JPS58115238A - Control circuit of air conditioner - Google Patents

Control circuit of air conditioner

Info

Publication number
JPS58115238A
JPS58115238A JP56210796A JP21079681A JPS58115238A JP S58115238 A JPS58115238 A JP S58115238A JP 56210796 A JP56210796 A JP 56210796A JP 21079681 A JP21079681 A JP 21079681A JP S58115238 A JPS58115238 A JP S58115238A
Authority
JP
Japan
Prior art keywords
rotational speed
defrosting
compressor
mode operation
heating mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56210796A
Other languages
Japanese (ja)
Other versions
JPS6130176B2 (en
Inventor
Yoshiyuki Noda
芳行 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP56210796A priority Critical patent/JPS58115238A/en
Publication of JPS58115238A publication Critical patent/JPS58115238A/en
Publication of JPS6130176B2 publication Critical patent/JPS6130176B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle

Abstract

PURPOSE:To reduce gas sound generated when the changeover valve is switched by carrying out at least one switching operation among operations of switching the changeover valve from the heating mode operation to the defrosting operation and vice versa, after decreasing the electrically driven compressor to the minimum rotational speed. CONSTITUTION:During the heating mode operation, the coolant discharged from the compressor 1 flows in the sequence of four way valve 1a, indoor heat- exchanger 5, pressure reducing device 4 and outdoor heat exchanger 3, and the heating mode operation is carried out by a blast from an indoor blower 7. Then, a defrosting condition is satisfied during the heating mode operation, the rotational speed of the compressor motor 2 is gradually lowered to the minimum rotational speed while the heating mode operation is continued. After the compressor motor 2 has reached a state of the minimum rotational speed, the four- way valve 1a is changed over to a defrosting operation, and thereafter the rotational speed of the compressor motor 2 is gradually increased, and the freezing cycle is shifted to a full-scale defrosting mode operation.

Description

【発明の詳細な説明】 本発明は、冷媒圧縮サイクルを有する空%調和磯の制御
回路、特にインバータ制御による能力可変形の空気調和
機の制御回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control circuit for an air conditioner having a refrigerant compression cycle, and particularly to a control circuit for a variable capacity air conditioner controlled by an inverter.

電動圧縮機、冷媒流路切換弁、室外熱交換器、1− 圧器、室内熱交換器を順次接続した冷媒圧縮サイクルを
備えると共に、その室外熱交換器及び室内熱交換器に送
風機を夫々備えた空気調和機において、暖房運転での低
温多湿時に室外熱交換器に霜が発生し、暖房能力が低下
し、運帖効率が低下してくるので、着霜がある一定値に
なると除霜運転を行なって霜を取り除く必要がある。こ
の除霜運転というのは、室内、室外送風機を停止して冷
媒圧縮サイクルを冷媒流路切換弁を切換えることにより
、暖房時と逆のサイクルにして室外熱交換器へ高温の冷
媒を流して行なうものである。しかし暖房運転から除霜
運転に切換わる際に、いきなり切換弁を切換えると、冷
媒の流れが逆になり、冷媒の高圧部と低圧部がいつきに
圧力バランスするため、かなり大きなガス音が出て耳ぎ
わ1〕なものであった。
It is equipped with a refrigerant compression cycle in which an electric compressor, a refrigerant flow switching valve, an outdoor heat exchanger, a 1-pressure machine, and an indoor heat exchanger are connected in sequence, and each of the outdoor heat exchanger and indoor heat exchanger is equipped with a blower. In air conditioners, frost forms on the outdoor heat exchanger during low temperature and high humidity during heating operation, reducing heating capacity and operation efficiency. It is necessary to remove the frost. This defrosting operation is performed by stopping the indoor and outdoor blowers and switching the refrigerant compression cycle to the refrigerant flow path switching valve, which reverses the heating cycle and flows high-temperature refrigerant to the outdoor heat exchanger. It is something. However, if you suddenly switch the switching valve when switching from heating operation to defrosting operation, the flow of refrigerant will be reversed, and the high-pressure part and low-pressure part of the refrigerant will eventually reach a pressure balance, resulting in quite loud gas noise. It was around the ear.

