JPH0699733B2 - Blast furnace control method in pulverized coal fuel injection operation. - Google Patents

Blast furnace control method in pulverized coal fuel injection operation.

Info

Publication number
JPH0699733B2
JPH0699733B2 JP63029578A JP2957888A JPH0699733B2 JP H0699733 B2 JPH0699733 B2 JP H0699733B2 JP 63029578 A JP63029578 A JP 63029578A JP 2957888 A JP2957888 A JP 2957888A JP H0699733 B2 JPH0699733 B2 JP H0699733B2
Authority
JP
Japan
Prior art keywords
pulverized coal
blast furnace
furnace
coal fuel
blow pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63029578A
Other languages
Japanese (ja)
Other versions
JPH01205007A (en
Inventor
耕一朗 柴田
幹郎 出口
成 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP63029578A priority Critical patent/JPH0699733B2/en
Publication of JPH01205007A publication Critical patent/JPH01205007A/en
Publication of JPH0699733B2 publication Critical patent/JPH0699733B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/001Injecting additional fuel or reducing agents
    • C21B5/003Injection of pulverulent coal

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高炉内装入物の降下速度、特に炉内周辺部側に
おける降下速度を炉内中心部側における降下速度に対し
て相対的に調整することによって高炉の操業効率を向上
させる方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention adjusts the descent rate of blast furnace interior charges, particularly the descent rate on the peripheral side of the furnace relative to the descent rate on the central side of the furnace. The present invention relates to a method of improving the operating efficiency of a blast furnace by doing so.

[従来の技術] 高炉−転炉による一貫製鉄においては、高炉の操業効率
を向上させることが製鉄コストを低減させる上での最重
要課題の1つとなっている。その為ブラックボックスで
ある高炉内状況を色々な手法を用いて推定し、操業条件
と推定結果の相関性を把握して制御精度の向上に資する
という努力が払われている。
[Prior Art] In the integrated steelmaking by the blast furnace-converter, improving the operation efficiency of the blast furnace is one of the most important issues in reducing the ironmaking cost. Therefore, efforts are being made to estimate the condition inside the blast furnace, which is a black box, using various methods, and to grasp the correlation between the operating conditions and the estimation results to contribute to the improvement of control accuracy.

高炉の操業効率を高めて生産性の向上を図る手段として
は、例えば中心流の形成や荷下りの安定化等が知られて
いるが、高炉内で発生した熱量を炉内で可及的有効に利
用することも上記目的を達成する上で有効なことである
と考えられる。例えば羽口において形成される火炎に基
づく発生熱は本来炉内部で利用すべきものであるが、こ
れを炉壁側に伝達して鉄皮外へ放散させるということは
熱経済上のロスであり、コークスの利用率低下によるコ
ークス比の増大を招く他、炉体耐火壁の保全という観点
から見ても不都合なことである。従って高炉内へ吹込ま
れた燃料の燃焼状況を把握し、レースウェイ内での発熱
を高炉内において如何に効率良く利用し、炉壁への抜熱
量を如何に軽減するかという制御方法の確立は高炉操業
における課題の1つとならなければならない。
As a means for improving the operating efficiency of the blast furnace and improving the productivity, for example, formation of a central flow and stabilization of the unloading are known, but the amount of heat generated in the blast furnace is as effective as possible in the furnace. It is considered that it is effective to achieve the above purpose. For example, the heat generated by the flame formed at the tuyere should be utilized inside the furnace, but it is a loss in the heat economy to transfer this to the furnace wall side and dissipate it outside the iron skin, In addition to the increase in the coke ratio due to the decrease in the utilization rate of coke, it is also inconvenient from the viewpoint of maintenance of the furnace refractory wall. Therefore, it is not possible to establish a control method by grasping the combustion situation of the fuel blown into the blast furnace, how to efficiently use the heat generated in the raceway in the blast furnace, and how to reduce the heat removal amount to the furnace wall. It must be one of the challenges in blast furnace operation.

