JPH11237091A - Multi-room split type air conditioner - Google Patents

Multi-room split type air conditioner

Info

Publication number
JPH11237091A
JPH11237091A JP10039336A JP3933698A JPH11237091A JP H11237091 A JPH11237091 A JP H11237091A JP 10039336 A JP10039336 A JP 10039336A JP 3933698 A JP3933698 A JP 3933698A JP H11237091 A JPH11237091 A JP H11237091A
Authority
JP
Japan
Prior art keywords
inverter
output voltage
control
duty ratio
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10039336A
Other languages
Japanese (ja)
Inventor
Yasushi Sasaki
術 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10039336A priority Critical patent/JPH11237091A/en
Publication of JPH11237091A publication Critical patent/JPH11237091A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a multi-room split type air conditioner for operating with a high efficiency and a high power factor by suitably switching a PWM type and a PAM type. SOLUTION: A PWM type control for controlling an output frequency F of an inverter 51 according to a change of a duty ratio of an output voltage of the inverter 51 by confirming the duty ratio of the inverter 51 and fixing the output voltage of the inverter 15 to a set value until the ratio becomes a maximum (100%) is executed. After the ratio becomes the maximum, a PAM type control for controlling the frequency F of the inverter 51 according to the change of a level of the output voltage of the inverter 51 to the set value or more is executed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、圧縮機に駆動電
力を出力するインバータを備え、複数の被空調室の要求
能力に応じてインバータの出力周波数を制御する多室形
空気調和機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-room air conditioner having an inverter for outputting drive power to a compressor and controlling the output frequency of the inverter in accordance with the required capacity of a plurality of air-conditioned rooms.

【0002】[0002]

【従来の技術】圧縮機およびその圧縮機に駆動電力を供
給するインバータを備えた多室形空気調和機では、各室
内の空調負荷を検出し、これら空調負荷の総和に応じて
圧縮機の運転周波数つまりインバータの出力周波数を決
定している。
2. Description of the Related Art In a multi-room air conditioner provided with a compressor and an inverter for supplying drive power to the compressor, the air conditioning load in each room is detected, and the operation of the compressor is performed in accordance with the sum of these air conditioning loads. The frequency, that is, the output frequency of the inverter, is determined.

【0003】運転周波数を制御する手段として、インバ
ータの出力電圧のデューティ比を変化させることで運転
周波数を制御するPWM方式がよく知られている。
As a means for controlling the operation frequency, a PWM method for controlling the operation frequency by changing the duty ratio of the output voltage of the inverter is well known.

【0004】近年、DCモータを搭載した圧縮機では、
効率向上を目的に、上記のPWM方式にPAM方式を組
み合わせた駆動方法が採用されるようになった。PAM
方式とは、インバータの出力電圧のレベル変化によって
運転周波数を制御する方式である。
[0004] In recent years, in compressors equipped with a DC motor,
For the purpose of improving the efficiency, a driving method in which the PWM method is combined with the PAM method has been adopted. PAM
The method is a method of controlling the operation frequency by changing the level of the output voltage of the inverter.

【0005】たとえば、図5に示すように、運転周波数
Fが設定値Fa未満ではPWM方式の制御を実行し、F
a以上ではPAM方式の制御を実行する。
[0005] For example, as shown in FIG. 5, when the operating frequency F is lower than the set value Fa, the control of the PWM system is executed.
In the case of “a” or more, the control of the PAM system is executed.

【0006】[0006]

【発明が解決しようとする課題】上記のように、要求さ
れる運転周波数Fの値に応じてPWM方式とPAM方式
とを切換えるものでは、温度条件、据付け条件等の環境
により、PAM方式への切換が早すぎたり遅すぎたりす
る事態を生じ、反って効率、力率の悪化を招いてしまう
という問題がある。
As described above, switching between the PWM system and the PAM system in accordance with the required value of the operating frequency F requires a switch to the PAM system depending on the environment such as temperature conditions and installation conditions. Switching may occur too early or too late, causing a problem that the efficiency and the power factor deteriorate.