本発明は、」1記に鑑み、暖房運転から除霜運転、及び
除霜運転から暖房運転への切換弁の切換時に発生するガ
ス音を低減させることを目的として提供されたものであ
る。
In view of the above, the present invention has been provided for the purpose of reducing gas noise generated when a switching valve is switched from heating operation to defrosting operation and from defrosting operation to heating operation.

2− 以下、図示の実施例について本発明を詳述すると、第1
図において、1は圧縮機、2はこの圧縮+f9.1を駆
動する圧縮機モータで、これらにより電動圧縮機か構成
される。3は室外熱交換器、4はキャピラリチューブ等
の減圧器、5は室内熱交換器、1aは冷媒の流れを切換
える切換弁の一例としての四方弁であ!〕、これらは圧
縮機1と閉回路状に接続されて冷媒圧縮サイクルを構成
する。この冷媒圧縮サイクルは、前記四方弁1aのオン
状態で暖房運転を、オフ状態で冷房運転を行なうように
されたちのである。6は室外熱交換器3に対応して設け
られた室外送風機、7は室内熱交換器5に対応して設け
られた室内送風機である。
2- Hereinafter, the present invention will be described in detail with respect to the illustrated embodiment.
In the figure, 1 is a compressor, 2 is a compressor motor that drives this compression +f9.1, and these constitute an electric compressor. 3 is an outdoor heat exchanger, 4 is a pressure reducer such as a capillary tube, 5 is an indoor heat exchanger, and 1a is a four-way valve as an example of a switching valve for switching the flow of refrigerant! ], these are connected to the compressor 1 in a closed circuit to form a refrigerant compression cycle. In this refrigerant compression cycle, heating operation is performed when the four-way valve 1a is on, and cooling operation is performed when it is off. 6 is an outdoor blower provided corresponding to the outdoor heat exchanger 3, and 7 is an indoor blower provided corresponding to the indoor heat exchanger 5.

8は一般的なワンチップマイクロコンピュータ(以下マ
イフンと称する)で、入力端子IN1〜■N5及び出力
端子o U T 1〜OU T 6を有すると共に、内
部にプログラムROへ4、データRAM。
Reference numeral 8 denotes a general one-chip microcomputer (hereinafter referred to as MyFun), which has input terminals IN1 to ■N5 and output terminals OUT1 to OUT6, and internally includes a program RO and a data RAM.

