JPS58115443A - Photosensitive body - Google Patents

Photosensitive body

Info

Publication number
JPS58115443A
JPS58115443A JP21463081A JP21463081A JPS58115443A JP S58115443 A JPS58115443 A JP S58115443A JP 21463081 A JP21463081 A JP 21463081A JP 21463081 A JP21463081 A JP 21463081A JP S58115443 A JPS58115443 A JP S58115443A
Authority
JP
Japan
Prior art keywords
carrier
layer
photoreceptor
transport layer
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21463081A
Other languages
Japanese (ja)
Inventor
Shiyou Ebara
江原 「しよう」
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP21463081A priority Critical patent/JPS58115443A/en
Publication of JPS58115443A publication Critical patent/JPS58115443A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/0433Photoconductive layers characterised by having two or more layers or characterised by their composite structure all layers being inorganic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To stably hold high surface charge, by providing a carrier transport layer consisting of a dielectric semiconductor, on a function separating type electrophotographic sensitive body. CONSTITUTION:In a function separating type electrophotographic sensitive body which has been provided with a carrier transport layer 2, a generating layer 3 for generating a carrier, and a surface protecting layer as necessary, on a conductive substrate 1, a dielectric semiconductor consisting of a perovskite type oxide such as SrTiO3, KTaO3, etc. is used for the carrier transport layer. In this way, a high dielectric constant is obtained, large electrostatic charge can be held even in case of low surface potential, the photosensitive body can be thinned in order to obtain the same performance, also sensitivity of the photosensitive body is raised since mobility of the carrier is large, furthermore, the carrier of a long life is obtained since the oxide semiconductor is an indirect transition type semiconductor, and the photosensitive body whose sensitivity is scarcely dropped is obtained.

Description

【発明の詳細な説明】 本発明は、光によるキャリア発生と、発生したキャリア
を保持する層を異なる材料で形成した機能分離型感光体
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a functionally separated photoreceptor in which carrier generation by light and a layer for holding the generated carriers are formed of different materials.

近年各種の情報処理装置が開発されているが、中でも電
子写真、電子複写機及びレーザープリンター等の装置は
、書類、図面等の作成を合理化するものとして広く実用
化されている。
Various information processing devices have been developed in recent years, and among them, devices such as electrophotography, electronic copying machines, and laser printers have been widely put into practical use as devices that streamline the creation of documents, drawings, and the like.

この種の装置は、画像を静電的に保持させる点で共通し
ており、静電荷の保持は光導電層を備えた感光体によっ
て行われる。
These types of devices have in common that the image is held electrostatically, and the electrostatic charge is held by a photoreceptor provided with a photoconductive layer.

上記装置に用いられる感光体としては、一般的に高い光
感度と表面静電荷を保持するに必要な高い抵抗を持つこ
とが要求される。実際の作像プロセスに要求される抵抗
値は1018Ω・備を越えるものとなるが、このような
高い抵抗を有しながら且つ高い光伝導性を有する物質と
しては、極〈限られた材料にすぎなかった。
The photoreceptor used in the above-mentioned device is generally required to have high photosensitivity and high resistance necessary to maintain surface electrostatic charge. The resistance value required for the actual image forming process exceeds 1018Ω, but there are only a limited number of materials that have such high resistance and high photoconductivity. There wasn't.

即ち従来から用いられている光導電材料として、アモル
ファスセレンやCdSを樹脂バインダーに混合したもの
が知られている。しかし上記アモルファスセレンは高価
である上に結晶的に不安定であり、複写プロセス中に与
えられる熱や、その地熱的ショック又は機械的シラツク
によってアモルファスな状態から多結晶の状態に変化し
、抵抗値が低下して感光体としての特性を失うという欠
点がある。またセレン自体毒性を有する有害物質で、製
造時の取り扱いに充分な注意を払わねばならないという
問題がある。
That is, as a conventionally used photoconductive material, one in which amorphous selenium or CdS is mixed with a resin binder is known. However, the above-mentioned amorphous selenium is expensive and crystallically unstable, and changes from an amorphous state to a polycrystalline state due to heat applied during the copying process, geothermal shock, or mechanical shock, resulting in resistance value. The disadvantage is that the photoreceptor loses its properties due to a decrease in the photoreceptor. Another problem is that selenium itself is a toxic substance and must be handled with great care during production.

