JPS5811489B2 - Manufacturing method of austenitic stainless steel strip with small in-plane anisotropy of plastic strain ratio - Google Patents

Manufacturing method of austenitic stainless steel strip with small in-plane anisotropy of plastic strain ratio

Info

Publication number
JPS5811489B2
JPS5811489B2 JP2120476A JP2120476A JPS5811489B2 JP S5811489 B2 JPS5811489 B2 JP S5811489B2 JP 2120476 A JP2120476 A JP 2120476A JP 2120476 A JP2120476 A JP 2120476A JP S5811489 B2 JPS5811489 B2 JP S5811489B2
Authority
JP
Japan
Prior art keywords
rolled
stainless steel
austenitic stainless
rolling
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2120476A
Other languages
Japanese (ja)
Other versions
JPS52104416A (en
Inventor
岡裕
嶋中浩
木下昇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2120476A priority Critical patent/JPS5811489B2/en
Publication of JPS52104416A publication Critical patent/JPS52104416A/en
Publication of JPS5811489B2 publication Critical patent/JPS5811489B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 本発明は、オーステナイト系ステンレス鋼帯板の塑性異
方性を減少させて、深絞り加工品のイヤリング(ear
ing)発生を抑制し、材料歩留と多段深絞り性とを向
上させるための、塑性歪比の面内異方性の小さいオース
テナイト系ステンレス鋼帯板の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention reduces the plastic anisotropy of an austenitic stainless steel strip to produce deep drawn products such as earrings.
The present invention relates to a method for manufacturing an austenitic stainless steel strip with small in-plane anisotropy of plastic strain ratio, in order to suppress the occurrence of ing) and improve material yield and multi-stage deep drawability.

オーステナイト系ステンレス鋼板は成形性および耐食性
がすぐれていることから、広範な用途に用いられている
が、その薄鋼板にあってはプレス加工で器物に製品化さ
れる場合が極めて多く、しかも多段のプレス加工を行な
い、絞り比を大きくする事例がしばしばみられる。
Austenitic stainless steel sheets have excellent formability and corrosion resistance, so they are used in a wide range of applications, but the thin steel sheets are very often manufactured into products by press working, and moreover, they are manufactured in multiple stages. There are often cases where pressing is performed to increase the drawing ratio.

深絞り加工で成形する場合には、材料の塑性歪比(r値
)の面内異方性が大きいと、プレス加工時に生じるイヤ
リングが太き(、材料歩留りを低下させるほか、多段絞
り性能を低下させることとなる。
When forming by deep drawing, if the in-plane anisotropy of the plastic strain ratio (r value) of the material is large, the earrings produced during press forming will be thick (this will reduce the material yield and reduce the multi-stage drawing performance). This will result in a decrease in

例えば参考図は、成分組成C0,06%、Si0.68
%、Mn1.48%、Cr18.23%、Ni8.90
%を含有する鋼(鋼種5US304)のイヤリングの大
きい鋼板と同一成分組成のイヤリングの小さい鋼板とを
、最終絞り比が共に2.7になるよう3段の円筒深絞り
したときの絞り加工品の外観を示す写真であり、写真中
左の加工品は従来方法により製造された鋼板から製作さ
れたもので、写真中布の加工品は本発明方法により製造
された鋼板から製作されたものであるが、イヤリングの
大きい材料を絞った場合には、3段目の絞りで、絞り工
程中下部が角筒化するため、絞り込み抵抗が大ぎくなっ
てポンチ1部直上で破断(α破断)しているのに対し、
イヤリングの小さい材料では角筒化が軽度で絞り込まれ
ていることが判る。
For example, the reference diagram shows the component composition C0.06%, Si0.68
%, Mn1.48%, Cr18.23%, Ni8.90
% (steel type 5US304) and a steel plate with the same composition but smaller earrings are deep-drawn in three stages so that the final drawing ratio is 2.7. This is a photograph showing the appearance. The processed product on the left in the photo was manufactured from a steel plate manufactured by a conventional method, and the processed product in the cloth in the photo was manufactured from a steel plate manufactured by the method of the present invention. However, when squeezing a large material for earrings, the lower part becomes a square tube during the drawing process in the third stage, so the squeezing resistance becomes so great that it breaks just above the first part of the punch (α break). While there are
It can be seen that the material of the small earrings has a slight prismatic shape and is narrowed down.