一方高炉への吹込燃料については石油事情の変動以後微
粉炭燃料を多用する傾向が強まっており、従来の重油吹
込操業における知見をそのまま転用することは非常に危
険であることが分かってきた。その為微粉炭燃料の吹込
操業においては全く一から検討し直す必要が生じ、微粉
炭燃料を使用する場合における問題点の洗い直しが進め
られた。
On the other hand, as for the fuel to be injected into the blast furnace, the pulverized coal fuel has been increasingly used since the change of petroleum circumstances, and it has been found that it is very dangerous to transfer the knowledge obtained in the conventional heavy oil injection operation. Therefore, it was necessary to reconsider the pulverized coal fuel injection operation from scratch, and the problems in using pulverized coal fuel were reexamined.

本発明者等もこの様な観点から微粉炭吹込操業における
問題、例えば燃焼性や溶融灰分の付着性といったポイン
トについて研究を重ね、例えば特公昭60−53081号に開
示した様な微粉炭燃料吹込技術を開発し続けてきた。し
かしながら従来の開発指向は、微粉炭中の介在灰分によ
る付着トラブルを防止しつつ最善の燃焼性を発揮させる
という方向にあり、換言すれば重油等に比べて燃料とし
ての特性が低いという欠点を如何にうまくカバーするか
ということが最大の懸案となっていた。
The inventors of the present invention also conducted research on problems in pulverized coal injection operation from such a viewpoint, for example, points such as combustibility and molten ash content adhesion, and for example, pulverized coal fuel injection technology as disclosed in JP-B-60-53081. Has been developing. However, the conventional development direction is to prevent the adhesion trouble due to the intervening ash content in the pulverized coal and to exhibit the best combustibility, in other words, to have the drawback that the characteristics as a fuel are lower than those of heavy oil and the like. The biggest concern was whether it would be well covered.

[発明が解決しようとする課題] これらの項目においてはある程度満足すべき結果を得た
ので、更に研究を進め微粉炭燃料吹込技術を高炉操業の
効率化に向けて積極的に利用するという観点から検討を
行なった。
[Problems to be Solved by the Invention] Since some satisfactory results have been obtained in these items, further research is conducted from the viewpoint of positively utilizing the pulverized coal fuel injection technology to improve the efficiency of blast furnace operation. A study was conducted.

高炉操業における熱収支は操業効率と密接な関係があ
り、羽口から吹込まれた燃料の燃焼によって発生する熱
を鉄鉱石の還元に有効に利用することは非常に大切なこ
とである。しかしながらこれまでに開発された微粉炭燃
料吹込技術を適用した高炉操業では、上記発生熱のうち
相当量が高炉耐火壁への伝熱放散に消費され、レースウ
ェイ直上部を降下してくるコークス類の酸化反応: C+CO2→2CO が不十分となる傾向が認められた。
The heat balance in the blast furnace operation is closely related to the operation efficiency, and it is very important to effectively use the heat generated by the combustion of the fuel injected from the tuyere for the reduction of iron ore. However, in the blast furnace operation to which the pulverized coal fuel injection technology developed so far is applied, a considerable amount of the generated heat is consumed for heat transfer to the blast furnace refractory wall, and the coke descending directly above the raceway. Oxidation reaction of: C + CO 2 → 2CO tended to be insufficient.

一方高炉内における装入物の降下現象は、上記酸化反応
に基づくコークス中Cの消耗に基づくものである。しか
るにブローパイプ内に微粉炭を供給することはこの微粉
炭による熱風中O2の消費を招き、従って前記酸化反応に
供給されるO2の減少、ひいてはコークス消費量の減少を
招き、レースウェイ内における装入物降下速度の低下を
招く。この様な現象は所謂オールコークス操業に比べて
微粉炭吹込操業の方が顕著であるところからも確認され
る。こうして炉内周辺側のコークス類降下速度が遅くな
ると、その分炉中心側のコークス類が相対的に早く酸化
を受けて降下し、従って高炉内融着帯形状を最適形態
(逆V字形)に保持することが困難となり、余り好まし
くないとされているW字形を呈し易くなるという徴候が
認められる様である。
On the other hand, the dropping phenomenon of the charge in the blast furnace is based on the consumption of C in the coke due to the above-mentioned oxidation reaction. However, supplying pulverized coal into the blow pipe causes consumption of O 2 in the hot air due to this pulverized coal, and therefore reduces O 2 supplied to the oxidation reaction, which in turn leads to reduction of coke consumption. It causes a decrease in the charge descent rate. This phenomenon is also confirmed from the fact that the pulverized coal blowing operation is more remarkable than the so-called all coke operation. Thus, when the coke descent rate on the peripheral side of the furnace slows down, the coke on the center side of the furnace is relatively rapidly oxidized and falls, so that the cohesive zone shape in the blast furnace is optimized (inverted V shape). It seems that there are signs that it becomes difficult to hold and that it tends to take on the W shape, which is said to be less preferred.