一方CdSと樹脂バインダーの混合体からなる光導電層
は、樹脂バインダーが軟かく耐久力も低い上、CdSは
毒性があるとされており決して理想的な感光体とはいえ
ない。
On the other hand, a photoconductive layer made of a mixture of CdS and a resin binder cannot be said to be an ideal photoreceptor because the resin binder is soft and has low durability, and CdS is said to be toxic.

上述のような欠点を補う感光体として、最近はアモルフ
ァスシリコy(aSi)感光体が脚光を浴びている。し
かしこの種の材料を用いた感光体は、製造時における8
51層のCVD成長速度が遅く、1秒当り数オングスト
ロームの割合でしか成長が進まない。アモルファスシリ
コンは光吸収係数が非常に大きく、光キヤリア発生のた
めには1μm程度の厚さで充分機能し得る。しかし感光
体として機能させるためには発生したキャリアを静電電
荷保持させる必要があり、20〜30μmの厚さに設け
る必要がある。このような厚い感光体を得るためにはC
VD法で作製した場合1昼夜の時間を要することになり
、量産には適さないという欠点があるO 感光体としては、上述のように高い光伝導性と高い抵抗
性を兼ね備える材料が必要になるが、aSiの場合のよ
うに一つの材料から両特性を得ようとすると製造時間を
要するなど実用化には問題がある。
Amorphous silicon y (aSi) photoreceptors have recently been in the spotlight as photoreceptors that compensate for the above-mentioned drawbacks. However, photoreceptors using this type of material have a
The CVD growth rate of the 51 layer is slow, with growth progressing only at a rate of several angstroms per second. Amorphous silicon has a very large light absorption coefficient, and a thickness of about 1 μm is sufficient for generating light carriers. However, in order to function as a photoreceptor, it is necessary to retain electrostatic charge on the generated carriers, and it is necessary to provide the carrier with a thickness of 20 to 30 μm. In order to obtain such a thick photoreceptor, C
When fabricated using the VD method, it takes a day and a night, which has the disadvantage of not being suitable for mass production.As the photoreceptor, a material that has both high photoconductivity and high resistance as mentioned above is required. However, as in the case of aSi, attempting to obtain both properties from one material poses problems in practical use, such as the production time required.

上記のような問題に対して最近では、高い光伝導性と高
い抵抗性を別々に注目し、それらの機能を別々の材料に
負わせた感光体が考案されている。
To address the above-mentioned problems, recently, photoreceptors have been devised in which high photoconductivity and high resistance are separately focused, and these functions are assigned to different materials.

例えば感光体層としてアモルファスセレンを利用し、こ
の層を露光時における光キヤリア発生層とし、この光キ
ヤリア発生層となるアモルファスセレン層の下にキャリ
ア輸送層としてPVK父はTNF等の有機半導体層を介
挿した構造のもので、多層構造を採るため製造工程は複
雑になるが、機能としては良好なものが得られ、高級電
子複写機への適用が考えられている。上記有機半導体層
を介挿した機能分離型感光体は、高い光伝導性及び高い
抵抗値を得ることができるが、有機半導体層における移
動度(μ)が小さく、そのために応答に時間が必要とな
り、更には未だ充分な表面電荷を持たせることが難しい
という欠点があった。
For example, amorphous selenium is used as a photoconductor layer, this layer is used as a photocarrier generation layer during exposure, and under the amorphous selenium layer that becomes the photocarrier generation layer, an organic semiconductor layer such as TNF is used as a carrier transport layer. Although the manufacturing process is complicated because it has a multilayer structure, it has good functionality, and its application to high-end electronic copying machines is being considered. The functionally separated photoreceptor with the organic semiconductor layer interposed therein can obtain high photoconductivity and high resistance, but the mobility (μ) in the organic semiconductor layer is small and therefore requires time for response. Furthermore, there is still a drawback that it is difficult to provide sufficient surface charge.

本発明は上記従来装置の欠点を除去し、高い表面電荷を
安定して保持させ得る感光体を提供するものである。
The present invention eliminates the drawbacks of the conventional devices described above and provides a photoreceptor that can stably maintain a high surface charge.

図は本発明による感光体の断面図である。図において1
はアルミ等の導体からなる基板で、該基板1を支持体と
して感光体が作製されている。該感光体は上記基板1上
にキャリア輸送層2.光キヤリア発生層3及び表面保護
膜4が順次積層されてなる。
The figure is a cross-sectional view of a photoreceptor according to the present invention. In the figure 1
1 is a substrate made of a conductor such as aluminum, and a photoreceptor is manufactured using the substrate 1 as a support. The photoreceptor has a carrier transport layer 2 on the substrate 1. A photocarrier generation layer 3 and a surface protection film 4 are sequentially laminated.