A L Llを有し、基準クロック発振部9により駆動
されている。10は室温検出用のサーミスタ、11はA
/D変換器で、サーミスタ10で検出され室温をデジタ
ル値に変換してマイコン8の入力端子IN1へ入力する
。12は室温設定用の可変抵抗、13はA/D変換器で
、可変抵抗12で設定された室温をデジタル値に変換し
てマイコン80入力端子TN2に入力する。14はイン
バータ部で、電源端子15.15’から入力された交流
電源をダイオードD1〜D4で整流し、コンデンサC4
゜で平滑した後、)・ランンスタTr1.Tr1′でW
相、トランジスタTr2.Tr2’でV相、トランジス
タTr3.Tr3’でU相の三相を夫々位相制御して三
相交流を発生し、三相の圧縮機モータ2を運転する。1
6は運転/停止スイッチで、マイコン8の入力端子IN
4に接続される。17は前記四方弁1aを切換えるため
の冷房・暖房切換スイッチで、マイコン8の入力端子I
NSに接続される。マイコン8は入力端子INIから室
温、入力端子IN2から室温設定値を夫々読込み、その
値によりインパーク部14を介して圧縮機モータ2に通
電する三相電圧U、V、Wの周波数及び電圧を制御する
信号を出力端子0UT1〜0UT3−3= ら出力し、これによってトランジスタ駆動回路18を介
して圧縮機モータ2の回転数を制御し冷房(@房)能力
を可変とするものである。1つは着霜検出用のサーミス
タ、20はA/D変換器で、サーミスタ19で検出され
た室温をデジタル値に変換してマイコン8の入力端子I
 N Sへ入力する。
A L Ll, and is driven by the reference clock oscillation section 9. 10 is a thermistor for detecting room temperature, 11 is A
The /D converter converts the room temperature detected by the thermistor 10 into a digital value and inputs it to the input terminal IN1 of the microcomputer 8. 12 is a variable resistor for setting the room temperature, and 13 is an A/D converter, which converts the room temperature set by the variable resistor 12 into a digital value and inputs it to the microcomputer 80 input terminal TN2. 14 is an inverter section, which rectifies the AC power input from the power terminals 15 and 15' with diodes D1 to D4, and connects the capacitor C4.
After smoothing at ゜), the run star Tr1. W at Tr1'
phase, transistor Tr2. Tr2' is V phase, transistor Tr3. The three phases of the U phase are each phase-controlled by Tr3' to generate three-phase alternating current, and the three-phase compressor motor 2 is operated. 1
6 is a run/stop switch, which is the input terminal IN of microcomputer 8.
Connected to 4. 17 is a cooling/heating selector switch for switching the four-way valve 1a, and is connected to the input terminal I of the microcomputer 8.
Connected to NS. The microcomputer 8 reads the room temperature from the input terminal INI and the room temperature set value from the input terminal IN2, and uses these values to control the frequency and voltage of the three-phase voltages U, V, and W that are energized to the compressor motor 2 via the impark section 14. A control signal is outputted from the output terminals 0UT1 to 0UT3-3=, thereby controlling the rotation speed of the compressor motor 2 via the transistor drive circuit 18 and making the cooling capacity variable. One is a thermistor for frost detection, and 20 is an A/D converter that converts the room temperature detected by the thermistor 19 into a digital value and sends it to the input terminal I of the microcomputer 8.
Input to NS.

マイコン8は、その信号に応じて圧縮機モータ2に通電
する三相電圧U、\1.Wの周波数、電圧を制御する信
号を出力端子0UT1〜0UT3から出力すると共に四
方弁1aをオフ状態(冷房側)に切換える信号を出力す
る。このようにマイコン8及びインバータ部14により
、いわゆるパルス幅変調方式のインバータ制御部が構成
されている。なお、インバータ部14のコンデンサc、
、c、’ 〜c、、c3’は、トランジスタTri、T
r1.’ −Tr3.Tr3’がノイズにより誤動作す
るのを防止するためのものである。また抵抗R1とコン
デンサC,,R4とC,、R2とC5,R,、とC8,
R,とCb、RsとC5とから成る各RC直列回路は、
圧縮機モータ2への通電オフ後の逆起電圧によるトラ5
− 4− ジスタTrl、Trl’−Tr3.Tr3′の損傷を防
ぐための放電回路である。マイコンの出力端子0UT4
.○UT5,0UT6+:は夫々室外送風機6、室内送
風機?、四方弁1aの制御出力が発生する。
The microcomputer 8 generates three-phase voltages U, \1, . A signal for controlling the frequency and voltage of W is output from the output terminals 0UT1 to 0UT3, and a signal for switching the four-way valve 1a to the OFF state (cooling side) is output. In this way, the microcomputer 8 and the inverter section 14 constitute a so-called pulse width modulation type inverter control section. Note that the capacitor c of the inverter section 14,
,c,'~c,,c3' are transistors Tri, T
r1. '-Tr3. This is to prevent Tr3' from malfunctioning due to noise. Also, resistor R1 and capacitor C, , R4 and C, , R2 and C5, R, , and C8,
Each RC series circuit consisting of R, and Cb, Rs and C5,
Tiger 5 due to back electromotive force after energization to compressor motor 2 is turned off
- 4- Register Trl, Trl'-Tr3. This is a discharge circuit to prevent damage to Tr3'. Microcomputer output terminal 0UT4
.. ○UT5,0UT6+: are outdoor blower 6 and indoor blower respectively? , a control output of the four-way valve 1a is generated.