このように、オーステナイト系ステンレス鋼板にあって
は、とくに多段絞り時の深絞り性能は、同鋼板の歪硬化
指数(n値)および塑性歪比(r値)のほか、イヤリン
グの程度の指数となるr値の面内異方性(Δr)の大小
にも左右されることがわかる。
In this way, for austenitic stainless steel sheets, the deep drawing performance, especially during multistage drawing, is determined not only by the strain hardening index (n value) and plastic strain ratio (r value) of the steel sheet, but also by the index of the degree of earring. It can be seen that the r value also depends on the magnitude of the in-plane anisotropy (Δr).

さて、近時、製造コスト低減のため、従来では2回冷間
圧延法(以下2回圧延法と記す)、すなわち熱延材料を
1次冷間圧延し、ついで軟化焼鈍を施し再び冷間圧延(
2次圧延)して製品厚にする方法によって製造していた
板厚の鋼板を、1回冷間圧延法(以下1回圧延法と記す
)すなわち1次冷間圧延のみで製品厚に圧延加工する方
式で製造する傾向が強い。
Nowadays, in order to reduce manufacturing costs, conventionally, the two-time cold rolling method (hereinafter referred to as the two-time rolling method) is used, in which the hot-rolled material is first cold-rolled, then softened and annealed, and then cold-rolled again. (
A steel plate with a thickness that was manufactured by a method (secondary rolling) to obtain a product thickness is rolled to a product thickness by one-time cold rolling method (hereinafter referred to as one-time rolling method), i.e., only by first cold rolling. There is a strong tendency for manufacturing to be carried out using this method.

1回圧延法の場合には、仕上焼鈍前の圧延での圧延率が
2回圧延法による場合よりも必然的に大きくなるので、
従来の製造条件下で作られた1回圧延法鋼板では、機械
的性質の方向性が2回圧延法で作った鋼板より著しく大
きくなり、Δrも同じく1回圧延法の場合に著しく大き
い。
In the case of the single-rolling method, the rolling ratio in rolling before final annealing is inevitably larger than in the case of the double-rolling method.
In a single-rolling steel plate made under conventional manufacturing conditions, the directionality of mechanical properties is significantly greater than in a double-rolling steel plate, and Δr is also significantly larger in the single-rolling process.

この状況は第1図のごとくである。そのため、1回圧延
法によった鋼板は上述のごとく、プレス加工時の材料歩
留りおよび多段深絞り性能の点で、2回圧延法によった
鋼板にくらべ劣っている。
This situation is shown in Figure 1. Therefore, as mentioned above, the steel plate produced by the single rolling process is inferior to the steel plate produced by the double rolling process in terms of material yield during press working and multi-stage deep drawing performance.

本発明の目的は、1回圧延法で製造したオーステナイト
系ステンレス冷延焼鈍板の塑性歪比の面内異方性(Δr
)を2回圧延法製品のそれにほぼ匹敵しうる程度に減少
させ、Δrが大きいことに起因する鋼板の実用上の欠点
を除去した1回圧延法を確立することにある。
The purpose of the present invention is to improve the in-plane anisotropy (Δr
) to a degree comparable to that of double-rolled products, and to establish a single-rolling method that eliminates the practical drawbacks of steel sheets caused by large Δr.

本発明は、かかる目的を達成するため熱延鋼板の熱処理
に際して、従来オーステナイト系ステンレス鋼に対して
採用されている加熱温度より約100℃高い1150〜
1250℃で焼鈍を施し以降の圧延加工は従来から通常
おこなわれている方法で圧延するが、より好ましくば、
このような高温で焼鈍した熱延材料を圧延加工時に歪誘
起変態が起らないように、鋼の組成に応じて35〜25
0℃で圧延することに関するものである。
In order to achieve the above object, the present invention heat-treats a hot-rolled steel sheet at a heating temperature of 1150-100°C, which is approximately 100°C higher than the heating temperature conventionally adopted for austenitic stainless steel.
The rolling process after annealing at 1250°C is performed by a conventional method, but more preferably,
In order to prevent strain-induced transformation during rolling of hot-rolled materials annealed at such high temperatures, the temperature is reduced to 35 to 25 depending on the composition of the steel.
This relates to rolling at 0°C.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

