraldehyde and formalin to an aldol condensation reaction using a basic ion exchange resin as a catalyst.

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【0005】本発明において使用するホルムアルデヒド
は、ホルムアルデヒド水溶液( ホルマリン) でもパラホ
ルムでもよいが、ホルマリンの濃度はできるだけ高い方
が良い。すなわち原料ホルマリンとしては濃度37重量
%以上で、メタノールを含有しないものか、またはでき
るだけ少ないものが望ましい。本発明におけるイソブチ
ルアルデヒドとホルムアルデヒドのアルドール縮合は回
分式および連続式のどちらでもよい。常圧下でも反応を
行えるが加圧下での反応が好ましい。ホルムアルデヒド
に対するイソブチルアルデヒドの仕込みモル比は0.9
5〜2.50の範囲で行うが、好ましくは1.5〜2.
0である。
The formaldehyde used in the present invention may be an aqueous formaldehyde solution (formalin) or paraform, but the concentration of formalin is preferably as high as possible. That is, it is desirable that the raw material formalin has a concentration of 37% by weight or more and does not contain methanol or is as small as possible. The aldol condensation of isobutyraldehyde and formaldehyde in the present invention may be either a batch system or a continuous system. Although the reaction can be performed under normal pressure, the reaction under pressure is preferable. The charged molar ratio of isobutyraldehyde to formaldehyde was 0.9.
It is performed in the range of 5 to 2.50, preferably 1.5 to 2.
0.

【0006】反応温度は80〜130℃好ましくは90
〜100℃である。80℃未満では反応速度が遅くなる
ため工業的でない。反応温度が130℃を越えると、副
反応生成物が増加し着色がおこるので好ましくない。な
お、イソブチルアルデヒドの沸点が63℃であるため、
大気圧下で反応させる場合、反応当初はこれより高い温
度に昇温することはできない。かくして得られたヒドロ
キシピバルアルデヒド反応生成液からイオン交換樹脂を
濾別した後、常法に従って未反応のイソブチルアルデヒ
ドを主成分とする低沸留分を留去する。この留去した低
沸留分は、全量を反応系へ循環して使用する。低沸分を
留去した反応液はそのまま次の反応に用いることもでき
るし、ヒドロキシピバルアルデヒドを晶析分離して使用
することもできる。
The reaction temperature is 80 to 130 ° C., preferably 90
100100 ° C. If the temperature is lower than 80 ° C., the reaction rate is low, so that it is not industrial. When the reaction temperature exceeds 130 ° C., undesirably, the amount of side reaction products increases and coloring occurs, which is not preferable. Since the boiling point of isobutyraldehyde is 63 ° C.,
When reacting under atmospheric pressure, the temperature cannot be raised to a higher temperature at the beginning of the reaction. After the ion exchange resin is filtered from the hydroxypivalaldehyde reaction product liquid thus obtained, unreacted low-boiling distillates containing isobutyraldehyde as a main component are distilled off according to a conventional method. The distilled low-boiling fraction is used by circulating the entire amount to the reaction system. The reaction solution from which the low boiling components have been distilled off can be used as it is in the next reaction, or hydroxypivalaldehyde can be separated by crystallization and used.

【0007】本発明で用いられるイオン交換樹脂として
は、弱若しくは強塩基性イオン交換体またはそれらの混
合物が使用できる。特に好ましいイオン交換体は、10
0℃以上の耐熱性を有するジメチルアミン型イオン交換
体である。イオン交換体は市販の粒状の形で用いるのが
好ましい。反応を不連続的に、例えばかき混ぜ漕で行う
場合は、イオン交換体は全反応溶液に対して10〜80
体積%、好ましくは20〜60体積%の量を用いる。本
技術において公知のイオン交換カラムを用い、イソブチ
ルアルデヒドとホルマリンの混合物を連続的に通すこと
もまた可能である。
[0007] As the ion exchange resin used in the present invention, a weak or strong basic ion exchanger or a mixture thereof can be used. Particularly preferred ion exchangers are 10
It is a dimethylamine-type ion exchanger having a heat resistance of 0 ° C. or higher. The ion exchanger is preferably used in a commercially available granular form. When the reaction is performed discontinuously, for example in a stirring tank, the ion exchanger is 10-80 with respect to the total reaction solution.
An amount of% by volume, preferably 20 to 60% by volume, is used. It is also possible to continuously pass a mixture of isobutyraldehyde and formalin using ion exchange columns known in the art.

