JPS581163B2 - Blast furnace operating method - Google Patents

Blast furnace operating method

Info

Publication number
JPS581163B2
JPS581163B2 JP55113693A JP11369380A JPS581163B2 JP S581163 B2 JPS581163 B2 JP S581163B2 JP 55113693 A JP55113693 A JP 55113693A JP 11369380 A JP11369380 A JP 11369380A JP S581163 B2 JPS581163 B2 JP S581163B2
Authority
JP
Japan
Prior art keywords
water
blast furnace
furnace
tuyere
heavy oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55113693A
Other languages
Japanese (ja)
Other versions
JPS5739107A (en
Inventor
正洋 元重
稔 片倉
豊 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP55113693A priority Critical patent/JPS581163B2/en
Publication of JPS5739107A publication Critical patent/JPS5739107A/en
Publication of JPS581163B2 publication Critical patent/JPS581163B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】 本発明は高炉における操業方法に関するものである。[Detailed description of the invention] The present invention relates to a method of operating a blast furnace.

通常高炉操業において低燃料比および炉熱制御さらには
高炉の稼動率向上および安定操業を達成せんとして羽口
から熱風とともに重油などの液体燃料を吹込む手段が広
く採用されている。
In normal blast furnace operation, in order to achieve a low fuel ratio and furnace heat control, as well as to improve the operating rate and stable operation of the blast furnace, a method of injecting liquid fuel such as heavy oil together with hot air through the tuyeres is widely adopted.

すなわち高炉操業を安定に保ちかつコークス原単位の減
少を計るために従来は高炉羽口より液体燃料(重油)を
約200l/羽口・Hr以上で操業しているのが実状で
ある。
That is, in order to maintain stable blast furnace operation and reduce the coke consumption rate, the current situation is that liquid fuel (heavy oil) is conventionally operated at a rate of about 200 l/tuyere/hour or more from the blast furnace tuyere.

しかしながら近年特にオイルショック以降、重油価格の
高騰が著しい上に資源枯渇問題もからみ、全羽口より炉
内への十分な重油吹込みができず、その結果として隣接
する羽口の交互使用による重油吹込み例えば奇数No.
の羽口、あるいは偶数聳の羽口からの重油吹込みを施さ
なければならなくなってくるとともに重油吹込量を20
0t/羽口・Hr以下にせざるを得なくなっている。
However, in recent years, especially after the oil crisis, the price of heavy oil has skyrocketed, and there is also the problem of resource depletion, and it has become impossible to inject enough heavy oil into the furnace from all tuyeres. For example, odd number numbers.
It became necessary to inject heavy oil from the tuyere of 1 or even number of tuyere, and the amount of heavy oil injection was increased to 20 tuyere.
There is no choice but to keep it below 0t/tuyere/Hr.

ところで前者隣接する羽口の交互使用による重油吹込手
段は、高炉の円周方向の吹込バランスに円滑さを欠き、
炉況の悪化、燃料比の上昇を招いて高炉安定操業に寄与
できず、また後者重油吹込量減少手段においては、重油
は吹込バーナでの重油流速が低下して固化し、バーナ詰
りか生じるとともに吹込量の変動が大きくなって炉状に
悪影響を与えるという問題が生じていた。
However, the former heavy oil injection method that uses adjacent tuyere alternately lacks smooth injection balance in the circumferential direction of the blast furnace.
This leads to deterioration of the furnace condition and an increase in the fuel ratio, making it impossible to contribute to stable operation of the blast furnace.In addition, in the latter method of reducing the amount of heavy oil injection, the heavy oil flow rate in the injection burner decreases and solidifies, resulting in burner clogging. A problem has arisen in that fluctuations in the amount of injection become large, which adversely affects the furnace condition.

また一般に高炉安定操業の一環として調湿送風が行なわ
れており、これは熱風中に水蒸気を含有せしめて羽目よ
り炉内へ送風し、羽口前におけるボツシュガス容積の増
加を抑制して吹抜け、棚吊り、スリツプなどの異常現象
の防止、生産性の向上、コークス比の低下、送風温度の
上昇などを計っている。
Humidity-controlled blowing is also generally carried out as part of the stable operation of blast furnaces.This involves blowing hot air containing water vapor into the furnace through the tuyeres, suppressing the increase in the volume of botshu gas in front of the tuyere, and blowing through the blast furnace. The aim is to prevent abnormal phenomena such as suspension and slippage, improve productivity, lower coke ratio, and increase air temperature.