面心立方晶を有する鉄基合金の熱延材料をマルテンサイ
ト変態(歪誘起変態)を開始する温度以上で圧延加工を
施すことにより、焼鈍後の材料に機械的な性質の等方性
が得られることが報告されている。
By rolling a hot-rolled iron-based alloy material with face-centered cubic crystals at a temperature higher than the temperature at which martensitic transformation (strain-induced transformation) begins, the material after annealing has isotropic mechanical properties. It has been reported that

しかし乍ら本発明者の研究によると、面心立方晶を有す
るオーステナイト系ステンレス鋼熱延材料をマルテンサ
イト変態が開始する温度以上で圧延加工を施しても、焼
鈍後の材料にかならずしも等方的な機械的性質が得られ
ず、熱延材料に施す熱処理の条件如何によっては、むし
ろマルテンサイト変態を開始する温度あるいはそれ以下
で圧延加工を施した場合より非等方的な機械的性質を呈
することが判った。
However, according to the research of the present inventor, even if hot-rolled austenitic stainless steel material having face-centered cubic crystals is rolled at a temperature higher than the temperature at which martensitic transformation begins, the material after annealing does not always have isotropic properties. Depending on the heat treatment conditions applied to the hot-rolled material, it may exhibit anisotropic mechanical properties compared to when rolling is performed at or below the temperature at which martensitic transformation begins. It turned out that.

すなわち、熱延鋼帯板を1回の冷間圧延で製品厚に加工
する場合に、これら熱延銅帯板に熱処理を施さずに冷間
圧延し、しかもその圧延に際し、歪誘起変態が起らない
ように圧延された。
In other words, when hot-rolled steel strips are processed into product thickness by one cold rolling, these hot-rolled copper strips are cold-rolled without being heat-treated, and strain-induced transformation occurs during the rolling. Rolled so that it doesn't.

鋼帯板は、歪誘起変態が起こるように圧延された鋼帯板
にくらべ、焼鈍後の塑性歪比の面内異方性がむしろ大き
くなること、さらに、熱延鋼帯板に熱処理を施してから
、冷間圧延する場合には、その熱処理温度が1150〜
1250℃であることが有効であり、このような温度域
で熱処理された熱延銅帯板では、冷間圧延時に歪誘起変
態を起こしても冷延焼鈍板のΔrは著しく小さいものと
なることまたこのような高い温度(1150〜1250
℃で焼鈍した熱延銅帯板は、歪誘起変態を起こさないよ
うに冷間圧延すると、冷延焼鈍板のΔrをより一層小さ
くしうろことが特徴的である。
The in-plane anisotropy of the plastic strain ratio after annealing is rather large in steel strips compared to steel strips rolled in such a way that strain-induced transformation occurs; After that, when cold rolling is performed, the heat treatment temperature is 1150~1150℃.
A temperature of 1250°C is effective, and in a hot-rolled copper strip heat-treated in such a temperature range, even if strain-induced transformation occurs during cold rolling, the Δr of the cold-rolled annealed plate will be significantly small. Also, such a high temperature (1150-1250
A hot-rolled copper strip annealed at .degree. C. is characterized in that when it is cold-rolled so as not to cause strain-induced transformation, the Δr of the cold-rolled annealed sheet becomes even smaller.

第1表および第2図は上述の状況を示したものであり、
同表および同図から、仕上焼鈍後の材料の塑性異方性の
板面内に於ける等方性を得るためには、熱延鋼帯板の熱
処理条件と圧延加工条件を適切に組合せるのが肝要であ
ることが明らかである。
Table 1 and Figure 2 show the above situation,
From the same table and figure, in order to obtain in-plane isotropy of the plastic anisotropy of the material after finish annealing, it is necessary to appropriately combine the heat treatment conditions and rolling processing conditions of the hot rolled steel strip. It is clear that this is essential.