【0008】反応時間は一般的には0.5時間以上、好
ましくは2〜8時間で反応を完結させる。
[0008] The reaction time is generally 0.5 hours or more, preferably 2 to 8 hours to complete the reaction.

【0009】[0009]

【発明の効果】ホルムアルデヒドとイソブチルアルデヒ
ドを反応しヒドロキシピバルアルデヒドを製造するに当
たり塩基性イオン交換樹脂を触媒として用いることによ
り高収率で高純度のヒドロキシピバルアルデヒドを得
た。さらに触媒の除去が濾過により簡単に行うことがで
きプロセスも簡略化された。
Industrial Applicability In producing hydroxypivalaldehyde by reacting formaldehyde with isobutyraldehyde, a high-purity hydroxypivalaldehyde was obtained in high yield by using a basic ion exchange resin as a catalyst. Further, the removal of the catalyst was easily performed by filtration, and the process was simplified.

【0010】[0010]

【実施例】以下に実施例を示して本発明をさらに詳細に
説明するが、本発明はこれらによって限定されるもので
はない。以下の例において%及び部は、特に断らない限
り、それぞれ重量%及び重量部を意味する。
EXAMPLES The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the invention is limited thereto. In the following examples, “%” and “part” mean “% by weight” and “part by weight”, respectively, unless otherwise specified.

【0011】実施例1 窒素置換した磁気攪拌機付き1000mlオートクレーブに20
mlのダイアイオンWA30を入れ、 313 部イソブチルアルデ
ヒドと40% ホルマリン270.22部とを混合し45℃において
攪拌した。反応混合液の温度を30分かけ95℃まで上昇さ
せた。このとき内圧は2.5kg/cm2 であった。さらに2 時
間100 ℃で反応し128.5部の反応生成液を得た。この反
応生成液からイオン交換樹脂を濾別して得られる濾液か
ら温度60〜65℃、圧力400 〜410mmHg 下で未反応のイソ
ブチルアルデヒド等の低沸留分を留去させた。この反応
生成液の組成をガスクロマトグラフィーを用いて分析し
た結果63.1% であった( 収率96.0%)。
Example 1 In a 1000 ml autoclave with a magnetic stirrer purged with nitrogen, 20
313 parts of isobutyraldehyde and 270.22 parts of 40% formalin were mixed and stirred at 45 ° C. The temperature of the reaction mixture was raised to 95 ° C. over 30 minutes. At this time, the internal pressure was 2.5 kg / cm 2 . The reaction was further performed at 100 ° C. for 2 hours to obtain 128.5 parts of a reaction product liquid. Unreacted low-boiling components such as isobutyraldehyde were distilled off at a temperature of 60 to 65 ° C. and a pressure of 400 to 410 mmHg from the filtrate obtained by filtering the ion exchange resin from the reaction product solution. The composition of this reaction solution was analyzed using gas chromatography, and the result was 63.1% (yield 96.0%).

【0012】実施例2 ダイアイオンWA30に代えダイアイオンSSA10をもちいて
実施例1と同様の操作を行った。低沸留分留去後の反応
液の組成をガスクロマトグラフィーにより分析したとこ
ろ、ヒドロキシピバルアルデヒドは63.1%であった(収
率96.0%)。
Example 2 The same operation as in Example 1 was performed by using Diaion SSA10 instead of Diaion WA30. The composition of the reaction solution after distillation of the low-boiling fraction was analyzed by gas chromatography to find that hydroxypivalaldehyde was 63.1% (yield 96.0%).