【0007】多室形空気調和機では、各室内の空調負荷
変動に伴う運転周波数変動が比較的多い。このような状
況の下では、PWM方式とPAM方式の切換が頻繁とな
り、上記のような不具合をますます生じることになる。
[0007] In a multi-room air conditioner, the operating frequency fluctuates relatively frequently due to the air-conditioning load fluctuation in each room. Under such circumstances, the switching between the PWM system and the PAM system becomes frequent, and the above-mentioned problems are more and more caused.

【0008】この発明は上記の事情を考慮したもので、
その目的とするところは、PWM方式とPAM方式の適
切な切換を可能として高効率、高力率の運転を行うこと
ができるすぐれた多室形空気調和機を提供することにあ
る。
[0008] The present invention has been made in view of the above circumstances,
An object of the present invention is to provide an excellent multi-room air conditioner capable of appropriately switching between a PWM system and a PAM system and performing high-efficiency, high-power-factor operation.

【0009】[0009]

【課題を解決するための手段】第1の発明(請求項1)
の多室形空気調和機は、インバータの出力電圧を設定値
に固定し、その出力電圧のデューティ比の変化によりイ
ンバータの出力周波数を制御する第1制御手段と、上記
インバータの出力電圧の上記設定値以上のレベル変化に
よりインバータの出力周波数を制御する第2制御手段
と、上記第1制御手段による上記インバータの出力電圧
のデューティ比が最大となるまでは第1制御手段の制御
を実行し、同デューティ比が最大となる以降は上記第2
制御手段の制御を実行する第3制御手段と、を備える。
Means for Solving the Problems First Invention (Claim 1)
The multi-room air conditioner comprises: first control means for fixing the output voltage of the inverter to a set value and controlling the output frequency of the inverter by changing the duty ratio of the output voltage; A second control means for controlling the output frequency of the inverter by a level change equal to or more than a value, and a control of the first control means until the duty ratio of the output voltage of the inverter by the first control means is maximized. After the duty ratio becomes maximum, the second
And third control means for executing control of the control means.

【0010】第2の発明(請求項2)の多室形空気調和
機は、インバータの出力電圧を設定値に固定し、その出
力電圧のデューティ比の変化によりインバータの出力周
波数を制御する第1制御手段と、上記インバータの出力
電圧の上記設定値以上のレベル変化によりインバータの
出力周波数を制御する第2制御手段と、上記インバータ
への入力電流が所定値に達するまでは第1制御手段の制
御を実行し、同入力電流が所定値に達した以降は上記第
2制御手段の制御を実行する第3制御手段と、を備えて
いる。
[0010] A multi-room air conditioner according to a second aspect of the present invention is characterized in that the output voltage of the inverter is fixed at a set value and the output frequency of the inverter is controlled by changing the duty ratio of the output voltage. Control means; second control means for controlling the output frequency of the inverter by a level change of the output voltage of the inverter equal to or greater than the set value; and control of the first control means until the input current to the inverter reaches a predetermined value. And a third control means for executing the control of the second control means after the input current reaches a predetermined value.

【0011】[0011]

【発明の実施の形態】以下、この発明の一実施例につい
て図面を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0012】図2において、Aは室外ユニット、B1,
B2,B3は室内ユニットで、これらユニットに次の冷
凍サイクルが構成される。
In FIG. 2, A is an outdoor unit, and B1,
B2 and B3 are indoor units, and these units constitute the next refrigeration cycle.