そして、塑性歪比の板面内に於ける等方性を得るための
熱延鋼帯板の熱処理温度としては、オーステナイト系ス
テンレス鋼熱延材料に通常適用されている温度よりも高
い1150〜1250℃でなげればならない。
The heat treatment temperature for the hot-rolled steel strip in order to obtain isotropy of the plastic strain ratio in the plate plane is 1150-1250, which is higher than the temperature normally applied to austenitic stainless steel hot-rolled materials. It must be thrown at ℃.

か(のごと(、熱延鋼帯板の冷間圧延前に於げる熱処理
の有無、熱処理を施す場合にはその熱処理温度が、1回
冷間圧延で製品厚に仕上げた冷延焼鈍板のΔrに著しい
影響をおよぼし、これらの条件の規制なくして、′熱延
材料のMd点以上での冷間圧延“が直ちに冷延焼鈍材料
の機械的性質および塑性歪比の面内異方性に等方性を与
えるものでないことが明らかである3本発明において、
熱延鋼板の熱処理温度を1150〜1250℃の範囲内
に限定する理由は、1150℃より低い従来の熱処理温
度で熱処理すると、圧延後仕上焼鈍した材料のΔrが2
回圧延法によって製造した鋼板はどには小さくならず、
一方1250℃より高温で熱処理すると加熱時の鋼板表
面の酸化が著しく、美麗な表面を持つ冷延焼鈍鋼板に仕
上げるのに支障をきたし、さらに熱延鋼板の結晶粒が粗
大化するため、歪誘起変態を開始する温度以上で圧延加
工された材料では、冷延焼鈍板の結晶粒も大きくなり、
プレス成形品に肌荒れをおこすため、熱延鋼板の熱処理
温度を1150〜1250℃の範囲内に限定する必要が
ある。
Whether or not the hot-rolled steel strip is heat-treated before cold rolling, and if it is heat-treated, the heat treatment temperature is Without regulating these conditions, 'cold rolling of the hot-rolled material above the Md point' will immediately affect the mechanical properties and the in-plane anisotropy of the plastic strain ratio of the cold-rolled annealed material. In the three present inventions that clearly do not impart isotropy to
The reason why the heat treatment temperature of hot rolled steel sheets is limited to within the range of 1150 to 1250°C is that when heat treated at a conventional heat treatment temperature lower than 1150°C, the Δr of the finish annealed material after rolling is 2.
Steel plates manufactured by the round rolling method do not become smaller;
On the other hand, heat treatment at temperatures higher than 1250°C causes significant oxidation of the surface of the steel sheet during heating, making it difficult to finish the cold-rolled annealed steel sheet with a beautiful surface. Furthermore, the crystal grains of the hot-rolled steel sheet become coarser, causing strain-induced In materials rolled at temperatures above the temperature at which transformation begins, the crystal grains of cold-rolled annealed sheets also become larger.
In order to cause surface roughness in the press-formed product, it is necessary to limit the heat treatment temperature of the hot rolled steel sheet within the range of 1150 to 1250°C.

本発明において、冷間圧延時の温度を35〜250℃の
範囲内にする理由は、前記本発明の熱延鋼板の熱処理温
度によれば、従来の1回圧延法による材料よりも著しく
Δrの小さい1回圧延法による材料を得ることができる
が、前記35〜250℃の範囲内で冷間圧延すると、前
記熱処理温度との組合せ効果によってさらに一層Δrを
小さくすることができることを新規に知見したからであ
り、35℃より低い温度で圧延するとΔrの改善が小さ
く、一方250℃より高い温度で圧延すると、鋼板表面
が薄く着色し、さらに現行の圧延油では引火着火の危険
が高(、これらを回避するには特殊な装置を要するので
実用的でなく、1回圧延法採用の経済的長所が失なわれ
るから、冷間圧延時の温度を35〜250℃の範囲内に
する必要がある。
In the present invention, the reason why the temperature during cold rolling is set within the range of 35 to 250°C is that according to the heat treatment temperature of the hot rolled steel sheet of the present invention, the Δr is significantly lower than that of the material obtained by the conventional single rolling method. Although it is possible to obtain a small material by one-time rolling, it was newly discovered that Δr can be further reduced by cold rolling within the range of 35 to 250°C due to the combined effect with the heat treatment temperature. Therefore, when rolling at a temperature lower than 35°C, the improvement in Δr is small, while when rolling at a temperature higher than 250°C, the surface of the steel sheet becomes thinly colored, and the current rolling oil has a high risk of ignition. To avoid this, special equipment is required, which is impractical, and the economic advantage of adopting the single-rolling method is lost, so the temperature during cold rolling must be within the range of 35 to 250°C. .