この様なところから、高炉内の周辺側におけるコークス
類の降下速度を中心側における降下速度より相対的に早
くして逆V字形融着帯形状を形成し得る様な操業条件を
確立する必要が生じた。そこで本発明者等は更に研究を
進め、微粉炭吹込量を一定とした場合における燃焼性
(換言すれば微粉炭の燃焼による消費量)を制御すれ
ば、内壁側装入物の降下速度を中心側装入物の降下速度
に対して相対的に調整し得るのではないかとの着想を、
その様な制御手段を開発することとした。
From such a point, it is necessary to establish operating conditions such that the descending speed of the coke on the peripheral side in the blast furnace is relatively faster than the descending speed on the center side to form the inverted V-shaped cohesive zone shape. occured. Therefore, the present inventors further researched, and if the combustibility (in other words, the consumption amount due to the combustion of pulverized coal) when the amount of pulverized coal injection was constant was controlled, the descent rate of the charge on the inner wall side would be centered. The idea that it may be possible to adjust relative to the descending speed of the side load,
We decided to develop such control means.

[課題を解決する為の手段] 上記課題の下で完成された本発明の構成は高炉の送風羽
口に接続されたブローパイプに微粉炭燃料吐出ランスを
挿入し、該吐出ランスから吐出された微粉炭燃料をブロ
ーパイプ内に熱風流れによって高炉内へ吹込むに当た
り、前記吐出ランスにおける微粉炭燃料吐出先端の前記
ブローパイプ長さ方向位置を調節することにより、炉内
周辺部側の装入物降下速度を炉内中心部側に装入物降下
速度に対して相対的に調整する点に要旨が存在するもの
である。
[Means for Solving the Problems] In the configuration of the present invention completed under the above problems, a pulverized coal fuel discharge lance is inserted into a blow pipe connected to a blast furnace tuyere, and discharged from the discharge lance. When the pulverized coal fuel is blown into the blast furnace by the hot air flow into the blast furnace, the charge on the peripheral side of the furnace is adjusted by adjusting the position of the discharge tip of the pulverized coal fuel discharge tip in the blow pipe length direction. The point is that the descent rate is adjusted relative to the charge descent rate on the center side of the furnace.

[作用] 本発明はブローパイプ内への微粉炭燃料吐出位置をブロ
ーパイプの長さ方向に調節することによって炉内周辺部
側の装入物降下速度を相対的に調整することを要旨とす
るものである。高炉におけるこの様な制御技術は従来全
く行なわれたことがなく、本発明をもって嚆矢とする。
[Operation] The gist of the present invention is to relatively adjust the charge descent rate on the peripheral side of the furnace by adjusting the pulverized coal fuel discharge position into the blow pipe in the length direction of the blow pipe. It is a thing. Such a control technique in a blast furnace has never been carried out in the past, and the present invention is regarded as an arrow.