光キヤリア発生層8は原稿面からの反射光或いはレーザ
ービーム等からの書込み光によって光キャリアを生成す
る役目を果たし、アモルファスシリコン或いはアモルフ
ァスカルコゲナイド等の高感度な光導電体が用いられ、
1μm程度の膜厚に作製されている。該光キヤリア発生
層8を直接露出させて感光体を構成することができるが
、電荷保持特性の際のキャリア注入を抑制し、また表面
保護等のために5iBN4等からなるパッジベイシコン
を施こし、保護膜4を設けることが望ましい。
The optical carrier generation layer 8 plays the role of generating optical carriers using reflected light from the document surface or writing light from a laser beam, etc., and uses a highly sensitive photoconductor such as amorphous silicon or amorphous chalcogenide.
The film thickness is approximately 1 μm. Although the photoreceptor can be constructed by directly exposing the photocarrier generation layer 8, a pad basecon made of 5iBN4 or the like is applied to suppress carrier injection during charge retention characteristics and to protect the surface. Preferably, a membrane 4 is provided.

上記光キヤリア発生層8と基板1の間に介挿されたキャ
リア輸送層2は、光キヤリア発生層8に比べて厚い膜に
作製される。該キャリア輸送層2は、表面静電電位を保
持するに必要な抵抗値、即ちIOΩ程度の高い抵抗をも
つことが要求され、また上記光キヤリア発生層3で生成
したキャリアが容易に移動し得る程度の高い移動度(μ
)をもつことが望まれる。このような特性は、単に高抵
抗値の抵抗体を用いただけでは得られない。即ち抵抗体
の場合には、キャリアが抵抗層を通過するのに数10秒
から数分の時間を要し、複写機の感光体として動作させ
た場合、光照射後に上記のような長い時間を要してキャ
リアの輸送が行われていたのでは応答が極めて悪く実用
不可能である。従って本発明においては、キャリア輸送
層2として、S r T iOB 、KT a OB等
のペロプスカイト型酸化物よりなる誘電体半導体が用い
られる。
The carrier transport layer 2 interposed between the optical carrier generation layer 8 and the substrate 1 is made to be a thicker film than the optical carrier generation layer 8. The carrier transport layer 2 is required to have a resistance value necessary to maintain the surface electrostatic potential, that is, a high resistance of about IOΩ, and the carriers generated in the photocarrier generation layer 3 can easily move. A high degree of mobility (μ
) is desirable. Such characteristics cannot be obtained simply by using a resistor with a high resistance value. In other words, in the case of a resistor, it takes several tens of seconds to several minutes for the carrier to pass through the resistive layer, and when used as a photoreceptor in a copying machine, it takes a long time as described above after irradiation with light. In short, if carriers were transported, the response would be extremely poor and would be impractical. Therefore, in the present invention, a dielectric semiconductor made of a perovskite oxide such as S r TiOB or KT a OB is used as the carrier transport layer 2 .

上記ペロプスカイト型酸化物は、低温から室温より高い
温度まで広い温度範囲に亘って常誘電性を示し、また伝
導帯を有して半導体化することが知られている。ペロプ
スカイト型酸化物が示す誘電率は室温近傍で数百にもな
る上、移動度(μ)は数10cyl/ see 、 V
を上まわる大きな移動度を有する。
It is known that the perovskite oxide exhibits paraelectricity over a wide temperature range from low temperatures to temperatures higher than room temperature, and has a conduction band and becomes a semiconductor. Peropskite oxides have a dielectric constant of several hundreds near room temperature, and a mobility (μ) of several tens of cyl/see, V
It has a large mobility exceeding .

更には一般に大きなバンドギャップを有する。Furthermore, they generally have a large band gap.

上記のような特性を有する酸化物半導体をキャリア輸送
層とすることにより、感光体として次のような利点が得
られる。
By using an oxide semiconductor having the above characteristics as a carrier transport layer, the following advantages can be obtained as a photoreceptor.