つぎに実施例によって本発明を詳説する。Next, the present invention will be explained in detail with reference to Examples.

実施例 1 SUS304(C;0.06、Si;0.65、Mn;
1.52、Cr:18.30、Ni:9.90、wt、
%)の4.0mm厚さの熱延板を1100℃×7分およ
び1200℃×5分の熱処理を施したのち、100℃に
保持したシリコンオイル中に1パスごとに5分間浸漬し
、その後直ちに冷間圧延するという方法で、0.8mm
および0.5mmに1回圧延法で圧延した。
Example 1 SUS304 (C; 0.06, Si; 0.65, Mn;
1.52, Cr: 18.30, Ni: 9.90, wt,
%) 4.0 mm thick hot rolled plate was heat treated at 1100°C for 7 minutes and at 1200°C for 5 minutes, then immersed in silicone oil kept at 100°C for 5 minutes for each pass. 0.8mm by immediately cold rolling
Then, it was rolled once to 0.5 mm using a rolling method.

この場合、圧延板にはマルテンサイトは生成しなかった
In this case, no martensite was generated in the rolled plate.

さらに、上記熱延焼鈍板を20℃で0.3.0.5mm
に1回圧延法で圧延した。
Furthermore, the above hot rolled annealed plate was heated to 0.3 and 0.5 mm at 20°C.
It was rolled once by the rolling method.

圧延板のマルテンサイト量はそれぞれ12.18%であ
った。
The amount of martensite in each rolled plate was 12.18%.

これら圧延板に1100℃×2分の焼鈍を施した鋼板に
ついてΔrを測定した。
Δr was measured for the steel plates obtained by annealing these rolled plates at 1100° C. for 2 minutes.

その結果を第1表に示す。The results are shown in Table 1.

Δr減少に対する本発明の熱延板熱処理法の効果と圧延
法の効果を比較すると前者の方が太き(、本発明法の熱
延板熱処理を行ない、本発明法による圧延を行なった鋼
板が最もΔrが少さい。
Comparing the effect of the hot-rolled sheet heat treatment method of the present invention and the effect of the rolling method on the reduction of Δr, the former is thicker (the steel sheet heat-treated by the method of the present invention and rolled by the method of the present invention is thicker). Δr is the smallest.

実施例 2 SUS304鋼(C;0.06、Si;0.70、Mn
:1.50、Cr:18.30、Ni:8.30、wt
%)の4.0mm厚の熱延板に1050℃×10分およ
び1160℃×5分の熱処理を施したのち、20℃に保
持した槽中に、1パスごとに、5分間浸漬したのち、直
ちに圧延するという方法で0.8mmおよび0.5mm
に1回圧延法で圧延した。
Example 2 SUS304 steel (C; 0.06, Si; 0.70, Mn
:1.50, Cr:18.30, Ni:8.30, wt
%) was heat-treated at 1050°C for 10 minutes and at 1160°C for 5 minutes, and then immersed in a tank maintained at 20°C for 5 minutes for each pass. 0.8mm and 0.5mm by immediate rolling
It was rolled once by the rolling method.

圧延材のマルテンサイト量はそれぞれ23.0゜28.
0%であった。
The amount of martensite in the rolled material is 23.0°28.
It was 0%.

これら圧延板に1100℃×2分の焼鈍を施した鋼板に
ついてΔrを測定した。
Δr was measured for the steel plates obtained by annealing these rolled plates at 1100° C. for 2 minutes.