【0013】比較例1 窒素置換した磁気攪拌機付き1000mlオートクレーブに40
% ホルマリン270.27部、イソブチルアルデヒド312.47
部、無水水酸化ナトリウム144 部を仕込み、攪拌しなが
ら温度を上げ100℃に15分保った。この際、反応圧は4.2
kg/cm2 を示した。この反応生成液から温度60〜65℃、
圧力400-410mmHg 下で未反応のイソブチルアルデヒド等
の低沸留分を留去させた。この反応液の組成をガスクロ
マトグラフィーにより分析したところヒドロキシピバル
アルデヒド59.76 %であった(収率91.1%)。
COMPARATIVE EXAMPLE 1 In a 1000 ml autoclave with a magnetic stirrer purged with nitrogen, 40
% 270.27 parts formalin, 312.47 isobutyraldehyde
And 144 parts of anhydrous sodium hydroxide, and the temperature was increased while stirring and maintained at 100 ° C. for 15 minutes. At this time, the reaction pressure was 4.2
kg / cm 2 . The temperature of this reaction product is 60-65 ° C.
Under a pressure of 400 to 410 mmHg, unreacted low-boiling components such as isobutyraldehyde were distilled off. The composition of this reaction solution was analyzed by gas chromatography to find that hydroxypivalaldehyde was 59.76% (yield 91.1%).

【0014】比較例2 窒素置換した磁気攪拌機付き1000mlオートクレーブに40
% ホルマリン270.27部、イソブチルアルデヒド312.47
部、無水炭酸カリウム124.4部を仕込み攪拌しながら温
度を100℃に30分保った。この際反応圧は3.9kg/cm2
示した。この反応生成液から温度60〜65℃、圧力400 〜
410mmHg 下で未反応のイソブチルアルデヒド等の低沸留
分を留去させた。この反応液の組成をガスクロマトグラ
フィーにより分析したところヒドロキシピバルアルデヒ
ド61.73 %であった(収率94.1%)。
COMPARATIVE EXAMPLE 2 In a 1000 ml autoclave with a magnetic stirrer purged with nitrogen, 40
% 270.27 parts formalin, 312.47 isobutyraldehyde
And 124.4 parts of anhydrous potassium carbonate, and the temperature was maintained at 100 ° C. for 30 minutes while stirring. At this time, the reaction pressure was 3.9 kg / cm 2 . The temperature of this reaction product is 60-65 ° C and pressure 400-
At 410 mmHg, unreacted low-boiling components such as isobutyraldehyde were distilled off. The composition of this reaction mixture was analyzed by gas chromatography to find that hydroxypivalaldehyde was 61.73% (yield 94.1%).

【0015】比較例3 窒素置換した磁気攪拌機付き1000mlオートクレーブに40
% ホルマリン270.27部、イソブチルアルデヒド312.47
部、トリエチルアミン10.93 部を仕込み攪拌しながら温
度を室温から90℃に1時間かけて上げた。この際、 反応
圧は1.2kg/cm2 を示した。この反応生成液から温度60〜
65℃、圧力400 〜410mmHg 下で未反応のイソブチルアル
デヒド等の低沸留分を留去させた。この反応液の組成を
ガスクロマトグラフィーにより分析したところヒドロキ
シピバルアルデヒド62.99 %であった(収率96.0%)。同
じ反応液を全窒素分析装置により分析したところ220ppm
の窒素が検出された。
Comparative Example 3 In a 1000 ml autoclave with a magnetic stirrer purged with nitrogen, 40
% 270.27 parts formalin, 312.47 isobutyraldehyde
And 10.93 parts of triethylamine, and the temperature was raised from room temperature to 90 ° C. over 1 hour with stirring. At this time, the reaction pressure was 1.2 kg / cm 2 . The temperature of the reaction product
At 65 ° C. under a pressure of 400 to 410 mmHg, unreacted low-boiling components such as isobutyraldehyde were distilled off. The composition of this reaction solution was analyzed by gas chromatography to find that hydroxypivalaldehyde was 62.99% (yield 96.0%). When the same reaction solution was analyzed by a total nitrogen analyzer, 220 ppm
Of nitrogen was detected.

【0016】以上の実施例及び比較例における主な反応
条件及び結果は表1にまとめて示した。尚、表1中の収
率、窒素含有量および金属含有量(ナトリウムとカリウ
ムの合計の含有量)は、下記の方法により測定したもの
である。
The main reaction conditions and results in the above Examples and Comparative Examples are summarized in Table 1. The yield, nitrogen content and metal content (total content of sodium and potassium) in Table 1 were measured by the following methods.