【0013】圧縮機1の吐出口に四方弁2を介して室外
熱交換器3が接続され、その室外熱交換器3に液側管W
が接続される。液側管Wは液側管W1,W2,W3に分
岐され、その各液側管に室内熱交換器12,22,32
が接続される。
An outdoor heat exchanger 3 is connected to a discharge port of the compressor 1 through a four-way valve 2, and the outdoor heat exchanger 3 is connected to a liquid side pipe W.
Is connected. The liquid side pipe W is branched into liquid side pipes W1, W2, W3, and the liquid side pipes are connected to the indoor heat exchangers 12, 22, 32, respectively.
Is connected.

【0014】液側支管W1,W2,W3に流量調整弁と
して電動膨張弁11,21,31が設けられる。これら
電動膨張弁は、供給される駆動パルスの数に応じて開度
が変化するパルスモータバルブ(PMV)である。
The liquid-side branch pipes W1, W2 and W3 are provided with electric expansion valves 11, 21 and 31 as flow control valves. These electric expansion valves are pulse motor valves (PMV) whose opening changes in accordance with the number of supplied drive pulses.

【0015】室内熱交換器12,22,32にガス側管
G1,G2,G3が接続され、そのガス側支管G1,G
2,G3に冷媒温度センサ16,25,35が取付けら
れる。各ガス側管はガス側管Gに集結され、そのガス側
管Gは上記四方弁2を介して圧縮機1の吸込口に接続さ
れる。
Gas side pipes G1, G2, and G3 are connected to the indoor heat exchangers 12, 22, and 32, and the gas side branch pipes G1, G
Refrigerant temperature sensors 16, 25, 35 are attached to 2, G3. Each gas side pipe is connected to a gas side pipe G, and the gas side pipe G is connected to a suction port of the compressor 1 via the four-way valve 2.

【0016】室外熱交換器3の近傍に室外ファン4が設
けられ、室外熱交換器3に熱交換器温度センサ5が取付
けられる。室内熱交換器12,22,32の近傍に室内
ファン13,23,33が設けられ、室内熱交換器1
2,22,32に熱交換器温度センサ14,24,34
がそれぞれ取付けられる。
An outdoor fan 4 is provided near the outdoor heat exchanger 3, and a heat exchanger temperature sensor 5 is attached to the outdoor heat exchanger 3. Indoor fans 13, 23, and 33 are provided near the indoor heat exchangers 12, 22, and 32, respectively.
2, 22, 32, heat exchanger temperature sensors 14, 24, 34
Are attached respectively.

【0017】制御回路を図1に示す。FIG. 1 shows a control circuit.

【0018】商用交流電源40に、室外ユニットAの室
外制御部50が接続される。この室外制御部50に、四
方弁2、室外ファンモータ4M、熱交換器温度センサ
5、電動膨張弁11,21,31、冷媒温度センサ1
6,26,36、インバータ回路51、電流センサ52
が接続される。
The outdoor control unit 50 of the outdoor unit A is connected to the commercial AC power supply 40. The outdoor control unit 50 includes a four-way valve 2, an outdoor fan motor 4M, a heat exchanger temperature sensor 5, electric expansion valves 11, 21, 31, and a refrigerant temperature sensor 1.
6, 26, 36, inverter circuit 51, current sensor 52
Is connected.

【0019】インバータ回路51は、電源40の電圧を
整流し、それを室外制御部50の指令に応じた周波数の
電圧に変換し、出力する。この出力は圧縮機モータ1M
に駆動電力として供給される。電源40とインバータ回
路51との接続ラインに上記電流センサが取付けられ
る。
The inverter circuit 51 rectifies the voltage of the power supply 40, converts the rectified voltage into a voltage having a frequency corresponding to a command from the outdoor control unit 50, and outputs the voltage. This output is the compressor motor 1M
Is supplied as driving power. The current sensor is attached to a connection line between the power supply 40 and the inverter circuit 51.