しかしながら上述重油吹込量の減少に伴ない羽口前燃焼
温度の上昇が起因してボツシュガス容積の増加を招くも
のであり、安定した炉況を維持するためには送風温度の
低下あるいは送風湿分の増加を行なわなければならない
However, as mentioned above, the reduction in the amount of heavy oil injected causes an increase in the combustion temperature before the tuyere, leading to an increase in the volume of botshu gas.In order to maintain stable furnace conditions, it is necessary to lower the air blowing temperature or reduce the air humidity. An increase must be made.

本発明者は、上記問題点に対処すべく種々研究実験を行
なった結果、隣接する羽口の交互使用を行なうことなく
重油などの液体燃料の低減あるいは一切用いずして高炉
の安定操業が達成しえることを見出することできた。
As a result of conducting various research experiments to address the above-mentioned problems, the present inventor has achieved stable operation of a blast furnace by reducing or not using liquid fuel such as heavy oil without alternately using adjacent tuyeres. I was able to find something to help.

すなわち本発明は重油などの液体燃料の代替として水あ
るいは水と液体燃料(重油)との混合燃料を羽口より熱
風とともに炉内へ吹込み、炉頂部装入物の荷下り状況に
基づき上記水量あるいは、混合燃料量の増減を計りつつ
高炉操業を行なうことを特徴とするものであり、以下添
付図面に基づき詳細に説明し、その効果を実証する。
That is, the present invention blows water or a mixed fuel of water and liquid fuel (heavy oil) into the furnace from the tuyeres together with hot air as an alternative to liquid fuel such as heavy oil, and adjusts the amount of water based on the unloading status of the charge at the top of the furnace. Alternatively, it is characterized by operating the blast furnace while measuring the increase or decrease in the amount of mixed fuel, and will be described in detail below based on the attached drawings and its effects will be demonstrated.

まず第1図および第2図は重油などの液体燃料を水に代
替えして羽口より炉内へ吹込む手段の一実施態様を示す
もので、各図において、1は高炉本体、2は炉体周囲に
多数配設された羽口、3は該羽口2に接続される送風支
管のブローパイプである。
First, Figures 1 and 2 show an embodiment of a means for replacing liquid fuel such as heavy oil with water and injecting it into the furnace from a tuyere. In each figure, 1 is the blast furnace main body, and 2 is the furnace. A large number of tuyere 3 are arranged around the body, and reference numeral 3 is a blow pipe of a branch pipe connected to the tuyere 2 .

そして上記ブローパイプ3の前部の熱風通路4内に水吹
込ノズル5をその先端部6が第2図のごとく臨みうるよ
う取付けられている。
A water blowing nozzle 5 is installed in the hot air passage 4 at the front of the blow pipe 3 so that its tip 6 can be seen as shown in FIG.

また上記水吹込ノズル5は送水ポンプ7より導びかれた
給水本管8よりそれぞれ分岐配管された給水支管9に連
結され、上記送水ポンプ7の稼動により貯水タンク10
内の水は給水本管8、給水支管9を経て水吹込ノズル5
より送風支管のブローパイブ3からの熱風とともに各羽
口2を介して高炉内に吹込まれうるようになされている
Further, the water injection nozzle 5 is connected to water supply branch pipes 9 which are branched from a water supply main pipe 8 led by a water supply pump 7, and when the water supply pump 7 is operated, the water storage tank 10 is
The water inside passes through the main water supply pipe 8 and the water supply branch pipe 9 to the water injection nozzle 5.
The hot air is blown into the blast furnace through each tuyere 2 together with the hot air from the blowpipe 3 of the blower branch pipe.

さらに給水本管8および各給水支管9にはそれぞれ遮断
弁11,12および調整弁13,14が介設され、また
本管8用の調整弁13は温度調整計15および大気湿度
計16さらには図示省略したが高炉の炉頂部における時
々刻々と変化する装入物荷下り分布を杷握するたとえば
サウジングロツドからの各指令に基づき作動する水量調
整計17によりその給水量が制御されうるようになさし
めている。
Further, the main water supply pipe 8 and each water supply branch pipe 9 are provided with cutoff valves 11, 12 and regulating valves 13, 14, respectively, and the regulating valve 13 for the main pipe 8 is provided with a temperature regulator 15, an atmospheric hygrometer 16, and an atmospheric hygrometer 16. Although not shown, the amount of water supplied can be controlled by a water amount regulator 17 that operates based on various commands from Southingrod, for example, to control the ever-changing distribution of unloading of the burden at the top of the blast furnace. There is.

