JPS58115863A - Insulating gate type field-effect semiconductor device and manufacture thereof - Google Patents

Insulating gate type field-effect semiconductor device and manufacture thereof

Info

Publication number
JPS58115863A
JPS58115863A JP21291481A JP21291481A JPS58115863A JP S58115863 A JPS58115863 A JP S58115863A JP 21291481 A JP21291481 A JP 21291481A JP 21291481 A JP21291481 A JP 21291481A JP S58115863 A JPS58115863 A JP S58115863A
Authority
JP
Japan
Prior art keywords
region
source
drain region
high impurity
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21291481A
Other languages
Japanese (ja)
Inventor
Hideyoshi Shimura
志村 秀吉
Takashi Osone
大曾根 隆志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21291481A priority Critical patent/JPS58115863A/en
Publication of JPS58115863A publication Critical patent/JPS58115863A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Abstract

PURPOSE:To obtain the MOS type field-effect transistor suitable for the formation of a short channeled gate length by a method wherein a high impurity density region of the conductive type reverse to a source and drain region is formed surrounding a part or the entire source or drain region. CONSTITUTION:The titled semiconductor device consists of a one-way conductive type semiconductor substrate 8 of high impurity density, an epitaxial layer 9 of the same conductive type as the substrate 8 in low impurity density which is connected to the semiconductor substrate 8, a source region 11 of the conductive type reverse to the substrate 8 formed in the epitaxial layer, a drain region 12, a high impurity density region 10 having the conductive type reverse to the drain region 12 which was formed surrounding the drain region 12, a gate oxide film 13 and a gate electrode 14. As the substrate of high impurity density is located below the drain region 12, most of the elongation of a depletion layer is absorbed by these regions, the depeletion region of the source region 11 does not come in contact with that of the source region 11. Also, as the semiconductor substrate 8 is located below the epitaxial layer 9, the extension of the depletion layer from the source or the drain region is absorbed there, and subthreshold voltage can be largely improved.

Description

【発明の詳細な説明】 本発明は絶縁ゲート型電界効果半導体装置の短チヤネル
化を図った新規な構造を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a novel structure for shortening the channel of an insulated gate field effect semiconductor device.

近年、MO8型半導体装置において、LSIの性能と集
積度の向上を計るため、MO8型電界効果トランジスタ
ーの短チヤネル化が行なわれている。しかし、MO8型
電界効果トランジスターの短チヤネル化にともない、ド
レインの空乏層の端がソースの空乏層の端と接触するよ
うになり、電流は半導体基板の表面を流れずして表面か
ら数千人の深さの所を流れるようになる。この電流がパ
ンチスルーカレントである。この電流が流れるとMO8
型電界効果トランジスターは第1図の様な6極管特性を
示さず第2図のような3極管特性を示すようになる。
In recent years, in MO8 type semiconductor devices, MO8 type field effect transistors have been made to have shorter channels in order to improve the performance and degree of integration of LSIs. However, as the channel of MO8 field effect transistors becomes shorter, the edge of the drain depletion layer comes into contact with the edge of the source depletion layer, and the current does not flow through the surface of the semiconductor substrate, but instead flows several thousand times from the surface. It begins to flow at a depth of . This current is a punch-through current. When this current flows, MO8
The type field effect transistor does not exhibit the hexode characteristics as shown in FIG. 1, but instead exhibits the triode characteristics as shown in FIG.

但し第1図、第2図において、横軸はドレイン電圧(V
D) 、縦軸はドレイン電流(VD)又パラメーターは
ゲート電圧である。
However, in Figures 1 and 2, the horizontal axis represents the drain voltage (V
D), the vertical axis is the drain current (VD) or the parameter is the gate voltage.

又第3図にバンチスルーカレントが半導体基板中の深い
所を流れている様子を示す。第3図において1は半導体
基板、2はソース領域、3はドレイン領域、4はゲート
酸化膜、5はゲート電極、6の実線は等ポテンシャル線
、7の波線は電流の流れを示す。
Further, FIG. 3 shows how a bunch through current flows deep within a semiconductor substrate. In FIG. 3, 1 is a semiconductor substrate, 2 is a source region, 3 is a drain region, 4 is a gate oxide film, 5 is a gate electrode, the solid line 6 is an equipotential line, and the wavy line 7 is a current flow.