【0020】室内ユニットB1,B2,B3はそれぞれ
室内制御部60を備える。この室内制御部60に、室内
温度センサ15(25,35)、熱交換器温度センサ1
4(24,34)、室内ファンモータ13M(23M,
32M)、リモートコントロール装置(以下、リモコン
と略称する)61が接続される。
Each of the indoor units B1, B2 and B3 has an indoor control unit 60. The indoor controller 60 includes an indoor temperature sensor 15 (25, 35), a heat exchanger temperature sensor 1
4 (24, 34), indoor fan motor 13M (23M,
32M), and a remote control device (hereinafter, simply referred to as a remote controller) 61 is connected.

【0021】これら室内制御部60と上記室外制御部5
0とが、それぞれ電源ラインACLおよびデータ転送用
のシリアル信号ラインSLにより接続される。
The indoor control unit 60 and the outdoor control unit 5
0 are connected by a power supply line ACL and a data transfer serial signal line SL, respectively.

【0022】各室内制御部60は、主要な機能手段とし
て次の[1]〜[3]を有する。
Each of the indoor control units 60 has the following main functions [1] to [3].

【0023】[1]リモコン61の操作による運転条件
(設定温度Tsを含む)、熱交換器温度センサ14,2
4,34の検知温度などを電源電圧同期のシリアル信号
により室外ユニットAに知らせる手段。
[1] Operating conditions (including set temperature Ts) by operation of remote controller 61, heat exchanger temperature sensors 14 and 2
Means for informing the outdoor unit A of the detected temperatures 4 and 34 by a serial signal synchronized with the power supply voltage.

【0024】[2]リモコン61で設定される設定温度
Tsと室内温度センサ15(25,35)の検知温度T
aとの差ΔT(=Ts−Ta)を空調負荷として検出
し、その空調負荷ΔTに対応する要求能力(要求出力周
波数値)をシリアル信号により室外ユニットAに知らせ
る手段。
[2] Set temperature Ts set by remote controller 61 and detected temperature T of indoor temperature sensor 15 (25, 35)
a means for detecting a difference ΔT from T.a (= Ts−Ta) as an air conditioning load and informing the outdoor unit A of a required capacity (required output frequency value) corresponding to the air conditioning load ΔT by a serial signal.

【0025】[3]熱交換器温度センサ14(24,3
4)の検知温度Tiをシリアル信号により室外ユニット
Aに知らせる手段。
[3] Heat exchanger temperature sensor 14 (24, 3
4) Means for notifying the outdoor unit A of the detected temperature Ti by a serial signal.

【0026】室外制御部50は、主要な機能手段として
次の[1]〜[7]を有する。
The outdoor controller 50 has the following [1] to [7] as main functional means.

【0027】[1]各室内ユニットからの冷房運転モー
ド指令に基づき、圧縮機1から吐出される冷媒を四方弁
2、室外熱交換器3、電動膨張弁11,21,31、室
内熱交換器12,22,32、四方弁2に通して圧縮機
1に戻し、冷房運転を実行する手段。
[1] Based on the cooling operation mode command from each indoor unit, the refrigerant discharged from the compressor 1 is supplied to the four-way valve 2, the outdoor heat exchanger 3, the electric expansion valves 11, 21, 31, and the indoor heat exchanger. 12, 22, 32, means for returning to the compressor 1 through the four-way valve 2 and performing a cooling operation.

【0028】[2]各室内ユニットからの暖房運転モー
ド指令に基づき、四方弁2を切換え、圧縮機1から吐出
される冷媒を四方弁2、室内熱交換器12,22,3
2、電動膨張弁11,21,31、室外熱交換器3、四
方弁2に通して圧縮機1に戻し、暖房運転を実行する手
段。
[2] The four-way valve 2 is switched based on a heating operation mode command from each indoor unit, and the refrigerant discharged from the compressor 1 is supplied to the four-way valve 2 and the indoor heat exchangers 12, 22, 3
2. Means for returning to the compressor 1 through the electric expansion valves 11, 21, 31, the outdoor heat exchanger 3, and the four-way valve 2, and performing a heating operation.