第2図は本発明の実験において用いた実炉における微粉
炭燃料吹込装置を示す概略図であり、1は羽口、2はブ
ローパイプ、3は微粉炭燃料吐出ランスを示す。図では
微粉炭燃料吐出ランス3の取付位置をブローパイプ2の
長さ方向に沿って任意に変更できる様にランス挿入孔4
を多数設け、ランス3を挿入しないときは詰栓5を施し
ておく。そして羽口1とブローパイプ2の境界位置をS
としたとき、吐出ランス3の先端位置Pが該境界位置S
より熱風吹込上流側(図では右側)をプラス(+)、下
流側(出では左側)をマイナス(−)と定め、+200mm
の場合と−100mmの場合について夫々下記の様な実験を
行なった。即ち上記2つの場合について個々に微粉炭燃
料の吹込操業を行ない高炉々壁の各ポイントにおける温
度を測定し、高炉の高さ方向に測温値をプロットしたと
ころ第1図に示す様な結果が得られた。第1図の黒丸印
は前記境界位置Sから上流側へ+200mmの地点へ微粉炭
燃料を吐出させた場合の炉壁高さ方向温度分布を示して
おり、同図の白丸印は反対に下流側へ−100mmの地点へ
吐出させた場合の炉壁高さ方向温度分布を示している。
このグラフから明白である様に微粉炭燃料の吐出位置が
ブローパイプの長さ方向に見て異なっていることによっ
て炉壁温度の高さ方向分布に顕著な変異が認められる。
即ち微粉炭燃料の吐出位置がブローパイプの上流側へ近
づくと炉腹部における壁側温度が上昇し、反対にブロー
パイプの下流側へ近づくと炉腹部における壁側温度が低
下している。このことは次のことを意味するものと考え
られる。すなわち微粉炭燃料がブローパイプの上流側へ
吐出された場合は当該燃料の着火が比較的早く始まって
羽口先での燃焼性が向上し、その結果、前に述べた様に
レースウェイ内での酸素量低減に基づく装入コークスの
燃焼不良、即ち降下速度の低下による軟化融着帯のW字
形状化(その結果としての周辺流の促進)の他、ブロー
パイプ内での温度上昇による羽口冷却水の抜熱能力低下
も加わって炉壁の温度を上昇させる。つまり炉壁からの
熱損失量が増大する結果、発生した熱量の高炉内での利
用効率が低下し高炉操業におけるコークス比が高くなっ
て炉熱変動も増加し、生産性の低下並びに炉況安定性の
低下といった不都合が生じる。従ってこの場合は高炉の
周辺側におけるコークスの消化量が減少気味となり、高
炉内装入物の降下速度がおだやかになってくる。このこ
とを相対的に言えば高炉内の中心側における装入物降下
速度に比べて周辺側の装入物降下速度が遅くなることを
意味し、従って鉄鉱石の還元進行によって形成される軟
化融着帯のプロフィールがW字形となり、高炉操業上好
ましくない状態が形成される。
FIG. 2 is a schematic view showing a pulverized coal fuel injection device in an actual furnace used in the experiment of the present invention, wherein 1 is a tuyere, 2 is a blow pipe, and 3 is a pulverized coal fuel discharge lance. In the figure, the lance insertion hole 4 is provided so that the mounting position of the pulverized coal fuel discharge lance 3 can be arbitrarily changed along the length direction of the blow pipe 2.
A large number of lances are provided, and the plug 5 is provided when the lance 3 is not inserted. Then, the boundary position between the tuyere 1 and the blow pipe 2 is S
, The tip position P of the discharge lance 3 is the boundary position S.
Positive (+) in the hot air blowing upstream side (right side in the figure) and negative (-) in the downstream side (outward) +200 mm
The following experiments were performed for the case of -100 mm and the case of -100 mm. That is, in each of the above two cases, the pulverized coal fuel injection operation was individually performed, the temperature at each point of the blast furnace walls was measured, and the temperature measurement values were plotted in the height direction of the blast furnace. The results shown in Fig. 1 were obtained. Was obtained. The black circles in Fig. 1 show the temperature distribution in the furnace wall height direction when the pulverized coal fuel is discharged from the boundary position S to the upstream side + 200mm, and the white circles in the same figure are the downstream side. The figure shows the temperature distribution in the furnace wall height direction when discharged to a point of -100 mm.
As is apparent from this graph, the discharge position of the pulverized coal fuel is different in the lengthwise direction of the blow pipe, so that a remarkable variation is observed in the distribution of the furnace wall temperature in the height direction.
That is, when the discharge position of the pulverized coal fuel approaches the upstream side of the blow pipe, the wall side temperature in the furnace side rises, and conversely, when the discharge position approaches the downstream side of the blow pipe, the wall side temperature in the furnace side decreases. This is considered to mean the following. That is, when the pulverized coal fuel is discharged to the upstream side of the blow pipe, the ignition of the fuel starts relatively early and the combustibility at the tuyere improves, and as a result, as described above, in the raceway. Combustion failure of charging coke due to reduction of oxygen content, that is, W-shaped softening cohesive zone due to decrease in descent rate (consequent promotion of peripheral flow), and tuyere due to temperature rise in blow pipe The temperature of the furnace wall is raised with the decrease in heat removal capacity of the cooling water. In other words, as a result of an increase in the amount of heat loss from the furnace wall, the utilization efficiency of the generated heat in the blast furnace decreases, the coke ratio in the blast furnace operation increases, and the furnace heat fluctuation also increases, which reduces productivity and stabilizes the furnace condition. Inconvenience such as deterioration of sex occurs. Therefore, in this case, the amount of coke digested on the peripheral side of the blast furnace tends to decrease, and the descending speed of the blast furnace interior contents becomes gentle. Relatively speaking, this means that the rate of fall of the charge on the peripheral side is slower than that on the center side in the blast furnace, and therefore the softening melt formed by the progress of reduction of iron ore. The landing profile becomes W-shaped, and a state unfavorable for blast furnace operation is formed.