まず大きい誘電率をもっことにより、誘電率に比例して
大きな表面静電電荷を保持させることができる。即ち、
電子写真では感光体に保持された静電電荷にトナーを静
電的に吸引させることによって潜像を顕像にするため、
感光体の静電誘電率εが大きい場合にはより低い表面電
位で大きな静電電荷を保持することができる。このこと
は結果的に薄い感光体で感光体としての作用をさせ得る
ことになる。
First, by having a large dielectric constant, a large surface electrostatic charge can be held in proportion to the dielectric constant. That is,
In electrophotography, a latent image is turned into a visible image by electrostatically attracting toner to the electrostatic charge held on the photoreceptor.
When the electrostatic permittivity ε of the photoreceptor is large, a large electrostatic charge can be held at a lower surface potential. As a result, a thin photoreceptor can function as a photoreceptor.

またキャリア移動度(μ)が大きいことは感光体の感度
を高め、直接的には応答速度を速めることになるので、
感光体の大幅な高性能化が計られる。
In addition, a large carrier mobility (μ) increases the sensitivity of the photoreceptor and directly increases the response speed.
The performance of the photoreceptor was significantly improved.

更には上記酸化物半導体は間接遷移型の半導体といわれ
ており、長寿命のキャリアが得られることになって光キ
ャリアをキャリア輸送層中で失うことが少なくなり、光
感度の低下が少ない。
Furthermore, the above-mentioned oxide semiconductor is said to be an indirect transition type semiconductor, and long-life carriers can be obtained, so that optical carriers are less likely to be lost in the carrier transport layer, and there is little decrease in photosensitivity.

上述のような多数の利点を有する酸化物半導体は、従来
公知の蒸着法、スパッタリング法、又は反応性スパッタ
リング法等によって基板I上に成膜することができる。
An oxide semiconductor having many advantages as described above can be formed on the substrate I by a conventionally known vapor deposition method, sputtering method, reactive sputtering method, or the like.

また上記方法によって作製された酸化物半導体を一旦粉
体に成型し7、これらをバインダに混合して基板l上に
塗布して積層することもできる。
Alternatively, the oxide semiconductor produced by the above method may be once formed into powder 7, mixed with a binder, and applied onto the substrate l to be laminated.

尚例えばSrTi0g は製造時に自然に酸素欠陥を少
量含むことになり、この種の欠陥がトナーの作用して1
010〜1070帰の抵抗を有するが、この抵抗値は酸
素中の熱処理で高めることも真空中の熱処理によって低
めると′とも任意に可能で、更には他のドービッグによ
っても抵抗値を変えることが可能である。
For example, SrTi0g naturally contains a small amount of oxygen defects during manufacturing, and these defects are caused by the action of toner.
It has a resistance of 010 to 1070, but this resistance value can be increased by heat treatment in oxygen or lowered by heat treatment in vacuum, and it is also possible to change the resistance value by using other dobigs. It is.

次に上記本発明の具体的な実施例を挙げるO5 r T
 iOB の粉末(径が数μ以下)をアクリル系樹脂バ
インダーと容積比10:8の割合で混合し、溶剤を添加
して混練したものを、従来からPPC複写機に用いられ
ているアルミドラム上に塗布し、25μmの厚さからな
るキャリア輸送層を形成した。
Next, specific examples of the present invention will be described.
iOB powder (with a diameter of several microns or less) is mixed with an acrylic resin binder at a volume ratio of 10:8, a solvent is added, and the mixture is kneaded, and then the mixture is placed on an aluminum drum, which is conventionally used in PPC copying machines. to form a carrier transport layer having a thickness of 25 μm.

キャリア輸送層が形成されたアルミドラム上に続いてア
モルファスシリコンをグロー放電cvD法により約3μ
mの厚さに形成し、光キヤリア発生層とする。尚アモル
ファスシリコン層の成膜において、水素による安定化が
行われ、且つ微量のボロンを添加して抵抗値を増加する
ための処置を施こした。キャリア輸送層及び光キヤリア
発生層が積層された後、表面上に数百オングストローム
の窒化シリコンからなるパッシベイションが施こされて
機能分離型感光体が作製される。上記構造の感光体を用
いて、均一帯電9画像露光、現像、転写及び定着等のプ
ロセスを実行させ、複写像を作成したところ良質の画像
が得られた。
Subsequently, amorphous silicon was deposited on the aluminum drum on which the carrier transport layer was formed by about 3 μm using the glow discharge CVD method.
The layer is formed to have a thickness of m and is used as a photocarrier generating layer. In forming the amorphous silicon layer, stabilization was performed using hydrogen, and a trace amount of boron was added to increase the resistance value. After the carrier transport layer and the photocarrier generation layer are laminated, passivation made of several hundred angstroms of silicon nitride is applied on the surface to produce a functionally separated photoreceptor. Using the photoreceptor having the above structure, processes such as uniformly charged nine-image exposure, development, transfer and fixing were carried out to produce a copy image, and a good quality image was obtained.