前記MO8型電界効果トランジスターが短チヤネル化す
ると5極管特性を示さずして3極管特性を示すようにな
るのはドレイン電圧による静電誘導効果による。つまり
、ドレイン領域の空乏層がソース領域の空乏層とつなが
ったため、ソース領域の近傍のポテンシャルの山がゲー
ト電圧の他にドレイン電圧によっても影響を受けるよう
になったためである。
The reason why the MO8 type field effect transistor exhibits triode characteristics instead of pentode characteristics when the channel is shortened is due to the electrostatic induction effect caused by the drain voltage. In other words, since the depletion layer in the drain region is connected to the depletion layer in the source region, the potential peak near the source region is affected not only by the gate voltage but also by the drain voltage.

電流が半導体基板中の深い所を流れるため、ゲルト電圧
によるドレイン電流の制御性が悪化し、ゲート電圧が閾
値電圧以下でも電流は完全にカットオフされずに=ブシ
ーレ・・シーホウルド電流が流れてしまい、こうなると
このようなMO8型電界効果トランジスターのドレイン
電圧として印加できる電圧は制限されてくる。この様子
を第4図に示す。第4図において、横軸は実効チャネル
長Leffを示し、縦軸は最大ドレイン電圧vDma工
を示す。実効チャネル長り。ffが長い時は最大ドレイ
ン電圧■Pma!はMO8型電界トランジスターのアバ
ランシェブレイクダウンによシ制限されるが(領域A)
、実効チャネル長が短くなる時は、最大ドレイン電圧は
パンチスルーにより制限される(領域B)。
Since the current flows deep inside the semiconductor substrate, the controllability of the drain current by the Gert voltage deteriorates, and even if the gate voltage is below the threshold voltage, the current is not completely cut off, and the Buschire-Seehold current flows. In this case, the voltage that can be applied as the drain voltage of such an MO8 field effect transistor is limited. This situation is shown in FIG. In FIG. 4, the horizontal axis shows the effective channel length Leff, and the vertical axis shows the maximum drain voltage vDma. Effective channel length. When ff is long, the maximum drain voltage ■Pma! is limited by the avalanche breakdown of the MO8 field transistor (region A).
, when the effective channel length becomes short, the maximum drain voltage is limited by punch-through (region B).

以上のように従来のMO8型電界効果トランジスターで
は短チヤネル化するとパンチスルーを起こし、そのVD
対Ip  特性の飽和特性が劣化し、且つドレイン耐圧
が劣化して特性上問題が生じる。
As mentioned above, in the conventional MO8 type field effect transistor, punch-through occurs when the channel is shortened, and the VD
The saturation characteristic with respect to Ip deteriorates, and the drain breakdown voltage also deteriorates, causing problems in terms of characteristics.

本発明はかかる従来の問題に鑑み、ゲート長の短チヤネ
ル化に適したMO8型電界効果トランジスターの構造を
提供せんとするものである。
In view of these conventional problems, the present invention aims to provide a structure of an MO8 field effect transistor suitable for shortening the gate length and channel.

本発明のMO8型電界効果トランジスターの構造を第5
図に示す。
The structure of the MO8 type field effect transistor of the present invention is described in the fifth example.
As shown in the figure.

第6図において、8は高不純濃度の一方導電型の半導体
基板、9は半導体基板8に連接した低不純物濃度の基板
8と同一導電型のエピタキシャル層、11,12はこの
エピタキシャル層内に形成された基板8と反対導電型の
ソース領域、ドレイン領域、1oはドレイン領域12を
囲むように形成されたドレイン領域12と反対導電型の
高不純物濃度領域、13はゲート酸化膜、14はゲート
電極を示している。
In FIG. 6, 8 is a high impurity concentration semiconductor substrate of one conductivity type, 9 is an epitaxial layer of the same conductivity type as the low impurity concentration substrate 8 connected to the semiconductor substrate 8, and 11 and 12 are formed within this epitaxial layer. 1o is a high impurity concentration region of a conductivity type opposite to that of the drain region 12 formed to surround the drain region 12, 13 is a gate oxide film, and 14 is a gate electrode. It shows.

上記第5図のMO8型電界効果トランジスターはゲート
長の短チヤネル化による従来のMO8型電界効果トラン
ジスターの以下の2つの主要な欠点を防止できるように
々っでいる。
The MO8 type field effect transistor shown in FIG. 5 is designed to avoid the following two major drawbacks of the conventional MO8 type field effect transistor due to the shortened gate length and channel.