上記構成において、冷房運転時には、圧縮機モータ2で
圧縮機1を駆動すると、圧縮機1で圧縮された冷媒は、
室外熱交換器3で室外送風機6の送風で冷却されて凝縮
した後、減圧器4で減圧され、室内熱交換器5で蒸発し
て冷却作用を行ない、室内送風機7が送風して室内を冷
房する。一方、暖房運転時には、四方弁1aが第2図の
如くオン状態に切換わり、冷媒がその流れを反転して圧
縮機1→四方弁1a→室内熱交換器5→減圧器4→室外
熱交換器3と流れ、室内送風機7による送風で暖房運転
が行なわれる。
In the above configuration, when the compressor 1 is driven by the compressor motor 2 during cooling operation, the refrigerant compressed by the compressor 1 is
After being cooled and condensed in the outdoor heat exchanger 3 by the air blown by the outdoor blower 6, the pressure is reduced in the pressure reducer 4, evaporated in the indoor heat exchanger 5 to perform a cooling effect, and the indoor blower 7 blows air to cool the room. do. On the other hand, during heating operation, the four-way valve 1a is switched on as shown in Figure 2, and the flow of refrigerant is reversed so that the compressor 1 → four-way valve 1a → indoor heat exchanger 5 → pressure reducer 4 → outdoor heat exchange Heating operation is performed by air flowing through the indoor air blower 7.

次に暖房時における室外熱交換器の除霜運転を第3図の
タイムチャートに基いて説明する。まず除霜条件(室外
熱交換器の温度低下の感知(約−2゜54°C>>を充
足すると、マイコン8、インパーク部14を介して電動
圧縮機の回転数を制御する。
Next, the defrosting operation of the outdoor heat exchanger during heating will be explained based on the time chart of FIG. 3. First, when the defrosting condition (sensing the temperature drop of the outdoor heat exchanger (approximately -2° to 54° C.) is satisfied, the rotational speed of the electric compressor is controlled via the microcomputer 8 and impark unit 14.

−6= 例えは、lX点で除霜サーモスタット等から除霜信号か
゛入力されると、マイコン8、インバ′−り部14か働
き、暖房運転を続けながら圧縮機モータ2の回転数を徐
々に最小回転数まで低下させる。そして圧縮機モータ2
の回転数が最小回転数に達した後は冷媒圧縮サイクルの
循環冷媒量か低下するまでそのまま運転を続け、B点で
四方弁1aを切換えて除霜運転に入いる。そして圧縮機
モータ2の回転数を徐々に」1昇させて本格的な除霜運
Eを行なう。除霜運転終了時には、0点で除霜終了信号
か入力されると、上記と同様にマイコン8、インバータ
部1・1が働ぎ、圧縮機モータ2の回転数を徐々に最小
回転数まで低下させ、その後しばらく圧縮機モータ2を
最小回転数で運転した後、四方弁1aを切換えて暖房運
転に復帰する。
-6= For example, when a defrost signal is input from a defrost thermostat etc. at point 1X, the microcomputer 8 and inverter unit 14 act to gradually reduce the rotation speed of the compressor motor 2 while continuing the heating operation. Reduce the rotation speed to the minimum. and compressor motor 2
After the rotational speed reaches the minimum rotational speed, operation continues until the amount of circulating refrigerant in the refrigerant compression cycle decreases, and at point B, the four-way valve 1a is switched to enter defrosting operation. Then, the rotational speed of the compressor motor 2 is gradually increased by 1 to carry out a full-scale defrosting operation. At the end of the defrosting operation, when the defrosting end signal is input at the 0 point, the microcomputer 8 and inverter sections 1 and 1 operate in the same way as above, and the rotation speed of the compressor motor 2 is gradually reduced to the minimum rotation speed. After that, the compressor motor 2 is operated at the minimum rotational speed for a while, and then the four-way valve 1a is switched to return to heating operation.