【0029】[3]冷房運転時、冷媒温度センサ16,
26,36の検知温度Tgと室内ユニットから知らされ
る熱交換器温度センサ14,24,34の検知温度Ti
との差(=Tg−Ti)を室内熱交換器(蒸発器)1
2,22,32での冷媒の過熱度SH(スーパヒート
量)としてそれぞれ検出する過熱度検出手段。
[3] During the cooling operation, the refrigerant temperature sensor 16
26, 36 and the detected temperatures Ti of the heat exchanger temperature sensors 14, 24, 34 notified from the indoor unit.
Difference (= Tg-Ti) from the indoor heat exchanger (evaporator) 1
Superheat degree detecting means for detecting the degree of superheat SH (superheat amount) of the refrigerant at 2, 22, and 32, respectively.

【0030】[4]過熱度検出手段で検出される各過熱
度SHが設定値SHsになるよう電動膨張弁11,2
1,31の開度Qをそれぞれ制御する手段。
[4] Electric expansion valves 11 and 12 so that each superheat degree SH detected by the superheat degree detection means becomes a set value SHs.
Means for controlling the opening degrees Q of the first and the 31st, respectively.

【0031】[5]インバータ回路51の出力電圧を最
適値であるところの設定値に固定し、その出力電圧のデ
ューティ比の変化によりインバータ回路51の出力周波
数Fを制御するPWM方式の第1制御手段。
[5] A first PWM type control in which the output voltage of the inverter circuit 51 is fixed at a set value which is an optimum value, and the output frequency F of the inverter circuit 51 is controlled by changing the duty ratio of the output voltage. means.

【0032】[6]インバータ回路51の出力電圧の上
記設定値以上のレベル変化によりインバータ回路51の
出力周波数Fを制御するPAM方式の第2制御手段。
[6] Second control means of the PAM system for controlling the output frequency F of the inverter circuit 51 by a level change of the output voltage of the inverter circuit 51 above the set value.

【0033】[7]第1制御手段によるインバータ回路
51の出力電圧のデューティ比が最大(100%)とな
るまでは第1制御手段の制御を実行し、同デューティ比
が最大となる以降は第2制御手段の制御を実行する第3
制御手段。
[7] The control of the first control means is executed until the duty ratio of the output voltage of the inverter circuit 51 by the first control means reaches the maximum (100%). (2) Third control for executing the control of the control means
Control means.

【0034】つぎに、上記の構成の作用を図3のフロー
チャートを参照して説明する。
Next, the operation of the above configuration will be described with reference to the flowchart of FIG.

【0035】各室内の要求能力に応じてインバータ回路
51の出力周波数(以下、運転周波数と称する)Fを演
算して求め、その運転周波数Fを得るべくインバータ回
路51を駆動する。
The output frequency (hereinafter referred to as the operating frequency) F of the inverter circuit 51 is calculated and obtained according to the required capacity in each room, and the inverter circuit 51 is driven to obtain the operating frequency F.

【0036】この駆動に祭し、インバータ回路51の出
力電圧のデューティ比を確認し、デューティ比が最大
(100%)となるまでは、インバータ回路51の出力
電圧を設定値に固定し、その出力電圧のデューティ比の
変化によりインバータ回路51の出力周波数Fを制御す
るPWM方式の制御を実行する。
In consideration of this driving, the duty ratio of the output voltage of the inverter circuit 51 is checked, and the output voltage of the inverter circuit 51 is fixed at a set value until the duty ratio reaches the maximum (100%). The control of the PWM method for controlling the output frequency F of the inverter circuit 51 by the change of the duty ratio of the voltage is executed.

【0037】デューティ比が最大となる以降は、インバ
ータ回路51の出力電圧の上記設定値以上のレベル変化
によりインバータ回路51の出力周波数Fを制御するP
AM方式の制御を実行する。
After the duty ratio becomes maximum, the output voltage F of the inverter circuit 51 is controlled by the level change of the output voltage of the inverter circuit 51 above the set value.
The control of the AM system is executed.