その結果を第2表に示す。The results are shown in Table 2.

従来法で熱延板を熱処理した鋼板に(らべて、本発明法
による熱処理をした鋼板のΔrは小さく、Δrには熱延
板の熱処理が影響をおよぼすことがわかる。
Compared to the steel sheet heat-treated by the conventional method, the Δr of the steel sheet heat-treated by the method of the present invention is smaller, indicating that the heat treatment of the hot-rolled sheet has an influence on Δr.

実施例 3 SUS301鋼(C;0.10、Si:0.62、Mn
:102、Cr;17.37、Ni7.02、wt、%
)の4.0mm厚の熱延板に1100℃×10分および
1200℃×5分の熱処理を施したのち。
Example 3 SUS301 steel (C; 0.10, Si: 0.62, Mn
:102, Cr;17.37, Ni7.02, wt, %
) was heat-treated at 1100°C for 10 minutes and at 1200°C for 5 minutes.

300℃に保ったシリコンオイル中に、1パスごとに、
5分間浸漬後、直ちに圧延するという方法で、0.8m
mに1回圧延法で圧延した。
After each pass in silicone oil kept at 300℃,
0.8m by soaking for 5 minutes and rolling immediately.
It was rolled by a rolling method once every m.

圧延に際しては、圧延ロールをあらかじめ150℃に予
熱しておいた。
During rolling, the rolling rolls were preheated to 150°C.

また、圧延板の温度を表面接触温度計で測定したところ
、圧延直後の温度は210℃であった。
Further, when the temperature of the rolled plate was measured with a surface contact thermometer, the temperature immediately after rolling was 210°C.

圧延板には歪誘起マルテンサイトは認められなかった。No strain-induced martensite was observed in the rolled sheet.

この圧延板に1100℃×2分の焼鈍を施した鋼板につ
いてΔrを測定し、その結果を第3表に示す。
The Δr was measured for the steel plate obtained by annealing this rolled plate at 1100° C. for 2 minutes, and the results are shown in Table 3.

301鋼でも、従来法に(らべて、本発明法により作っ
た鋼板のΔrは小さく、熱延板の熱処理がΔrに影響を
およぼすことがわかる。
Even for 301 steel, the Δr of the steel sheet made by the method of the present invention is smaller than that of the conventional method, and it can be seen that the heat treatment of the hot-rolled sheet has an influence on the Δr.

実施例 4 SUS304(C;0.05、Si;0.75、Mn;
1.45、Cr:18.23、Ni:9.01、wt、
%)の4.0mm厚の熱延板に、50℃ごとに、100
0〜1250℃の温度範囲で、加熱時間5分の熱処理を
施した。
Example 4 SUS304 (C; 0.05, Si; 0.75, Mn;
1.45, Cr: 18.23, Ni: 9.01, wt.
%) on a 4.0 mm thick hot-rolled plate at every 50°C.
Heat treatment was performed at a temperature range of 0 to 1250°C for a heating time of 5 minutes.

その鋼板をそれらの鋼板および熱延板を150℃に保持
したシリコンオイル中に1パスごとに5分間浸漬し直ち
に圧延するという方法と通常行なわれている方法(温度
制御を行なわすに温度約20℃で圧延する方法)で0.
8mmにした。
The steel plate is immersed in silicone oil kept at 150°C for 5 minutes for each pass and immediately rolled. ℃ rolling method) is 0.
It was set to 8mm.

圧延板に生成したマルテンサイト量は150℃圧延では
0%、温度制御なしの場合には約17%であった。
The amount of martensite produced in the rolled plate was 0% when rolled at 150°C, and about 17% when rolled without temperature control.

それら圧延板に1100℃×2分の焼鈍を施した鋼板の
Δrを測定した。
The Δr of the steel plates obtained by annealing these rolled plates at 1100° C. for 2 minutes was measured.

その結果を第2図に示す。The results are shown in FIG.

Δrは、熱延板の焼鈍温度が高くなるにつれ小さくなり
、とくに1150℃以上では(本発明の温度範囲では)
顕著に小さくなる。
Δr becomes smaller as the annealing temperature of the hot rolled sheet increases, especially at 1150°C or higher (in the temperature range of the present invention).
becomes noticeably smaller.