上記の如きマイコン8による制御動作を第4図のフロー
チャートに基いて説明すると、まず「除霜7ラグ11か
」、即ち除霜フラグが除霜となっているかどうか判定し
、除霜になっている場合はYESの方へ分岐して第4図
の左から二〜四側のルートに入いるが、そうでない場合
は一列目のルートに入いる。即ち「除霜フラグHか」が
NOの場合は、次に「除霜信号■−か」即ち除霜開始信
号かどうか判定し、開始信号ならば電動圧縮機の回転数
を1ステップ下げる。その後その圧縮機が最小回転数か
どうか判定し、最小回転数ならば除霜フラグを14にセ
ットし、除霜ループの最初に戻る。また電動圧縮機が最
小回転数でない場合もノヤンプしてループの最初に戻る
。なお「除霜信号■−か」がNOの場合は通常暖房運l
Eを行なうようにする。
The control operation by the microcomputer 8 as described above will be explained based on the flowchart in FIG. If so, branch to YES and take the route on the second to fourth side from the left in Figure 4, but if not, take the route on the first row. That is, if the "defrosting flag H" is NO, then it is determined whether the "defrosting signal -", that is, the defrosting start signal, and if it is the start signal, the rotational speed of the electric compressor is lowered by one step. Thereafter, it is determined whether the compressor is at the minimum rotation speed, and if it is the minimum rotation speed, the defrost flag is set to 14 and the process returns to the beginning of the defrost loop. Also, if the electric compressor does not have the minimum rotation speed, it will jump and return to the beginning of the loop. In addition, if the "defrost signal -?" is NO, the heating operation is normally turned off.
Try to do E.

また「除霜フラグHが」がYESの方へ分岐した場合は
、ここで「除霜信号Hか」即ち除霜終了の信号かどう力
畔す定し、終了信号ならば第4図の三。
Also, if the "defrost flag H" branches to YES, it is determined here whether the "defrost signal H", that is, whether it is a signal for the end of defrosting, and if it is an end signal, then .

四側のルートを通る。そうでない場合は二側のルートへ
入いつ、冷媒圧縮サイクルの循環冷媒量が所定値に低下
しているかどうか判定する。これか図中のrWArT 
 OKか」に相当する。そして冷媒量が低下しているな
らば四方弁を除霜側へ切換えかつ室内、室外送風機を停
止するよう指令する。
Take the four-sided route. If not, when entering the second route, it is determined whether the amount of circulating refrigerant in the refrigerant compression cycle has decreased to a predetermined value. This or rWArT in the figure
It corresponds to "Is it OK?" If the amount of refrigerant is decreasing, a command is given to switch the four-way valve to the defrosting side and stop the indoor and outdoor blowers.

その後「圧縮機か最大回転数か」どうが判定し、最大回
転数に達していないならば圧縮機の回転数を1ステツプ
」二げるよう指令する。なお「WAJTOKか」がNo
の場合、及び「圧縮機か最大回転数か」がYESの場合
は再び除霜ループの最初に戻る。
Thereafter, it is determined whether the rotation speed of the compressor is the maximum rotation speed, and if the maximum rotation speed has not been reached, a command is given to lower the rotation speed of the compressor by one step. Please note that “WAJTOK?” is no.
If , and if "Compressor or maximum rotation speed" is YES, the process returns to the beginning of the defrosting loop again.