【0017】収率の測定 10mgの反応液を25mlに希釈定容し、GLサイエンス社製
GC510を用いてガスクロマトグラフィー(GC)分
析を行い、反応物の生成量を測定し、算出した。 GC測定条件:FID検出器 ,キャピラリーカラムT
C−1701
Measurement of Yield 10 mg of the reaction solution was diluted to a constant volume of 25 ml and subjected to gas chromatography (GC) analysis using GC510 manufactured by GL Science to measure and calculate the amount of reaction product produced. GC measurement conditions: FID detector, capillary column T
C-1701

【0018】三菱化学製全窒素微量分析装置TN-10 を用
いて10mgの反応液をそのまま分析し含窒素量を定量し
た。検出限界は3ppmである。
Using a total nitrogen microanalyzer TN-10 manufactured by Mitsubishi Chemical Corporation, 10 mg of the reaction solution was directly analyzed to determine the nitrogen content. The detection limit is 3 ppm.

【0019】窒素含有量の測定 三菱化学製全窒素微量分析装置TN-10 を用いて10mgの反
応液をそのまま分析し含窒素量を定量した。検出限界は
3ppmである。
Measurement of Nitrogen Content Using a total nitrogen microanalyzer TN-10 manufactured by Mitsubishi Chemical Corporation, 10 mg of the reaction solution was directly analyzed to determine the nitrogen content. The detection limit is
3 ppm.

【0020】金属含有量の測定 ナトリウムとカリウムの合計の含有量は、反応液を水で
希釈し、島津製作所製原子吸光光度計を用いて定量し
た。検出限界は0.1wt%である。
Measurement of Metal Content The total content of sodium and potassium was determined by diluting the reaction solution with water and using an atomic absorption spectrophotometer manufactured by Shimadzu Corporation. The detection limit is 0.1 wt%.

【0021】[0021]

【表1】 [Table 1]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 塩基性イオン交換樹脂触媒存在下、ホル
ムアルデヒドとイソブチルアルデヒドとを反応させるこ
とを特徴とするヒドロキシピバルアルデヒドの製造方
法。
1. A method for producing hydroxypivalaldehyde, comprising reacting formaldehyde with isobutyraldehyde in the presence of a basic ion exchange resin catalyst.
JP10196261A 1998-07-10 1998-07-10 Production of hydroxypivalaldehyde Pending JP2000026356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10196261A JP2000026356A (en) 1998-07-10 1998-07-10 Production of hydroxypivalaldehyde

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10196261A JP2000026356A (en) 1998-07-10 1998-07-10 Production of hydroxypivalaldehyde

Publications (1)

Publication Number Publication Date
JP2000026356A true JP2000026356A (en) 2000-01-25

Family

ID=16354875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10196261A Pending JP2000026356A (en) 1998-07-10 1998-07-10 Production of hydroxypivalaldehyde

Country Status (1)

Country Link
JP (1) JP2000026356A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6545189B1 (en) * 1997-12-30 2003-04-08 Neste Chemicals Oy Process for the preparation of neopentyl glycol
JP2006523644A (en) * 2003-04-16 2006-10-19 ビーエーエスエフ アクチェンゲゼルシャフト Method for hydrogenating methylol alkanals
EP1752439A1 (en) 2005-08-08 2007-02-14 Mitsubishi Gas Chemical Company, Inc. Method of producing high-purity hydroxypivalaldehyde and/or dimer thereof
JP2007070339A (en) * 2005-08-08 2007-03-22 Mitsubishi Gas Chem Co Inc Method for producing high-purity hydroxypivalaldehyde and/or its dimer
JP2010528998A (en) * 2007-06-01 2010-08-26 ディーエスエム アイピー アセッツ ビー.ブイ. Aldol condensation reaction and catalyst for it
EP2684860A1 (en) * 2011-03-03 2014-01-15 Mitsubishi Gas Chemical Company, Inc. Method for concentrating aqueous 3-hydroxy-2,2-dimethylpropanal solution