つまり、(1)従来のMO8型電界効果トランジスター
では、ドレイン領域3からの空乏層がソース領域2の空
乏層に接触するため、ソース領域2の近傍のポテンシャ
ルがゲート電圧の他にドレイン電圧によっても制御され
るという静電誘導効果に対して、第5図のMO8型電界
効果トランジスターにおいては、ドレイン領域12を囲
むようにドレイン領域12と反対導電型の高不純物濃度
領域1oを有し、且つ、ドレイン領域12の下は高不純
物濃度の基板であるため、空乏層の伸びはこれらの領域
でほぼ吸収されてしまうので、ドレイン領域12の空乏
層はソース領域11の空乏層と接触することはなくなる
In other words, (1) in the conventional MO8 field effect transistor, the depletion layer from the drain region 3 contacts the depletion layer of the source region 2, so the potential near the source region 2 is affected not only by the gate voltage but also by the drain voltage. In order to control the electrostatic induction effect, the MO8 type field effect transistor shown in FIG. Since the substrate under the drain region 12 has a high impurity concentration, the elongation of the depletion layer is almost absorbed by these regions, so the depletion layer in the drain region 12 no longer comes into contact with the depletion layer in the source region 11. .

(2)又、従来のMO3型電界効果トランジスターにお
いては、ゲート長を短チヤネル化すると第3図の様に電
流は半導体基板1の深い所を流れ、ゲート電圧による制
御性が悪化し、ゲート電圧0ボルトでもサブシュレッシ
ュホウルド電流が流れるが、第5図のMO3型電界効果
トランジスターにおいては、チャネルの下のエピタキシ
ャル層9の下に高不純物濃度の一方導電型の半導体基板
8があるため、ソース又はドレインからの空乏層の伸び
が吸収されるので、空乏層がつながったために流れるサ
ブシュレッシュホウルド電流は大幅に改善される。
(2) In addition, in the conventional MO3 type field effect transistor, when the gate length is shortened, the current flows deep in the semiconductor substrate 1 as shown in Fig. 3, and the controllability with the gate voltage deteriorates. Although a subthreshold current flows even at 0 volts, in the MO3 type field effect transistor shown in FIG. Since the extension of the depletion layer from the source or drain is absorbed, the subthreshold current that flows due to the connection of the depletion layer is significantly improved.

第6図は本発明の別の実施例を示す。低不純物濃度の一
方導電型の半導体基板8′に、イオン注入法を用いて基
板8′と同一導電型の高不純物濃度領域16を基板8′
中に形成する。従って、第6図の場合には、MOS )
ランシスターは第5図のエピタキシャル層9の代わりに
基板8の表面領域に形成される。第6図に示す構成にお
いても、第5図の構成と同様の効果が得られる。
FIG. 6 shows another embodiment of the invention. A high impurity concentration region 16 of the same conductivity type as the substrate 8' is formed into a low impurity concentration semiconductor substrate 8' of one conductivity type using an ion implantation method.
form inside. Therefore, in the case of Fig. 6, MOS)
A run sister is formed in the surface region of the substrate 8 instead of the epitaxial layer 9 of FIG. The configuration shown in FIG. 6 also provides the same effect as the configuration shown in FIG. 5.

又、第6図、第6図ではドレイン領域12の囲りを全て
囲むようにそのドレイン領域12と反対導電型の領域1
0を形成したが、第7図に示すようにMOS)ランシス
タのチャネルが形成される方向にのみ領域10に相当す
る領域17を形成しても同様の効果が得られる。又、第
6図〜第7図ではドレイン領域のみに高不純物濃度領域
10゜17を形成したが、この領域はドレイン領域のみ
ならず、ソース領域11の囲りに形成してもよいことは
言うまでもない。
In addition, in FIGS. 6 and 6, a region 1 of a conductivity type opposite to that of the drain region 12 is formed so as to completely surround the drain region 12.
However, the same effect can be obtained by forming a region 17 corresponding to the region 10 only in the direction in which the channel of the MOS (MOS) transistor is formed, as shown in FIG. Further, in FIGS. 6 and 7, the high impurity concentration region 10° 17 is formed only in the drain region, but it goes without saying that this region may be formed not only in the drain region but also around the source region 11. stomach.