これに対して微粉炭燃料がブローパイプの下流側へ吐出
された場合は当該燃料の着火が遅れ羽口先での燃焼性が
悪くなる。従って炉壁方向への抜熱量は少なくなり炉壁
温度の上昇は第1図に示した如く極めておだやかなもの
となる。この点前記特公昭60−53081号においては、微
粉炭燃料の吐出位置がブローパイプの下流側へ移行する
とブローパイプやレースウェイ内での不完全燃焼に基づ
いて微粉炭が炉内充填層内に蓄積し通気性を悪化させる
という問題を招くことを懸念した。この為微粉炭燃料の
吐出位置はブローパイプ内の上流位置にすると定めてい
たのであるが、このことは前述の如くコークス比の向上
や炉熱変動の多発という不都合を生じる原因ともなって
いたのである。これに対し本発明において検討した如く
微粉炭燃料の吐出位置をブローパイプの下流側に設定し
た場合は前述の様に炉壁方向への抜熱量が減少すること
によって発生熱量の有効利用が図られ、コークス比の向
上をもたらすという効果が得られるだけでなく、未燃焼
の微粉炭はコークスよりも早くガス化し、炉の通気性に
悪影響を及ぼす心配がないということを見出すに至っ
た。
On the other hand, when the pulverized coal fuel is discharged to the downstream side of the blow pipe, the ignition of the fuel is delayed and the combustibility at the tuyere tip deteriorates. Therefore, the amount of heat removed in the direction of the furnace wall decreases, and the temperature rise in the furnace wall becomes extremely gentle as shown in FIG. In this regard, in Japanese Patent Publication No. 60-53081, when the discharge position of the pulverized coal fuel shifts to the downstream side of the blow pipe, the pulverized coal enters the furnace packed bed due to incomplete combustion in the blow pipe and raceway. I was worried that it would accumulate and cause a problem of deteriorating breathability. For this reason, the discharge position of the pulverized coal fuel was set to the upstream position in the blow pipe, but this also caused the disadvantages such as the improvement of the coke ratio and the frequent occurrence of furnace heat fluctuations as described above. . On the other hand, when the discharge position of the pulverized coal fuel is set to the downstream side of the blow pipe as studied in the present invention, the heat removal amount toward the furnace wall is reduced as described above, so that the generated heat amount is effectively used. It was found that not only the effect of improving the coke ratio can be obtained, but also unburned pulverized coal is gasified earlier than coke and there is no fear of adversely affecting the air permeability of the furnace.

ちなみに第3図は微粉炭燃料のブローパイプ内燃焼率と
高炉腹部の熱損を相関させたグラフであり、微粉炭燃料
の燃焼率が低くなるほど腹部熱損が少なくなっているこ
とが分かる。
Incidentally, FIG. 3 is a graph correlating the burning rate of the pulverized coal fuel in the blow pipe with the heat loss of the blast furnace abdomen, and it can be seen that the abdominal heat loss decreases as the burning rate of the pulverized coal fuel decreases.