また「除霜信号11か」がYESの場合は、「圧縮(戊
か最小回転数か−1どうか1゛り定し、最小回転数なら
ば第4図の四側目に入いつ、ここで冷媒圧縮サイクルの
循環冷媒量が所定値まで低下しているかどうか判定し、
所定値に達していないならばループの最初に戻り、所定
値に達しているならば、「除霜フラグをLにセット」即
ち除霜フラグを除霜終了にセットした後、四方弁を暖房
側へ切換えかつ室内、室外送風機を作動するよう指令し
て暖房運転に入いる。なお「圧縮機が最小回転数か」が
NOの場合は電動圧縮機の回転数を1ステップ下げて除
霜ループの最初に戻る。このようにマイコン8を利用し
て空気調和機を制御することによりガス音を低減できる
Also, if the "defrost signal 11" is YES, "compression (or minimum rotation speed - 1 or not) is set, and if the minimum rotation speed enters the fourth side of Figure 4, here. Determine whether the amount of circulating refrigerant in the refrigerant compression cycle has decreased to a predetermined value,
If the predetermined value has not been reached, return to the beginning of the loop, and if the predetermined value has been reached, "set the defrost flag to L", that is, set the defrost flag to the end of defrost, and then turn the four-way valve to the heating side. , and commands to operate the indoor and outdoor blowers to begin heating operation. Note that if "Is the compressor at the minimum rotation speed" is NO, the rotation speed of the electric compressor is lowered by one step and the process returns to the beginning of the defrosting loop. Gas noise can be reduced by controlling the air conditioner using the microcomputer 8 in this way.

なお、本発明では、上記実施例の如く除霜の前=9− 8− 後に圧縮機モータ2を制御すればガス音を常時低減させ
ることができるが、必ずしも除霜の前後に制御する必要
はなく、除霜の前後どちらか一方だけでも従来に比して
ガス音を低減できることは勿論であり、このようにする
ことも有効である。
In addition, in the present invention, gas noise can be constantly reduced by controlling the compressor motor 2 before and after defrosting as in the above embodiment, but it is not always necessary to control before and after defrosting. It goes without saying that the gas noise can be reduced compared to the conventional method by only using either before or after defrosting, and it is also effective to do so.

以上の説明からも明らかな通り、本発明は、暖房運転か
ら除霜運転及び除rri運較から暖房運転への切換弁の
切換動作のうち少なくとも一方の切換動作を、電動圧縮
機の回転数をほぼ最小回転数に低下させて保持さぜた後
に行なうようにしたものであるから、本発明によると、
切換弁の切換時に発生するガス音を低減することができ
、就寝中であってもあま1)耳ぎわすな音を発生するこ
ともなくなるといった効果がある。
As is clear from the above description, the present invention allows at least one of the switching operations of the switching valve from heating operation to defrosting operation and from defrosting operation to heating operation to be performed by changing the rotational speed of the electric compressor. According to the present invention, the rotation speed is lowered to approximately the minimum rotation speed and held there.
It is possible to reduce the gas noise generated when switching the switching valve, and there is an effect that 1) there is no generation of annoying noise even when sleeping.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す制御回路図、第2図は
同じく四方弁の切換え状態を示す図、第3図は同じく制
御回路のタイムチャート、第4図は同じくそのフローチ
ャートである。 1:圧縮機、1a:西方弁、2:圧縮機モータ、310
− 二室外熱文換器、4:減圧器、5:室内熱文換器、6:
室外送風機、7:室内送風代、8:マイクロコンピュー
タ、14:インバータ部、16:運転/停止スイッチ、
]7:冷房・暖房切換スイッチ。 出 願 人  シャープ株式会社 代理人 中村恒久
Fig. 1 is a control circuit diagram showing an embodiment of the present invention, Fig. 2 is a diagram showing the switching state of the four-way valve, Fig. 3 is a time chart of the control circuit, and Fig. 4 is a flow chart thereof. . 1: Compressor, 1a: West valve, 2: Compressor motor, 310
- 2 outdoor heat exchangers, 4: pressure reducer, 5: indoor heat exchanger, 6:
Outdoor blower, 7: Indoor air blower, 8: Microcomputer, 14: Inverter section, 16: Run/stop switch,
]7: Cooling/heating selector switch. Applicant Sharp Corporation Agent Tsunehisa Nakamura

Claims (1)