【0038】このように、インバータ回路51の出力電
圧を最適値であるところの設定値に定めることにより、
効率、力率が最良のポイントでPWM方式とPAM方式
の切換が可能である。
As described above, by setting the output voltage of the inverter circuit 51 to the set value which is the optimum value,
Switching between the PWM system and the PAM system is possible at the point where the efficiency and the power factor are the best.

【0039】デューティ比はもともとPWM方式の制御
に不可欠のものであるから、特別にセンサを設ける必要
もなく、コストの上昇を回避することができる。
Since the duty ratio is essentially indispensable for the control of the PWM system, it is not necessary to provide a special sensor, and an increase in cost can be avoided.

【0040】なお、上記実施例では、デューティ比を基
準にしてPWM方式とPAM方式の切換を行うようにし
たが、過電流保護などに用いる電流センサ52があるこ
とに着目し、電流センサ52の検知電流(インバータ回
路51への入力電流)Iが所定値Iaに達するまではP
WM方式の制御を実行し、検知電流Iが所定値Iaに達
した以降はPAM方式の制御を実行するようにしてもよ
い。
In the above embodiment, the switching between the PWM system and the PAM system is performed based on the duty ratio. However, attention is paid to the fact that there is a current sensor 52 used for overcurrent protection and the like. Until the detection current (input current to the inverter circuit 51) I reaches the predetermined value Ia, P
The control of the WM method may be executed, and the control of the PAM method may be executed after the detection current I reaches the predetermined value Ia.

【0041】この場合も、電流センサ52がもともと設
けている部品であるから、コストの上昇を回避すること
ができる。
Also in this case, since the current sensor 52 is a component originally provided, an increase in cost can be avoided.

【0042】また、上記実施例では、室内ユニットが3
台の場合を例に説明したが、室内ユニットが2台あるい
は4台以上の場合にも同様に実施可能である。
In the above embodiment, the indoor unit has three
Although the case of a single unit has been described as an example, the present invention can be similarly implemented when the number of indoor units is two or four or more.

【0043】[0043]

【発明の効果】以上述べたようにこの発明によれば、イ
ンバータの出力電圧を設定値に固定し、その出力電圧の
デューティ比の変化によりインバータの出力周波数を制
御する第1制御手段と、インバータの出力電圧の上記設
定値以上のレベル変化によりインバータの出力周波数を
制御する第2制御手段と、第1制御手段によるインバー
タの出力電圧のデューティ比が最大となるまでは第1制
御手段の制御を実行し、同デューティ比が最大となる以
降は第2制御手段の制御を実行する第3制御手段とを備
えたので、PWM方式とPAM方式の適切な切換を可能
として高効率、高力率の運転を行うことができるすぐれ
た多室形空気調和機を提供できる。
As described above, according to the present invention, the first control means for fixing the output voltage of the inverter to the set value and controlling the output frequency of the inverter by changing the duty ratio of the output voltage, A second control means for controlling the output frequency of the inverter by a level change of the output voltage of the inverter not less than the set value, and a control of the first control means until the duty ratio of the output voltage of the inverter by the first control means becomes maximum. And the third control means for executing the control of the second control means after the duty ratio is maximized. Therefore, it is possible to appropriately switch between the PWM method and the PAM method to achieve high efficiency and high power factor. An excellent multi-room air conditioner that can be operated can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施例の制御回路のブロック図。FIG. 1 is a block diagram of a control circuit according to an embodiment of the present invention.

【図2】同実施例の冷凍サイクルの構成図。FIG. 2 is a configuration diagram of a refrigeration cycle of the embodiment.

【図3】同実施例の作用を説明するためのフローチャー
ト。
FIG. 3 is a flowchart for explaining the operation of the embodiment.