このようにして高炉内に熱風とともに水を吹込みながら
高炉操業を施すものであり、ここにおいて炉内に吹込ま
れる水は下記のごとく反応する。
In this way, the blast furnace is operated while blowing water together with hot air into the blast furnace, and the water blown into the furnace reacts as described below.

すなわち、水は送風熱風(約1200℃前後)により下
記(1)式で気化され、かつ気化された後炉内羽口前で
(2)式の反応を起こす。
That is, water is vaporized by hot air (approximately 1200° C.) according to the following formula (1), and after the vaporization, a reaction according to formula (2) occurs in front of the tuyere in the furnace.

H2O(水)→H2O(蒸気)−9.7 kcal/g
−mol ・・・・・・(1)H2
O(蒸気)+C(コークス)→H2+CO−31.2
kcal/g−mol ・・・・・・(2)した
がって水の気化時における顕熱および蒸発熱とともに水
性ガス反応による吸熱反応をもって羽口前でのボツシュ
ガス容積の増加が抑制され、炉況安定剤としての効果は
大きいものである。
H2O (water) → H2O (steam) -9.7 kcal/g
-mol ・・・・・・(1)H2
O (steam) + C (coke) → H2 + CO-31.2
kcal/g-mol (2) Therefore, the increase in the volume of botshu gas in front of the tuyere is suppressed by the endothermic reaction due to the water gas reaction as well as the sensible heat and heat of vaporization during water vaporization, and the furnace condition stabilizer The effect is significant.

また上記(2)式より発生した水素は炉内において一部
はつぎの反応式で鉄鉱石を還元する。
In addition, a portion of the hydrogen generated from the above equation (2) reduces iron ore in the furnace according to the following reaction equation.

Fe2O3+3H2→2Fe + 3H2O−21.8
kcal/g−mol ・・・・・・
(3)Fe3O4 +4H2→3Fe +4H2O −
35.3kcal/g−mol ・
・・・・・(4)FeO +H2→Fe+H2O −6
.7kcal/g−mol ・・・
・・・(5)このことから吹込まれる水は羽目前におけ
るボツシュガス容積増加の抑制および還元ガスに生成さ
れ、高炉の安定操業および生産性の向上、コークス比の
低下に大きく寄与するものであることがわかる。
Fe2O3+3H2→2Fe+3H2O−21.8
kcal/g-mol...
(3) Fe3O4 +4H2→3Fe +4H2O −
35.3kcal/g-mol・
...(4) FeO +H2→Fe+H2O -6
.. 7kcal/g-mol...
...(5) The water injected from this will suppress the immediate increase in the volume of bosch gas and will be generated into reducing gas, which will greatly contribute to stable operation of the blast furnace, improvement of productivity, and reduction of coke ratio. I understand that.

なお水の吹込み量はそれの増加に従ってボツシュガス中
のCO濃度およびH2濃度が上昇するので生産性の向上
、コークス比の低下に大きく寄与する反面、炉熱不足と
なって冷え込みを引き起す原因となり、したがって、湿
度調整計15、大気湿度計16および図示省略したサウ
ジングロツドなどによる各指令に基づき水量調整計17
で適正量に制御しうるようになされており、その結果、
水吹込み量は羽目1本当り100l/Hr〜250l/
Hrの範囲で調整することで高炉安定操業が達成できる
In addition, as the amount of water blown increases, the CO concentration and H2 concentration in the Botschu gas increase, which greatly contributes to improving productivity and lowering the coke ratio, but on the other hand, it causes a lack of furnace heat and causes cooling. , Therefore, based on each command from the humidity regulator 15, atmospheric hygrometer 16, and Southing rod (not shown), the water flow regulator 17 is
As a result,
The amount of water injected is 100L/Hr to 250L/Hr per panel.
By adjusting within the Hr range, stable blast furnace operation can be achieved.

次に第3図について説明する。Next, FIG. 3 will be explained.