【特許請求の範囲】[Claims] 電動圧縮機、冷媒流路切換弁、室外熱交換器、減圧器、
室内熱交換器を順次接続した冷媒圧縮サイクルを備える
と共に、その室外熱交換器及び室内熱交換器に送風機を
夫々備え、電動圧縮(幾への電源の周波数及び電圧を制
御するインバータ制御部を設けた空気調和機の制御回路
において、暖房運転から除霜運転及び除霜運転から暖房
運転への切換弁の切換動作のうち少なくとも一方の切換
動作を、電動圧縮機の回転数をほぼ最小回転数に低下さ
せて保持させた後に行なうようにしたことを特徴とする
空さ、調和機の制御回路。
Electric compressors, refrigerant flow switching valves, outdoor heat exchangers, pressure reducers,
It is equipped with a refrigerant compression cycle in which indoor heat exchangers are sequentially connected, and each of the outdoor heat exchanger and indoor heat exchanger is equipped with a blower, and an inverter control unit is installed to control the frequency and voltage of the power supply to the electric compressor. In the control circuit of the air conditioner, at least one of the switching operations of the switching valve from heating operation to defrosting operation and from defrosting operation to heating operation is performed so that the rotational speed of the electric compressor is set to approximately the minimum rotational speed. A control circuit for an air conditioner, characterized in that the operation is performed after being lowered and held.
JP56210796A 1981-12-29 1981-12-29 Control circuit of air conditioner Granted JPS58115238A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56210796A JPS58115238A (en) 1981-12-29 1981-12-29 Control circuit of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56210796A JPS58115238A (en) 1981-12-29 1981-12-29 Control circuit of air conditioner

Publications (2)

Publication Number Publication Date
JPS58115238A true JPS58115238A (en) 1983-07-08
JPS6130176B2 JPS6130176B2 (en) 1986-07-11

Family

ID=16595271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56210796A Granted JPS58115238A (en) 1981-12-29 1981-12-29 Control circuit of air conditioner

Country Status (1)

Country Link
JP (1) JPS58115238A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6080046A (en) * 1983-10-11 1985-05-07 Matsushita Refrig Co Air-conditioning device
JPS60202245A (en) * 1984-03-27 1985-10-12 Mitsubishi Electric Corp Controller of air conditioner
JP2011252639A (en) * 2010-06-01 2011-12-15 Panasonic Corp Air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6080046A (en) * 1983-10-11 1985-05-07 Matsushita Refrig Co Air-conditioning device
JPS60202245A (en) * 1984-03-27 1985-10-12 Mitsubishi Electric Corp Controller of air conditioner
JP2011252639A (en) * 2010-06-01 2011-12-15 Panasonic Corp Air conditioner

Also Published As

Publication number Publication date
JPS6130176B2 (en) 1986-07-11

Similar Documents

Publication Publication Date Title
JP2528601B2 (en) Air conditioner and air conditioning method
JP3795457B2 (en) Air conditioner and control method thereof
US5632155A (en) Air-conditioning apparatus with an indoor unit incorporating a compressor
US20060156748A1 (en) Method of preventing rapid on/off of compressor in unitary air conditioner
JPS58115238A (en) Control circuit of air conditioner
JPS58115235A (en) Control circuit of air conditioner
JP3249099B2 (en) Multi-room air conditioner having two or more bypass lines and method of controlling bypass amount thereof
JPS6122161A (en) Air conditioner
JPS59189243A (en) Defrosting control device of air conditioner
JPH07174441A (en) Defrost controller for air conditioner
JPH09257333A (en) Air-conditioner
JPH11237091A (en) Multi-room split type air conditioner
JP3858410B2 (en) Air conditioner
JPH1123038A (en) Air conditioner, and its controller
JPH08271100A (en) Air conditioner
JPH086951B2 (en) air conditioner
JPS6151220B2 (en)
JP2808468B2 (en) Control device for air conditioner
JPH03213937A (en) Controller of air-conditioner
JPS6144255A (en) Air conditioner
JPH0278845A (en) Freezing cycle device
JPH05240493A (en) Air conditioner
JP2930467B2 (en) Operation method of heat pump
JPH0533889Y2 (en)
JPH01256763A (en) Heat pump type air conditioner