結局本願発明は微粉炭燃料のブローパイプ内への吐出位
置をブローパイプ長さ方向に変更することによって炉内
壁面への抜熱量をコントロールし、それによってコーク
ス比を調整しつつ炉体周辺側の装入物降下速度を炉内中
心側装入物の降下速度に対して相対的に制御するもので
あるが、一般的に言えばコークス比を減少させて炉内周
辺側の装入物降下速度を高め逆V字形の融着帯形状を形
成することは高炉操業上有意義なことであるから、微粉
炭燃料のブローパイプ内への吐出位置はできる限り下流
側を選択することが推奨される。尚上流側にするとき
は、羽口とブローパイプの境界位置より上流側100mm程
度までで止めておく方が好ましい。一方下流側について
は上記境界位置より下流側300mmが限度であり、これよ
り下流側になると燃焼性が極端に悪くなり、燃料吹込み
の趣旨に沿わなくなる。
After all, the present invention controls the heat removal amount to the inner wall surface of the furnace by changing the discharge position of the pulverized coal fuel into the blow pipe in the length direction of the blow pipe, thereby adjusting the coke ratio and adjusting the coke ratio. It controls the descent rate of the charge relative to the descent rate of the charge on the center side of the furnace, but generally speaking, the coke ratio is reduced to decrease the rate of fall of the charge on the periphery of the furnace. Since it is significant to the operation of the blast furnace to form the inverted V-shaped cohesive zone shape, it is recommended to select the discharge position of the pulverized coal fuel into the blow pipe as far downstream as possible. When it is set on the upstream side, it is preferable to stop at about 100 mm upstream from the boundary position between the tuyere and the blow pipe. On the other hand, on the downstream side, the limit is 300 mm downstream from the boundary position, and if it is on the downstream side, the combustibility becomes extremely poor, and the purpose of fuel injection cannot be met.

[実施例] 第3図は微粉炭燃料吐出位置を上記境界位置を中心にし
て上流側100mm、下流側100mmの範囲内で調節したときの の比を求めたものであり、吐出位置を下流側へ設定した
ものほとK値が低下しており、炉壁に対する熱負荷の減
少していることが分かる。
[Example] FIG. 3 shows the pulverized coal fuel discharge position when the position is adjusted within the range of 100 mm on the upstream side and 100 mm on the downstream side around the boundary position. Is obtained, and the K value decreases when the discharge position is set to the downstream side, and it can be seen that the heat load on the furnace wall decreases.

第4図は下流側から上流側にかけてより広範囲に吐出位
置を制御したときの風圧指数(無次元)を求めたもので
あり風圧指数が高いものほど通気性障害が大きいことを
示す。このグラフから明らかな様に上記境界位置を基準
として下流側300mmを超えると、未燃焼の微粉炭燃料が
過剰に堆積して通気障害を生じていることが分かる。
FIG. 4 shows the wind pressure index (dimensionless) obtained when the discharge position is controlled in a wider range from the downstream side to the upstream side, and shows that the higher the wind pressure index, the larger the air permeability. As is apparent from this graph, when the distance exceeds 300 mm on the downstream side of the boundary position as a reference, unburned pulverized coal fuel is excessively deposited and a ventilation obstacle is generated.

[発明の効果] 本発明は上記の様に構成されているので、高炉操業にお
ける炉内周辺側の装入物降下速度を中心側装入物の降下
速度に対して相対的に早める様に制御することができ、
コークス比の向上を図ると共に軟化融着帯形状の逆V字
化を促進することが可能となった。
[Advantages of the Invention] Since the present invention is configured as described above, control is performed so that the charge descending speed on the peripheral side in the furnace in blast furnace operation is made relatively faster than the descending speed of the center-side charge. You can
It has become possible to improve the coke ratio and promote the inverse V-shape of the softened cohesive zone shape.

【図面の簡単な説明】[Brief description of drawings]