この場合は、重油などの液体燃料と水とを懸濁混和せし
めてなる混合燃料を羽口より炉内へ吹込む手段の一実施
態様を示すものである。
In this case, one embodiment of the means is shown in which a mixed fuel made by suspending and mixing liquid fuel such as heavy oil and water is injected into the furnace through the tuyere.

なお図中において同一符号は同一部分あるいは相当部分
を示す。
In the drawings, the same reference numerals indicate the same or equivalent parts.

すなわち高炉本体1の羽口2に接続された送風支管のブ
ローパイプ3に、混合燃料吹込ノズル18を設けるとと
もに、該混合燃料吹込ノズル18は、遮断弁11、調整
弁13を備えた給油本管19よりそれぞれ分岐配設され
た遮断弁12、調整弁14を有する給油支管20に連結
されている。
That is, a mixed fuel injection nozzle 18 is provided in the blow pipe 3 of the blowing branch pipe connected to the tuyere 2 of the blast furnace main body 1, and the mixed fuel injection nozzle 18 is connected to a fuel supply main pipe equipped with a cutoff valve 11 and a regulating valve 13. 19 is connected to a fuel supply branch pipe 20 having a cutoff valve 12 and a regulating valve 14, which are branched from each other.

また上記給油本管19の遮断弁11、調整弁13より上
流側において、その端部が加熱器21、ポンプ22を介
して混合燃料タンク23に接続され、かつ混合燃料タン
ク23には貯水タンク24からの給水管25がポンプ2
6を介して接続されている。
Further, on the upstream side of the cutoff valve 11 and the regulating valve 13 of the fuel supply main pipe 19, its end is connected to a mixed fuel tank 23 via a heater 21 and a pump 22, and the mixed fuel tank 23 is connected to a water storage tank 24. The water supply pipe 25 from the pump 2
6.

また図中において27はタンクヒーターで混合燃料を加
熱するためのものであり、28は混合燃料タンク23内
の重油などの液体燃料と水とを懸濁混和せしめるための
撹拌機である。
Further, in the figure, 27 is a tank heater for heating the mixed fuel, and 28 is a stirrer for suspending and mixing liquid fuel such as heavy oil in the mixed fuel tank 23 with water.

このようにして高炉本体1の炉内へ羽口2より送風支管
のブローパイプ3からの熱風とともに重油などの液体燃
料と水との混合燃料を吹込むものであり、上記混合燃料
は、まず貯水タンク24の水をポンプ26の稼動でたと
えば重油と水とを1:1の割合となさしめるべく混合燃
料タンク23内に供給し、かつここでタンクヒーター2
7により少なくとも80℃以上に加熱しつつ撹拌機28
で懸濁混合せしめ、しかる後ポンブ22をもって加熱器
21に通し、加熱しながら給油本管19、給油支管20
を経てそれぞれの混合燃料吹込ノズル18で各羽口2よ
りブローパイプ3からの熱風とともに高炉本体1内に吹
込まれるものである。
In this way, a mixed fuel of liquid fuel such as heavy oil and water is blown into the furnace of the blast furnace main body 1 through the tuyere 2 along with hot air from the blow pipe 3 of the blast branch pipe. The water in the tank 24 is supplied into the mixed fuel tank 23 by operating the pump 26 to make the ratio of heavy oil and water, for example, 1:1.
7 with a stirrer 28 while heating to at least 80°C or higher.
After that, the pump 22 is passed through the heater 21, and while being heated, the fuel supply main pipe 19 and the fuel supply branch pipe 20 are mixed.
After that, the mixed fuel is blown into the blast furnace main body 1 from each tuyere 2 through the respective mixed fuel injection nozzles 18 together with the hot air from the blow pipe 3.

ここにおいて上記混合燃料中の水は上述した(1),(
2),(3),(4),(5)式の如く反応すると同時
に重油分は下記(6)式の反応を起す。
Here, the water in the mixed fuel is as described in (1), (
At the same time as the reactions shown in equations 2), (3), (4), and (5), the heavy oil component causes the reaction shown in equation (6) below.

Cv・Hm→m/2H2+vc−440 Kcal/k
g・・・・・・(6) よって、より高いコークス比の低下を兼ね備えた高炉の
安定操業が達成できる。
Cv・Hm→m/2H2+vc-440 Kcal/k
g...(6) Therefore, stable operation of the blast furnace can be achieved with a higher coke ratio reduction.