第8図、第9図は本発明の第5図、第6図に相当するM
O8型電界効果トランジスターの構造に1      
閾値電圧制御用に基板表面近傍にチャネルドープしたも
ののゲート電極14下の不純物プロファイルを示す。第
8,9図において横軸は深さ方向の距離で縦軸は不純物
濃度である。これ等の図からも分かるように、この新規
なMO5型電界効果トランジスターの構造は上記の他に
α線に対しても有利な構造になっている。即ち、高不純
物濃度の一方導電型の半導体基板8とこれに連接した同
導電型のエピタキシャル層9との間のビルトインフィー
ルド、又は、半導体基板8とイオン注入層16との間の
ビルトインフィールドの存在のため、α線によりエレク
トロン、ホールベアが形成されてもマイノリティキャリ
アーであるエレクトロンはデバイス表面側に流れ込みに
くくなっている。
Figures 8 and 9 are M corresponding to Figures 5 and 6 of the present invention.
1 in the structure of O8 type field effect transistor
The impurity profile below the gate electrode 14 is shown when channel doping is performed near the substrate surface for threshold voltage control. In FIGS. 8 and 9, the horizontal axis is the distance in the depth direction, and the vertical axis is the impurity concentration. As can be seen from these figures, the structure of this new MO5 field effect transistor is advantageous against α-rays in addition to the above. That is, the presence of a built-in field between the semiconductor substrate 8 of one conductivity type with a high impurity concentration and the epitaxial layer 9 of the same conductivity type connected thereto, or the existence of a built-in field between the semiconductor substrate 8 and the ion-implanted layer 16. Therefore, even if electrons and hole bears are formed by α rays, electrons, which are minority carriers, are difficult to flow into the device surface side.

以上の様に、本発明の電界効果トランジスターはゲート
長を短チヤネル化しても、V−I特性は3極管特性にな
らず、5極管特性を示し、又サプシュレッシュホウルド
カレントも大幅に減少する。
As described above, even if the gate length of the field effect transistor of the present invention is shortened, the V-I characteristic does not become a triode characteristic, but exhibits a pentode characteristic, and the suppressed hold current is also significantly reduced. decreases to

又α線などの効果も受けにくいデバイス構造を実現でき
、微細な高性能半導体装置の実現に大きく寄与するもの
である。
In addition, it is possible to realize a device structure that is less susceptible to the effects of alpha rays, etc., which greatly contributes to the realization of fine, high-performance semiconductor devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はゲート長が長い時に示すMOSトランジスタの
V−I特性(6極管特性)図、第2図はゲート長が短チ
ヤネル化した時に示す同V−I特性(3極管特性)図、
第3図は従来のMO8型電第6図及び第7図は本発明の
実施例のMO3型1界効果トランジスターの構造断面図
、第8図、第9図は本発明のMO8型電界効果トランジ
スターの構造のデバイス閾値電圧制御用のチャネルドー
プしたもののゲート電極の下の不純物プロファイルを示
す図である。 8・・・・・・高濃度の一方導電型の半導体基板、9・
・・・・・半導体基板に連接した同一導電型のエピタキ
シャル層、11.12・・・・・・エピタキシャル層内
に形成されたソース領域、ドレイン領域、10・・・・
・・ドレイン領域11を囲むように形成されたドレイン
領域11と反対導電型の高不純物濃度領域、8′・・・
・・・低不純物濃度の半導体基板、16・・・・・イオ
ン注入法で形成した高不純物濃度領域。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 ろ 第2図 第3図 vB 第4図 1eft(声調) 第5図 第8図  l′ 第9図 距 N lメ町
Figure 1 shows the V-I characteristics (hexode characteristics) of a MOS transistor when the gate length is long, and Figure 2 shows the V-I characteristics (triode characteristics) when the gate length is shortened. ,
FIG. 3 shows a conventional MO8 type field effect transistor; FIGS. 6 and 7 are structural cross-sectional views of an MO3 type single field effect transistor according to an embodiment of the present invention; and FIGS. 8 and 9 show a MO8 type field effect transistor of the present invention. FIG. 3 is a diagram showing the impurity profile under the gate electrode of a channel-doped device for controlling the threshold voltage of the structure. 8...High concentration one-side conductivity type semiconductor substrate, 9.
... Epitaxial layer of the same conductivity type connected to the semiconductor substrate, 11.12 ... Source region and drain region formed in the epitaxial layer, 10 ...
. . . A high impurity concentration region 8′ of a conductivity type opposite to that of the drain region 11, which is formed to surround the drain region 11.
...Low impurity concentration semiconductor substrate, 16...High impurity concentration region formed by ion implantation method. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure 3 vB Figure 4 1eft (tone) Figure 5 Figure 8 l' Figure 9 Distance N lme town

Claims (2)