圧延はγ単相域で行なった方がΔrは小さくなる。When rolling is performed in the γ single phase region, Δr becomes smaller.

なかでも、熱延板を1150℃〜1250℃で焼鈍し、
圧延をγ単相域で行なった鋼板のΔrは第1図に示した
2回圧延法で作った鋼板のΔrと同程度まで小さくなっ
ており、本発明法で鋼板を製造すれば、1回圧延法で作
ったとしても、2回圧延法の鋼板のΔrと同程度となる
ことがわかる。
Among them, the hot-rolled plate is annealed at 1150°C to 1250°C,
The Δr of the steel plate rolled in the γ single-phase region is as small as the Δr of the steel plate made by the two-roll method shown in Figure 1, and if the steel plate is manufactured using the method of the present invention, It can be seen that even if it is made by the rolling method, the Δr is comparable to that of the steel plate made by the two-time rolling method.

以上述べた如く本発明によれば、塑性歪比の面内異方性
の小さいオーステナイト系ステンレス鋼帯板を製造する
ことができる。
As described above, according to the present invention, an austenitic stainless steel strip having small in-plane anisotropy of plastic strain ratio can be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の熱延板熱処理を施し、通常の圧延方法で
製造した5US304鋼板と圧延率との関係を示す図、
第2図は5US304鋼板のΔrと熱延板熱処理温度と
の関係を示す図である。
Fig. 1 is a diagram showing the relationship between 5US304 steel plate produced by conventional hot rolling plate heat treatment and the normal rolling method and rolling reduction;
FIG. 2 is a diagram showing the relationship between Δr of 5US304 steel sheet and hot-rolled sheet heat treatment temperature.

Claims (1)

【特許請求の範囲】 1 オーステナイト系ステンレス鋼の熱延鋼帯板を焼鈍
した後、1回の冷間圧延で製品板厚まで圧延し、その後
オーステナイト系ステンレス鋼帯板の製造に従来採用さ
れている条件の下で仕上焼鈍を行うことにより、オース
テナイト系ステンレス鋼帯板を製造する方法において、
前記熱延銅帯板の焼鈍温度を1150〜1250℃の範
囲内としたことを特徴とする塑性歪比の面内異方性の小
さいオーステナイト系ステンレス鋼帯板の製造方法。 2 オーステナイト系ステンレス鋼の熱延鋼帯板を焼鈍
した後、1回の冷間圧延で製品板厚まで圧延し、その後
オーステナイト系ステンレス鋼帯板の製造に従来採用さ
れている条件の下で仕上焼鈍を行うことにより、オース
テナイト系ステンレス鋼帯板を製造する方法において、
前記熱延銅帯板の焼鈍温度を1150〜1250℃の範
囲内とし、かつ冷間圧延時の温度を35〜250℃の範
囲内にしたことを特徴とする塑性歪比の面内異方性の小
さいオーステナイト系ステンレス鋼帯板の製造方法。
[Claims] 1. After annealing a hot-rolled austenitic stainless steel strip, it is rolled to the product thickness in one cold rolling process, which is then conventionally employed in the production of austenitic stainless steel strips. In a method of manufacturing an austenitic stainless steel strip by performing finish annealing under conditions of
A method for producing an austenitic stainless steel strip with small in-plane anisotropy of plastic strain ratio, characterized in that the annealing temperature of the hot-rolled copper strip is within a range of 1150 to 1250°C. 2 After annealing a hot-rolled austenitic stainless steel strip, it is rolled to the product thickness in one cold rolling process, and then finished under the conditions conventionally used for manufacturing austenitic stainless steel strips. In a method of manufacturing an austenitic stainless steel strip by annealing,
In-plane anisotropy of plastic strain ratio, characterized in that the annealing temperature of the hot rolled copper strip is within the range of 1150 to 1250°C, and the temperature during cold rolling is within the range of 35 to 250°C. A method for manufacturing small austenitic stainless steel strips.
JP2120476A 1976-03-01 1976-03-01 Manufacturing method of austenitic stainless steel strip with small in-plane anisotropy of plastic strain ratio Expired JPS5811489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2120476A JPS5811489B2 (en) 1976-03-01 1976-03-01 Manufacturing method of austenitic stainless steel strip with small in-plane anisotropy of plastic strain ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2120476A JPS5811489B2 (en) 1976-03-01 1976-03-01 Manufacturing method of austenitic stainless steel strip with small in-plane anisotropy of plastic strain ratio