また上記混合燃料の吹込み量は上述同様に図示省略した
がたとえば炉頂部における時々刻々と変化する装入物荷
下り分布を把握するサウジングロロドからの指令に基づ
き本管19の調整弁13および各支管20の調整弁14
をそれぞれ制御し、上記装入物荷下り分布に見合う混合
燃料の吹込み量すなわち、羽口1本当り100l/Hr
〜2501/Hrの範囲で炉体周囲の各羽口2より吹込
み調整するようにしている。
Although the amount of the mixed fuel injected is not shown in the figure as described above, for example, the adjustment valve 13 of the main pipe 19 and each branch pipe are 20 regulating valves 14
The injection amount of the mixed fuel corresponding to the above-mentioned charge unloading distribution, that is, 100 l/Hr per tuyere, is controlled respectively.
The blowing is adjusted from each tuyere 2 around the furnace body within the range of ~2501/Hr.

なお、液体燃料の代替とする水又は混合燃料の吹込み量
は、炉頂部の円周方向の装入物の荷下り量が大なる部分
に対応する羽目からの吹込み量を多くなるよう調整し、
また逆に、荷下り量が小なる部分には、その部分に対応
する羽口からの吹込み量を少なくなるように調整すれば
よい。
In addition, the amount of water or mixed fuel injected as a substitute for liquid fuel is adjusted so that the amount injected from the side corresponding to the area where the amount of charge unloading in the circumferential direction at the top of the furnace is large. death,
Conversely, in areas where the amount of unloading is small, the amount of blowing from the tuyere corresponding to that area may be adjusted to be smaller.

本発明は以上のごとくして施される高炉操業方法であり
、次に実施結果に基づき説明する。
The present invention is a blast furnace operating method carried out as described above, and will be explained next based on the results of the implementation.

内容積2700m3、羽口数28個の高炉を用いて操業
を行なった結果下記表のごとく得られた。
A blast furnace with an internal volume of 2700 m3 and 28 tuyeres was operated, and the results shown in the table below were obtained.

これより従来に比し本発明方法はスリップ回数の低下が
計られ、高炉の安定操業が達成されていることを確認し
た。
From this, it was confirmed that the method of the present invention reduced the number of slips compared to the conventional method, and achieved stable operation of the blast furnace.

なおこの場合本発明方法のBは従来のDに比し補正燃料
比に遜色が無い反面Aの方はわずかに高くなっている。
In this case, method B of the present invention is comparable in corrected fuel ratio to conventional method D, while method A is slightly higher.

またスリップ回数が多くなっているがこれは高炉操業に
支障をきたすものではない。
Also, although the number of slips has increased, this does not pose a problem to blast furnace operation.

このように本発明方法によれば、従来のごとき羽口より
炉内への吹込み重油の削減および高炉安定操業を計るべ
く隣設する羽口の交互使用や送風される熱風中へ水蒸気
を含有させることなく、羽口より熱風とともに吹込む重
油などの液体燃料の代替として水あるいは水と重油の混
合燃料を炉内へ吹込んでなるものであり、したがって容
易に初期の目的である高炉の安定操業が達成できるとと
もにコークス比および燃料比の低減が計れるという有益
なる効果が見出せる操業方法である。
As described above, according to the method of the present invention, in order to reduce the amount of heavy oil blown into the furnace from the conventional tuyeres and to ensure stable operation of the blast furnace, adjacent tuyeres can be used alternately and water vapor can be contained in the blown hot air. Water or a mixed fuel of water and heavy oil is injected into the furnace as an alternative to liquid fuel such as heavy oil, which is blown in with hot air from the tuyere, without causing any damage. Therefore, it is easy to achieve the initial objective of stable operation of the blast furnace. This is an operating method that has the beneficial effects of being able to achieve this, as well as reducing the coke ratio and fuel ratio.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は本発明方法の実施態様を示すもので第1図は
水吹込みの場合における高炉操業方法を示す説明図、第
2図はその要部拡大断面図、第3図は水と重油との混合
燃料の場合における高炉操業方法を示す説明図である。 1は高炉、2は羽口、3は送風支管のブローパイプ、5
は水吹込ノズル、8は給水本管、9は給水支管、11,
12は遮断弁、13,14は調整弁、18は混合燃料吹
込ノズル、19は給油本管、20は給油支管。
The attached drawings show embodiments of the method of the present invention, and Fig. 1 is an explanatory diagram showing the blast furnace operating method in the case of water injection, Fig. 2 is an enlarged cross-sectional view of the main part, and Fig. 3 is an illustration of water and heavy oil. FIG. 2 is an explanatory diagram showing a blast furnace operating method in the case of mixed fuel. 1 is the blast furnace, 2 is the tuyere, 3 is the blow pipe of the ventilation branch pipe, 5
is a water blowing nozzle, 8 is a water supply main pipe, 9 is a water supply branch pipe, 11,
12 is a shutoff valve, 13 and 14 are regulating valves, 18 is a mixed fuel injection nozzle, 19 is a fuel supply main pipe, and 20 is a fuel supply branch pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 高炉において、時々刻々と変化する炉頂部の装入物
荷下り分布に基づき、それに見合う個々の羽口より熱風
とともに炉内へ水あるいは水と重油との混合燃料の必要
量を調整しつつ吹込むことを特徴とする高炉操業方法。
1 In a blast furnace, water or a mixed fuel of water and heavy oil is blown into the furnace along with hot air from each tuyere corresponding to the unloading distribution at the top of the furnace, which changes from moment to moment, while adjusting the required amount. A blast furnace operating method characterized by
JP55113693A 1980-08-18 1980-08-18 Blast furnace operating method Expired JPS581163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55113693A JPS581163B2 (en) 1980-08-18 1980-08-18 Blast furnace operating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55113693A JPS581163B2 (en) 1980-08-18 1980-08-18 Blast furnace operating method