以上本発明によれば、誘電体半導体層を介挿して感光体
を作製しているため、光によって発生したキャリアを効
率よく保持させることができ、低い表面電位で大きな静
電電荷が得られ、従来装置に比べて薄い感光体で機能さ
せることができ、装置製造における経済性をすぐれたも
のにすることができる。また低い表面電位で済むため、
装置設計が容易になると共に、電気回路及びコロナ放電
部材等に与える負担を軽減し、装置の耐久性を高いもの
にすることができる。
As described above, according to the present invention, since a photoreceptor is manufactured by interposing a dielectric semiconductor layer, carriers generated by light can be efficiently retained, and a large electrostatic charge can be obtained with a low surface potential. Compared to conventional devices, the device can function with a thinner photoreceptor, making the device manufacturing more economical. Also, since the surface potential is low,
The device design becomes easier, and the load on the electric circuit, corona discharge member, etc. can be reduced, and the durability of the device can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明による一実施例を示す断面図である。 に基板 2:キャリア輸送層 3:光キヤリア発生層 
4:バソシベイシコン膜 代理人 弁理士  福 士 愛 彦
The figure is a sectional view showing an embodiment according to the present invention. Substrate 2: Carrier transport layer 3: Photocarrier generation layer
4: Basoshibasicon Membrane Agent Patent Attorney Aihiko Fukushi

Claims (1)

【特許請求の範囲】[Claims] 1、静電潜偉を形成するための、基板導体上に支持され
た感光体において、光によってキャリアを発生するキャ
リア発生層と、該光キヤリア発生層に対して基板導体側
に設けられた誘電体半導体からなるキャリア輸送層とを
備えてなることを特徴とする感光体。
1. In a photoreceptor supported on a substrate conductor for forming an electrostatic potential, a carrier generation layer that generates carriers by light, and a dielectric provided on the substrate conductor side with respect to the photocarrier generation layer. A photoreceptor comprising a carrier transport layer made of a semiconductor.
JP21463081A 1981-12-28 1981-12-28 Photosensitive body Pending JPS58115443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21463081A JPS58115443A (en) 1981-12-28 1981-12-28 Photosensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21463081A JPS58115443A (en) 1981-12-28 1981-12-28 Photosensitive body

Publications (1)

Publication Number Publication Date
JPS58115443A true JPS58115443A (en) 1983-07-09

Family

ID=16658914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21463081A Pending JPS58115443A (en) 1981-12-28 1981-12-28 Photosensitive body

Country Status (1)

Country Link
JP (1) JPS58115443A (en)

Similar Documents

Publication Publication Date Title
US4365013A (en) Electrophotographic member
US4609605A (en) Multi-layered imaging member comprising selenium and tellurium
JPS5913021B2 (en) Composite photoreceptor material
US3867143A (en) Electrophotographic photosensitive material
JPH07120953A (en) Electrophotographic photoreceptor and image forming method using the same
JPS58115443A (en) Photosensitive body
US3709683A (en) Infrared sensitive image retention photoreceptor
EP0049623A2 (en) Photosensitive imaging member
JPH0792610B2 (en) Electrophotographic photoconductor
JPS6194054A (en) Photoconductive member
JP2599950B2 (en) Photoconductor structure
US4572883A (en) Electrophotographic imaging member with charge injection layer
JPS61256353A (en) Electrophotographic selenium photosensitive body
US3684500A (en) Method of forming permanent electrostatic image with two-layered photoreceptor
JPH0760271B2 (en) Photoconductive member
JPS6059356A (en) Photoconductive member
JPS6161386B2 (en)
JPS6377059A (en) Electrophotographic sensitive body
JPH0743543B2 (en) Photoconductive member
JPS6064357A (en) Electrophotographic sensitive body made of selenium
JPS599904B2 (en) Electrophotographic materials
JPS62280753A (en) Reforming method for high-purity selenium
JPS6043664A (en) Electrophotographic sensitive body
JPH052297A (en) Image forming device
JPS58174953A (en) Electrophotographic receptor