Publications (2)

Publication Number Publication Date
JPS52104416A JPS52104416A (en) 1977-09-01
JPS5811489B2 true JPS5811489B2 (en) 1983-03-03

Family

ID=12048441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2120476A Expired JPS5811489B2 (en) 1976-03-01 1976-03-01 Manufacturing method of austenitic stainless steel strip with small in-plane anisotropy of plastic strain ratio

Country Status (1)

Country Link
JP (1) JPS5811489B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55115927A (en) * 1979-02-28 1980-09-06 Nippon Steel Corp Production of austenite-base stainless steel plate which does not cause earing
JPS56102519A (en) * 1980-01-12 1981-08-17 Nippon Steel Corp Cold rolling method for stainless steel of high strength
JPS57188622A (en) * 1981-05-18 1982-11-19 Kawasaki Steel Corp Manufacture of extremely thin strip of stainless steel
JPS58224113A (en) * 1982-06-22 1983-12-26 Nippon Steel Corp Production of austenitic stainless steel plate with which earring hardly arises
JPS62238333A (en) * 1986-04-08 1987-10-19 Nippon Steel Corp Manufacture of ultrathin austenitic stainless steel sheet for water slicer

Also Published As

Publication number Publication date
JPS52104416A (en) 1977-09-01

Similar Documents

Publication Publication Date Title
JPS5811489B2 (en) Manufacturing method of austenitic stainless steel strip with small in-plane anisotropy of plastic strain ratio
JPH09111354A (en) Production of ferritic stainless steel sheet
JPH07107178B2 (en) Method for producing high strength dual phase chromium stainless steel strip with excellent ductility
JPH07100822B2 (en) Manufacturing method of high ductility and high strength dual phase structure chromium stainless steel strip with small in-plane anisotropy.
JP2781285B2 (en) Manufacturing method of stainless clad steel sheet
JPH07100824B2 (en) Method for producing high strength dual phase chromium stainless steel strip with excellent ductility
JPS5856734B2 (en) Manufacturing method of ferritic stainless steel sheet
CN109536690A (en) A kind of coexistence region heat treatment process of ferritic stainless steel hot-rolling strip
JP2695858B2 (en) Method for producing austenitic stainless steel sheet with good workability
JPS5830373B2 (en) Manufacturing method of austenitic thin stainless steel plate for square tube deep patterning
JPS61253324A (en) Production of chromic stainless steel sheet
JPH022940B2 (en)
JPH02232319A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
US3276917A (en) Process for producing cold-rolled steel sheets to be deep drawn
JPH07100823B2 (en) Manufacturing method of high ductility and high strength dual phase structure chromium stainless steel strip with small in-plane anisotropy.
JPH0813097A (en) Ferritic stainless steel sheet small in plane anisotropy and production thereof
JPS62185833A (en) Manufacture of cold rolled steel strip or steel sheet of austenitic stainless steel
JPH07100821B2 (en) Manufacturing method of high ductility and high strength dual phase structure chromium stainless steel strip with small in-plane anisotropy.
JPH06271944A (en) Production of ferritic stainless thin steel sheet excellent in formability and ridging resistance and furthermore small in anisotropy
JPS6280223A (en) Manufacture of austenitic stainless clad cold roller steel sheet
JPS63210241A (en) Production of austenitic stainless steel plate
JPS63121619A (en) Manufacture of two-phase stainless steel strip having superplastic deformability with planetary mill
JPS5818408B2 (en) Manufacturing method of maraging steel strip or steel plate by strip form
JPS5946684B2 (en) Manufacturing method for cold-rolled steel sheets with excellent formability
JPS62109929A (en) Manufacture of hot rolled high carbon steel sheet having superior cold rollability