【特許請求の範囲】[Claims] (1)絶縁ゲート型電界トランジスタのソース、ドレイ
ン領域の何れか一方又は両方の1部又は全部を囲むよう
に前記ソース、ドレイン領域と反対導電型の高不純物濃
度領域を有し、且つ、前記ソース又はドレイン領域の下
面に前記ソース、ドレイン領域と反対導電型の高不純物
濃度領域を有することを特徴とする絶縁ゲート型電界効
果半導体装置0
(1) A high impurity concentration region having a conductivity type opposite to that of the source and drain regions surrounds a part or all of one or both of the source and drain regions of the insulated gate field transistor, and the source Alternatively, an insulated gate field effect semiconductor device 0 characterized in that it has a high impurity concentration region of a conductivity type opposite to that of the source and drain regions on the lower surface of the drain region.
(2)低不純物濃度の一方導電型の半導体基板に、同一
導電型の不純物をイオン注入して高不純物濃度領域を形
成し、この高不純物濃度領域の上面にソース、ドレイン
領域を形成し、前記ソース又はドレイン領域の1部又は
全部を囲むように前記ソース、ドレイン領域と反対導電
型の高不純物濃度領域を形成することを特徴とする絶縁
ゲート型電界効果半導体装置の製造方法。
(2) A high impurity concentration region is formed by ion-implanting impurities of the same conductivity type into a semiconductor substrate of one conductivity type with a low impurity concentration, and source and drain regions are formed on the upper surface of this high impurity concentration region, and the A method for manufacturing an insulated gate field effect semiconductor device, comprising forming a highly impurity concentration region of a conductivity type opposite to that of the source or drain region so as to surround part or all of the source or drain region.
JP21291481A 1981-12-28 1981-12-28 Insulating gate type field-effect semiconductor device and manufacture thereof Pending JPS58115863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21291481A JPS58115863A (en) 1981-12-28 1981-12-28 Insulating gate type field-effect semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21291481A JPS58115863A (en) 1981-12-28 1981-12-28 Insulating gate type field-effect semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS58115863A true JPS58115863A (en) 1983-07-09

Family

ID=16630363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21291481A Pending JPS58115863A (en) 1981-12-28 1981-12-28 Insulating gate type field-effect semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS58115863A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0191466A (en) * 1987-10-02 1989-04-11 Fujitsu Ltd Semiconductor device
WO2004034426A3 (en) * 2002-10-09 2004-08-12 Motorola Inc Non-volatile memory device and method for forming

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5066181A (en) * 1973-10-12 1975-06-04
JPS5222480A (en) * 1975-08-14 1977-02-19 Nippon Telegr & Teleph Corp <Ntt> Insulating gate field effect transistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5066181A (en) * 1973-10-12 1975-06-04
JPS5222480A (en) * 1975-08-14 1977-02-19 Nippon Telegr & Teleph Corp <Ntt> Insulating gate field effect transistor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0191466A (en) * 1987-10-02 1989-04-11 Fujitsu Ltd Semiconductor device
WO2004034426A3 (en) * 2002-10-09 2004-08-12 Motorola Inc Non-volatile memory device and method for forming
CN100420036C (en) * 2002-10-09 2008-09-17 飞思卡尔半导体公司 Non-volatile memory device and method for forming

Similar Documents

Publication Publication Date Title
JP2606404B2 (en) Semiconductor device
JP2000082812A (en) Silicon carbide semiconductor device and manufacture thereof
US20030057478A1 (en) Mos-gated power semiconductor device
JPH07183522A (en) Lateral type soi device
US4952991A (en) Vertical field-effect transistor having a high breakdown voltage and a small on-resistance
US5012306A (en) Hot-carrier suppressed sub-micron MISFET device
JPS62229976A (en) Semiconductor device and manufacture thereof
JPH04107877A (en) Semiconductor device and its production
JP2003518748A (en) Self-aligned silicon carbide LMOSFET
JPH0621468A (en) Insulated gate semiconductor device
US6563193B1 (en) Semiconductor device
JP2003518749A (en) Silicon carbide LMOSFET with gate breakdown protection
JPS6390853A (en) Semiconductor device
JPS5916427B2 (en) Junction field effect transistor
JPH0465549B2 (en)
JPS58115863A (en) Insulating gate type field-effect semiconductor device and manufacture thereof
US20020185695A1 (en) Lateral DMOS structure with lateral extension structure for reduced charge trapping in gate oxide
JP2006351781A (en) Field effect transistor and its manufacturing method
JPS61255069A (en) Insulated gate field-effect transistor
JPS63217664A (en) Misfet and manufacture thereof
JP3285997B2 (en) Insulated gate power semiconductor device
JP3344078B2 (en) Insulated gate field effect transistor
JP2969833B2 (en) MIS type semiconductor device
JPH051083Y2 (en)
CN107180856B (en) PMOS device structure