【図4】同実施例の変形例の作用を説明するためのフロ
ーチャート。
FIG. 4 is a flowchart for explaining the operation of a modification of the embodiment.

【図5】従来の駆動方式を説明するためのフローチャー
ト。
FIG. 5 is a flowchart for explaining a conventional driving method.

【符号の説明】[Explanation of symbols]

A…室外ユニット、B1,B2,B3…室内ユニット、
1…圧縮機、2…四方弁、3…室外熱交換器、11,2
1,31…電動膨張弁(流量調整弁)、12,22,3
2…室内熱交換器、14,24,34…熱交換器温度セ
ンサ、15,25,35…室内温度センサ、16,2
6,36…冷媒温度センサ、50…室外制御部、51…
インバータ回路、52…電流センサ、60…室内制御
部。
A: outdoor unit, B1, B2, B3: indoor unit,
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... 4-way valve, 3 ... Outdoor heat exchanger, 11 and 12
1, 31 ... electric expansion valve (flow regulating valve), 12, 22, 3
2: indoor heat exchanger, 14, 24, 34: heat exchanger temperature sensor, 15, 25, 35: indoor temperature sensor, 16, 2
6, 36 ... refrigerant temperature sensor, 50 ... outdoor control unit, 51 ...
Inverter circuit, 52: current sensor, 60: indoor control unit.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数の室内ユニットを備え、かつ圧縮機
への駆動電力を出力するインバータを備えた多室形空気
調和機において、 前記インバータの出力電圧を設定値に固定し、その出力
電圧のデューティ比の変化によりインバータの出力周波
数を制御する第1制御手段と、 前記インバータの出力電圧の前記設定値以上のレベル変
化によりインバータの出力周波数を制御する第2制御手
段と、 前記第1制御手段による前記インバータの出力電圧のデ
ューティ比が最大となるまでは第1制御手段の制御を実
行し、同デューティ比が最大となる以降は前記第2制御
手段の制御を実行する第3制御手段と、 を具備したことを特徴とする特徴とする多室形空気調和
機。
1. A multi-room air conditioner including a plurality of indoor units and an inverter for outputting drive power to a compressor, wherein an output voltage of the inverter is fixed at a set value, and an output voltage of the First control means for controlling the output frequency of the inverter by changing the duty ratio; second control means for controlling the output frequency of the inverter by changing the level of the output voltage of the inverter equal to or higher than the set value; and the first control means A third control unit that executes control of the first control unit until the duty ratio of the output voltage of the inverter becomes maximum, and executes control of the second control unit after the duty ratio becomes maximum. A multi-room air conditioner characterized by comprising:
【請求項2】 複数の室内ユニットを備え、かつ圧縮機
への駆動電力を出力するインバータを備えた多室形空気
調和機において、 前記インバータの出力電圧を設定値に固定し、その出力
電圧のデューティ比の変化によりインバータの出力周波
数を制御する第1制御手段と、 前記インバータの出力電圧の前記設定値以上のレベル変
化によりインバータの出力周波数を制御する第2制御手
段と、 前記インバータへの入力電流が所定値に達するまでは第
1制御手段の制御を実行し、同入力電流が所定値に達し
た以降は前記第2制御手段の制御を実行する第3制御手
段と、 を具備したことを特徴とする特徴とする多室形空気調和
機。
2. A multi-room air conditioner comprising a plurality of indoor units and an inverter for outputting drive power to a compressor, wherein the output voltage of the inverter is fixed at a set value, and the output voltage of First control means for controlling the output frequency of the inverter by changing the duty ratio; second control means for controlling the output frequency of the inverter by changing the level of the output voltage of the inverter equal to or higher than the set value; input to the inverter And a third control unit that executes control of the first control unit until the current reaches a predetermined value, and executes control of the second control unit after the input current reaches a predetermined value. Features A multi-room air conditioner.
JP10039336A 1998-02-20 1998-02-20 Multi-room split type air conditioner Pending JPH11237091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10039336A JPH11237091A (en) 1998-02-20 1998-02-20 Multi-room split type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10039336A JPH11237091A (en) 1998-02-20 1998-02-20 Multi-room split type air conditioner