Publications (2)

Publication Number Publication Date
JPS5739107A JPS5739107A (en) 1982-03-04
JPS581163B2 true JPS581163B2 (en) 1983-01-10

Family

ID=14618782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55113693A Expired JPS581163B2 (en) 1980-08-18 1980-08-18 Blast furnace operating method

Country Status (1)

Country Link
JP (1) JPS581163B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145710A (en) * 1983-02-09 1984-08-21 Kawasaki Steel Corp Method for adding hydrogenous raw material to tuyere part of blast furnace
JPS60127992A (en) * 1983-12-15 1985-07-08 三菱電機株式会社 Hand device for industrial robot
JPH0699733B2 (en) * 1988-02-10 1994-12-07 株式会社神戸製鋼所 Blast furnace control method in pulverized coal fuel injection operation.
KR101382165B1 (en) * 2012-06-13 2014-04-08 이주홍 Apparatus for destroying bird's nest in the blast furnace

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4884718A (en) * 1972-02-14 1973-11-10

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4884718A (en) * 1972-02-14 1973-11-10

Also Published As

Publication number Publication date
JPS5739107A (en) 1982-03-04

Similar Documents

Publication Publication Date Title
US2502259A (en) Method of eliminating carbon from and controlling the temperature of molten steel
US2952533A (en) Method of operating a furnace in which the material treated is reduced
JPS581163B2 (en) Blast furnace operating method
US4455165A (en) Increasing blast temperature
US325293A (en) Process of smelting ore by means of petroleum
US4421553A (en) Process for operating a blast furnace
US4398971A (en) Method of heating, holding or heat treatment of metal material
US3626501A (en) Apparatus for injecting fluid fuel into a blast furnace
US2203778A (en) Method for producing steel
JPH0564203B2 (en)
US2630373A (en) Process and apparatus for the thermal synthesis of carbon compounds
US2175517A (en) Method of utilizing fuel oils in the operation of iron blast furnaces
US1921212A (en) Operation of furnaces
JPH02213406A (en) Method and injecting fuel from tuyere in blast furnace
CN216337251U (en) Working part structure in float glass production
US2549720A (en) Method of and apparatus for regulating blast furnace top temperature
CN113652544B (en) Low-carbon sintering system and process method
US2317927A (en) Combustion control
US4521246A (en) Operating a blast furnace with the injection of hot reducing gases
US3856509A (en) Process for the reduction of iron ores or the like in the production of pig iron in the blast furnace
US4042226A (en) Method and apparatus for producing metallic iron pellets
US1958671A (en) Method for enriching and burning gaseous fuels of low heat value
US20240133551A1 (en) Oxy-fuel burner, ignition and flame control system and method for controlling ignition and flame
US2216727A (en) Blast furnace process
US3523683A (en) Apparatus for injecting fluid fuel into a blast furnace