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6545189B1 (en) * 1997-12-30 2003-04-08 Neste Chemicals Oy Process for the preparation of neopentyl glycol
JP2006523644A (en) * 2003-04-16 2006-10-19 ビーエーエスエフ アクチェンゲゼルシャフト Method for hydrogenating methylol alkanals
JP4800925B2 (en) * 2003-04-16 2011-10-26 ビーエーエスエフ ソシエタス・ヨーロピア Method for hydrogenating methylol alkanals
EP1752439A1 (en) 2005-08-08 2007-02-14 Mitsubishi Gas Chemical Company, Inc. Method of producing high-purity hydroxypivalaldehyde and/or dimer thereof
JP2007070339A (en) * 2005-08-08 2007-03-22 Mitsubishi Gas Chem Co Inc Method for producing high-purity hydroxypivalaldehyde and/or its dimer
US7368612B2 (en) 2005-08-08 2008-05-06 Mitsubishi Gas Chemical Company, Inc. Method of producing high-purity hydroxypivalaldehyde and/or dimer thereof
JP2010528998A (en) * 2007-06-01 2010-08-26 ディーエスエム アイピー アセッツ ビー.ブイ. Aldol condensation reaction and catalyst for it
EP2684860A1 (en) * 2011-03-03 2014-01-15 Mitsubishi Gas Chemical Company, Inc. Method for concentrating aqueous 3-hydroxy-2,2-dimethylpropanal solution
EP2684860A4 (en) * 2011-03-03 2014-03-05 Mitsubishi Gas Chemical Co Method for concentrating aqueous 3-hydroxy-2,2-dimethylpropanal solution
KR20140053840A (en) 2011-03-03 2014-05-08 미츠비시 가스 가가쿠 가부시키가이샤 Method for concentrating aqueous 3-hydroxy-2,2-dimethylpropanal solution
US9061985B2 (en) 2011-03-03 2015-06-23 Mitsubishi Gas Chemical Company, Inc. Method for concentrating aqueous 3-hydroxy-2,2-dimethylpropanal solution
KR101885398B1 (en) 2011-03-03 2018-08-03 미츠비시 가스 가가쿠 가부시키가이샤 Method for concentrating aqueous 3-hydroxy-2,2-dimethylpropanal solution

Similar Documents

Publication Publication Date Title
KR890003749B1 (en) Process for the production of 2-ethylhexanol
US6284930B1 (en) Process for the preparation of 3-hydroxypropanal
US4943663A (en) Process for the preparation of α-alkylacroleins
US8168809B2 (en) 2-methyl-3-(3,4-methylenedioxyphenyl)propanal, and method for production thereof
JP2000026356A (en) Production of hydroxypivalaldehyde
US8686197B2 (en) Method for improving the color number of trimethylolpropane
US8604253B2 (en) Method for producing polyhydric phenol
US9776956B2 (en) Method for preparing N,N′-bis(2-cyanoethyl)-1,2-ethylenediamine by using cation exchange resin as catalyst
US4067905A (en) Preparation of 2-amino-n-butanol
JP2022022538A (en) Method for producing hydroxy acid
JP4662026B2 (en) Method for producing glycidyl methacrylate
JPS63190862A (en) Recovery of n-vinylformamide
JP2001072639A (en) Purification of methacrylic acid
JPH08143500A (en) Production of hydroxyalkanal
US20090062568A1 (en) Process for preparing phosphonates having alcoholic hydroxyl group
US4211704A (en) Method for producing 2,3,3-trimethylindolenine
JPS6072840A (en) Preparation of 2-alkylidene cyclohexanone
JPH1059892A (en) Production of alpha,beta-unsaturated aldehyde
JPH07215904A (en) Production of hydroxypivalaldehyde
DE19815634A1 (en) Process for the preparation of 3-methoxy-1-propanol
JPS6087281A (en) Preparation of dioxanetriol
JPS615041A (en) Production of 2-(1-hydroxyalkyl)cyclohexanone
JP2945164B2 (en) Method for producing α-alkylacrolein
JPH06263672A (en) Production of bisphenol f
JPH04321658A (en) Production of n-methylolacrylamide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080709

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081126