Publications (1)

Publication Number Publication Date
JPH11237091A true JPH11237091A (en) 1999-08-31

Family

ID=12550260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10039336A Pending JPH11237091A (en) 1998-02-20 1998-02-20 Multi-room split type air conditioner

Country Status (1)

Country Link
JP (1) JPH11237091A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010038717A (en) * 1999-10-27 2001-05-15 구자홍 System of power factor compensation for multi-air conditioner
KR100395918B1 (en) * 2000-06-07 2003-08-27 삼성전자주식회사 Air conditioner control system and control method thereof
WO2009075271A1 (en) * 2007-12-12 2009-06-18 Max Co., Ltd. Air compressor and motor control device
JP2011247519A (en) * 2010-05-28 2011-12-08 Ngk Spark Plug Co Ltd Control device, fuel cell system, control method, and method for control of fuel cell system
CN107062554A (en) * 2017-05-11 2017-08-18 广东志高暖通设备股份有限公司 The compressor control method and its system of a kind of module water dispenser
CN107477778A (en) * 2017-08-11 2017-12-15 宁波奥克斯电气股份有限公司 Air-conditioning heating lacks fluorine protection and prevents the control method of high frequent overload protection

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010038717A (en) * 1999-10-27 2001-05-15 구자홍 System of power factor compensation for multi-air conditioner
KR100395918B1 (en) * 2000-06-07 2003-08-27 삼성전자주식회사 Air conditioner control system and control method thereof
WO2009075271A1 (en) * 2007-12-12 2009-06-18 Max Co., Ltd. Air compressor and motor control device
JP2011247519A (en) * 2010-05-28 2011-12-08 Ngk Spark Plug Co Ltd Control device, fuel cell system, control method, and method for control of fuel cell system
CN107062554A (en) * 2017-05-11 2017-08-18 广东志高暖通设备股份有限公司 The compressor control method and its system of a kind of module water dispenser
CN107477778A (en) * 2017-08-11 2017-12-15 宁波奥克斯电气股份有限公司 Air-conditioning heating lacks fluorine protection and prevents the control method of high frequent overload protection
CN107477778B (en) * 2017-08-11 2019-10-18 宁波奥克斯电气股份有限公司 Air-conditioning heating lacks fluorine protection and prevents the control method of high frequent overload protection

Similar Documents

Publication Publication Date Title
US9074787B2 (en) Operation controller for compressor and air conditioner having the same
US4720982A (en) Multi-type air conditioner with optimum control for each load
JP6249932B2 (en) Air conditioning system
JP2909187B2 (en) Air conditioner
JP3475014B2 (en) Air conditioner
JPH06201176A (en) Air-conditioner
JPH11237091A (en) Multi-room split type air conditioner
JP3163133B2 (en) Air conditioner
JPH11237097A (en) Multiroom air conditioner
JP3377632B2 (en) Air conditioner
JP3267597B2 (en) Heating overload operation control method for multi-air conditioner combined with cooling and heating
JP3526393B2 (en) Air conditioner
JPH0626689A (en) Multiple type air conditioner
JP3181111B2 (en) Air conditioner
JP2960237B2 (en) Air conditioner
JP3181117B2 (en) Air conditioner
JPH024152A (en) Air conditioner
JP3454697B2 (en) Air conditioner
JP2001099519A (en) Air conditioner
JPS61272547A (en) Air conditioner
US11644213B2 (en) Systems and methods to operate HVAC system in variable operating mode
EP4390260A1 (en) Air conditioning device
JPH05240493A (en) Air conditioner
JP2930467B2 (en) Operation method of heat pump
JPH10141788A (en) Multi-room split type air conditioner