第1図は高炉高さ方向に見た炉壁温度の分布状況を示す
グラフ、第2図はブローパイプ部分の構造を示す説明
図、第3図は微粉炭燃料吐出位置と炉下部の温度(中心
側と周辺側の比)を示すグラフ、第4図は微粉炭燃料吐
出位置と風圧指数の関係を示すグラフである。
Fig. 1 is a graph showing the distribution of the furnace wall temperature seen in the height direction of the blast furnace, Fig. 2 is an explanatory view showing the structure of the blow pipe part, and Fig. 3 is the pulverized coal fuel discharge position and the temperature of the lower part of the furnace ( FIG. 4 is a graph showing the relationship between the pulverized coal fuel discharge position and the wind pressure index.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】高炉の送風羽口に接続されたブローパイプ
に微粉炭燃料吐出ランスを挿入し、該吐出ランスから吐
出された微粉炭燃料をブローパイプ内の熱風流れによっ
て高炉内へ吹込むに当たり、前記吐出ランスにおける微
粉炭燃料吐出先端の前記ブローパイプ長さ方向位置を調
節することにより、炉内周辺部側の装入物降下速度を炉
内中心部側の装入物降下速度に対して相対的に調整する
ことを特徴とする高炉制御方法。
1. A pulverized coal fuel discharge lance is inserted into a blow pipe connected to a blowing tuyere of a blast furnace, and the pulverized coal fuel discharged from the discharge lance is blown into the blast furnace by a hot air flow in the blow pipe. By adjusting the position of the pulverized coal fuel discharge tip in the discharge lance in the length direction of the blow pipe, the charge lowering speed on the peripheral side of the furnace with respect to the charge lowering speed on the central side of the furnace is adjusted. A method for controlling a blast furnace, which comprises performing relative adjustment.
【請求項2】請求項(1)に記載された相対的調整を行
なうことによって炉体下方部の円周方向耐火壁の熱負荷
を制御することを特徴とする高炉制御方法。
2. A blast furnace control method comprising controlling the heat load on the circumferential refractory wall in the lower part of the furnace body by performing the relative adjustment described in claim 1.
JP63029578A 1988-02-10 1988-02-10 Blast furnace control method in pulverized coal fuel injection operation. Expired - Fee Related JPH0699733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63029578A JPH0699733B2 (en) 1988-02-10 1988-02-10 Blast furnace control method in pulverized coal fuel injection operation.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63029578A JPH0699733B2 (en) 1988-02-10 1988-02-10 Blast furnace control method in pulverized coal fuel injection operation.

Publications (2)

Publication Number Publication Date
JPH01205007A JPH01205007A (en) 1989-08-17
JPH0699733B2 true JPH0699733B2 (en) 1994-12-07

Family

ID=12279985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63029578A Expired - Fee Related JPH0699733B2 (en) 1988-02-10 1988-02-10 Blast furnace control method in pulverized coal fuel injection operation.

Country Status (1)

Country Link
JP (1) JPH0699733B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6155834B2 (en) * 2013-05-16 2017-07-05 新日鐵住金株式会社 Method of blowing pulverized coal from the blast furnace tuyeres
JP7176561B2 (en) * 2018-03-28 2022-11-22 Jfeスチール株式会社 Blast furnace operation method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS508703A (en) * 1973-05-26 1975-01-29
JPS581163B2 (en) * 1980-08-18 1983-01-10 住友金属工業株式会社 Blast furnace operating method
JPS6053081A (en) * 1983-09-02 1985-03-26 Seiko Epson Corp Manufacture of thin-film transistor

Also Published As

Publication number Publication date
JPH01205007A (en) 1989-08-17

Similar Documents

Publication Publication Date Title
SU1496637A3 (en) Method and apparatus for continuous refining of steel in electric furnace
JP4745731B2 (en) Method of melting hot metal with cupola
US4988079A (en) Apparatus for smelting and reducing iron ores
CN105392905B (en) Exhaust gas treatment method and exhaust gas treatment device
JP2003105415A (en) Method and device for producing molten metal
KR910008142B1 (en) Method for smelting reduction of iron ore
EP2410065B1 (en) Blast furnace operation method
JPH0699733B2 (en) Blast furnace control method in pulverized coal fuel injection operation.
US6129776A (en) Operation method of vertical furnace
KR100233705B1 (en) Method of charging scrap and coke metals into cupola
US8475561B2 (en) Method for producing molten iron
CN205907340U (en) Pyritic smelting stove
JP3629740B2 (en) Hot metal production method
JP2002115007A (en) Structure for inner wall surface at lower part in blast furnace
KR960006322B1 (en) Method for removing stuck material on furnace wall in blast-furnace
JP3615673B2 (en) Blast furnace operation method
JP3031203B2 (en) Hot metal production method
JP2000129368A (en) Operation of copper flash smelting furnace
JPH05295410A (en) Method for operating blast furnace
JPH06128617A (en) Operation of two step tuyere melting reduction furnace
KR100225249B1 (en) Remaining slag control method of of slopping control
JPH0543924A (en) Secondary combustion blow-refining method
SU1191708A1 (en) Cupola
JP2921374B2 (en) Blast furnace operation method
JP2001073016A (en) Operation of blast furnace

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees