JPS58224113A - Production of austenitic stainless steel plate with which earring hardly arises - Google Patents
Production of austenitic stainless steel plate with which earring hardly arisesInfo
- Publication number
- JPS58224113A JPS58224113A JP10702682A JP10702682A JPS58224113A JP S58224113 A JPS58224113 A JP S58224113A JP 10702682 A JP10702682 A JP 10702682A JP 10702682 A JP10702682 A JP 10702682A JP S58224113 A JPS58224113 A JP S58224113A
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- temperature
- hot
- stainless steel
- earring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0405—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は深絞り加工をした際に発生するイヤリングを著
しく減少させたオーステナイト系ステンレス鋼板又は銅
帯(以下単に鋼板という)の製造方法に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an austenitic stainless steel sheet or a copper strip (hereinafter simply referred to as a steel sheet) in which earrings generated during deep drawing are significantly reduced.
従来、普通鋼板およびクロム系ステンレス鋼板等のフェ
ライト系鋼種においては深絞り性は塑性歪比(r値)と
強い相関がありr値が大きいほど深絞り性が向1するこ
とはよく知られている。又円筒深絞り加工等を行った際
にカップの端部が扇状の凹凸形状を示すイヤリングに関
してはr値の面内異方性が小さい程小さくなると云われ
ている。Conventionally, it is well known that deep drawability of ferritic steels such as ordinary steel sheets and chromium-based stainless steel sheets has a strong correlation with the plastic strain ratio (r value), and that the larger the r value, the better the deep drawability. There is. Furthermore, it is said that with regard to earrings in which the end portion of the cup exhibits a fan-like uneven shape when cylindrical deep drawing is performed, the smaller the in-plane anisotropy of the r value is, the smaller the earring becomes.
これに対してSUS 301 、8US 304等のオ
ーステナイト系ステンレス鋼板においては深絞り性は主
として加工硬化指数(n値)の挙動に影響される。On the other hand, in austenitic stainless steel sheets such as SUS 301 and 8US 304, the deep drawability is mainly influenced by the behavior of the work hardening index (n value).
n値の増減は加工誘起マルテンサイトの発生状況に依存
し、従って、オーステナイト相の安定度、即ちNi、
Mn+ Cr、 C、N等の合金成分のバランスが加工
性を大きく左右する。このため加工性に関する従来の研
究はもっばら合金成分の調整をバランス良く行い、加工
性に好ましいn値を如何にして見い出すかに主体がおか
れて来た。このため深絞り加工性に及ばずr値の挙動に
関してはほとんど注目されてなくとくにr値の面内異方
性とイヤリングについては全く未検討な分野であった。The increase or decrease in the n value depends on the generation status of deformation-induced martensite, and therefore the stability of the austenite phase, that is, Ni,
The balance of alloy components such as Mn+Cr, C, and N greatly influences workability. For this reason, conventional research on workability has focused on adjusting the alloy components in a well-balanced manner and finding a preferable n value for workability. For this reason, the deep drawing workability is not as good as the behavior of the r value, and little attention has been paid to the behavior of the r value, and in particular, the in-plane anisotropy of the r value and earrings have not been studied at all.
本発明はオーステナイト系ステンレス鋼板の深絞り加工
時に発生するイヤリングを著しく減少させ、プレス加工
等における歩留を向上させることを目的とする。The object of the present invention is to significantly reduce earrings that occur during deep drawing of austenitic stainless steel sheets, and to improve yields in press working and the like.
この様な目的を達成させる本発明はオーステナイト系ス
テンレス鋼を熱間粗圧延した後、第3図ABCDEAの
範囲の圧下率・噛込温度で熱間仕上圧延を行い、焼鈍す
ることなく、−15℃以上70℃以下の温度範囲で冷間
圧延機に噛込ませることを特徴とする。The present invention achieves the above object by hot rough rolling an austenitic stainless steel and then hot finishing rolling at a reduction rate and biting temperature in the range of ABCDEA in Figure 3, without annealing. It is characterized in that it is rolled in a cold rolling mill at a temperature range of .degree. C. or higher and 70.degree. C. or lower.
本発明者はイヤリングの発生はオーステナイト系ステン
レス鋼に特有の強い集合組織が発達するためであり、イ
ヤリングを小さくするためにはこの特有の集合組織を少
くするか、あるいはイヤリングに関してこの方位と反対
の作用をする副方位を優先的に発達させる等、集合組織
のランダム化が達成されれば防止できると考えた。The inventor believes that earrings occur due to the development of a strong texture unique to austenitic stainless steel, and that in order to make earrings smaller, it is necessary to reduce this unique texture, or to reverse the orientation of the earrings. We believe that this can be prevented if randomization of the texture is achieved, such as by preferentially developing secondary orientations that have an effect.
以上の様な考え方から各種のオーステナイト系ステンレ
ス鋼板を用いてその集合組織を詳細に検イ 討した結
果・集合組織の形成には冷間圧延の噛込温度の影響が強
く左右し、とくに圧延温度が低い場合の冷延集合組織及
び再結晶集合組織は従来の圧延方法から得られる集合組
織と著しく異るものであることを見い出した。The results of a detailed study of the textures of various austenitic stainless steel sheets based on the above-mentioned ideas revealed that the formation of textures is strongly influenced by the biting temperature during cold rolling, and the rolling temperature is particularly important. It has been found that the cold-rolled texture and recrystallized texture when the rolling process is low are significantly different from the texture obtained from conventional rolling methods.
即ちオーステナイト系ステンレス鋼板の冷間圧延は通常
ゼンジミアミルにより4〜8パスの多ノヤス圧延を行っ
て目標の板厚を得ている。この時、多パスに及ぶ冷間圧
延の初期/’Pスの噛込温度はその材料が置かれてあっ
た場所での温度(室温)と同一な場合が多いが、2ノぐ
ス目以降の噛込温度は初期パスの加工熱の影響を受けて
50〜200℃程度まで上昇するのが一般的である。多
ノ9ス圧延においてはこの現象がくり返されるため板の
温度は更に上り、一般に冷間圧延といえども、かなりの
高温域で圧延がくり返されることになる。That is, when cold rolling an austenitic stainless steel plate, a target thickness is usually obtained by performing multi-noise rolling in 4 to 8 passes using a Sendzimir mill. At this time, the initial biting temperature of the P/'P during multiple passes of cold rolling is often the same as the temperature (room temperature) where the material was placed, but after the second pass The biting temperature generally rises to about 50 to 200°C due to the influence of processing heat in the initial pass. In multi-nos rolling, this phenomenon is repeated, so the temperature of the plate further rises, and generally, even though it is cold rolling, rolling is repeated in a considerably high temperature range.
本発明者はオーステナイト系ステンレス鋼を冷間圧延す
る際圧延機に噛込む時の鋼板表面温度に注目し、各ノJ
?スごとの噛込温度を一定温度に制御した注意深い冷間
圧延を行った後、通常の焼鈍・酸洗を施して製品の集合
組織を検討した。The present inventor focused on the surface temperature of the steel plate when it is bitten in the rolling mill during cold rolling of austenitic stainless steel, and
? After careful cold rolling with the biting temperature controlled at a constant temperature for each step, the product was subjected to conventional annealing and pickling, and the texture of the product was examined.
SUS 304で得られた集合組織の代表例を第1図に
示す。圧延温度が高い場合の優先方位は(211)<i
11>であるが低温圧延の場合は(110)<001
>が増大する。(211)<111〉方位の増大は圧延
方向に45°傾いた位置にイヤリングの山を生じ、(1
10)<001>方位の増大は圧延方向及びそれと直角
方向にイヤリングの山を発生する。従って、両者の集合
組織が適度に混合した圧延温度で冷間圧延を行えばイヤ
リングの山及び谷の発生位置が平均化されて異方性が小
さくなる事が予想される。A typical example of the texture obtained from SUS 304 is shown in FIG. The preferred orientation when the rolling temperature is high is (211)<i
11>, but in the case of low temperature rolling, (110)<001
> increases. (211) An increase in the <111> orientation produces a peak of the earrings at a position tilted by 45° to the rolling direction, and (1
10) Increase in <001> orientation produces earring ridges in the rolling direction and in the direction perpendicular to it. Therefore, if cold rolling is performed at a rolling temperature at which both textures are appropriately mixed, it is expected that the positions of the peaks and valleys of the earring will be averaged and the anisotropy will be reduced.
そこで冷間圧延の噛込温度が冷延焼鈍板の異方性に及ば
ず影響を調べるため、SUS 304 (C: 0.0
7%、Si:0.6%、Mn:1.2%、P:0.02
5%、S:0.006%、Ni:8.8%、Cr :1
8.3’%、N:0.035%)を用い、熱間圧延によ
り板厚5咽の熱延板を得た。Therefore, in order to investigate the influence of the biting temperature of cold rolling on the anisotropy of cold rolled annealed sheets, SUS 304 (C: 0.0
7%, Si: 0.6%, Mn: 1.2%, P: 0.02
5%, S: 0.006%, Ni: 8.8%, Cr: 1
8.3'%, N: 0.035%), a hot-rolled plate with a thickness of 5 mm was obtained by hot rolling.
熱間圧延は通常の粗圧延を行った後、ランナウトテーブ
ル上に材料を保持し、表面温度が940℃になった時、
仕上圧延を開始した。仕上圧延後の組織は光顕観察結果
によると粗圧延で生じた結晶粒が圧延方向に展伸粒化し
た状態であった。この様にして得られた熱延板を用い焼
鈍を行わないで単にデスケーリングした後、1段冷延法
(ICR)によって板厚0.7 mの冷延鋼板にした。In hot rolling, after performing normal rough rolling, the material is held on a runout table, and when the surface temperature reaches 940℃,
Finish rolling started. According to the results of light microscopic observation, the structure after finish rolling was such that the crystal grains produced during rough rolling were expanded in the rolling direction. The hot-rolled sheet thus obtained was simply descaled without annealing, and then subjected to one-stage cold rolling (ICR) to form a cold-rolled steel sheet with a thickness of 0.7 m.
この時冷間圧延の全てのノJ?スの噛込温度を一20℃
、0℃。All the cold rolling at this time? The biting temperature of the steel is -20℃.
,0℃.
20℃、40℃、60℃、80℃の一定温度に保ち圧延
を行った。いずれも圧下率は86.%である。これらの
冷延板に1100℃・10秒保定後空冷の焼鈍を施した
のち、酸洗を行い、次いでイヤリング試験により異方性
を検討した。Rolling was performed while maintaining constant temperatures of 20°C, 40°C, 60°C, and 80°C. The rolling reduction ratio in both cases is 86. %. These cold-rolled sheets were annealed at 1100° C. for 10 seconds and air-cooled, then pickled, and then the anisotropy was examined by an earring test.
イヤリング試験は冷延焼鈍板より80.Owφのブラン
クを切出し、40.0++lff1φのポンチを用いて
深絞りし、カップ端部の凹凸からイヤリング率を求めた
。The earring test was performed using cold rolled annealed sheets. A blank of Owφ was cut out and deep drawn using a punch of 40.0++lff1φ, and the earring ratio was determined from the unevenness of the cup end.
ここで用いたイヤリング率は次式で定義される。The earring rate used here is defined by the following equation.
h、はカップの底から測定したカップ縁部の山の頂上ま
での高さをボし、h!はカップ縁部の谷部までの高さを
示す。結果を第2図に示す。h, is the height measured from the bottom of the cup to the top of the mountain on the rim of the cup, and h! indicates the height to the valley of the cup edge. The results are shown in Figure 2.
熱延板焼鈍の有無にかかわりなくイヤリング率は圧延温
度によって変化し、イヤリング率が極小となる温度が存
在する。イヤリングの山の発生位置は圧延温度が前記極
小温度より高い場合は圧延方向から45°傾いた位置に
発生し、逆に低い場合は圧延方向及びこれに直角方向に
生じることが確認された。Regardless of whether hot-rolled sheets are annealed or not, the earring ratio changes depending on the rolling temperature, and there is a temperature at which the earring ratio becomes minimum. It was confirmed that when the rolling temperature is higher than the minimum temperature, the ridges of the earrings occur at a position inclined at 45° from the rolling direction, and when the rolling temperature is lower, they occur in the rolling direction and in a direction perpendicular to this.
以下本発明の限定根拠を述べる。The basis for limiting the present invention will be described below.
オーステナイト系ステンレス鋼薄板のイヤリング特性に
及はす影響は冷間圧延での圧延温度の寄与が大きく、圧
延温度が高くなると圧延方向と45°傾いた位置にイヤ
リングの山が生じ、逆に低くすぎる温度では圧延方向及
び直角方向にイヤリングの山が生じていずれの場合もイ
ヤリング率が高くなり好ましくない。通常の条件によっ
て粗圧延した後第3図に示す範囲の圧下率・噛込温度で
仕上熱延を行ったオーステナイト系ステンレス鋼の熱延
板を、固溶化熱処理を行わないで冷間圧延した場合は、
圧延温度が70℃を超えた場合及び−15℃未満になる
とイヤリング率は従来製造法と同等もしくはそれ以上の
値になり異方性は改善」
されない。The influence on the earring properties of austenitic stainless steel thin sheets is largely due to the rolling temperature during cold rolling, and when the rolling temperature is high, the earrings form ridges at a 45° angle to the rolling direction, and conversely, the temperature is too low. At high temperatures, ridges of earrings occur in the rolling direction and in the perpendicular direction, resulting in a high earring ratio in both cases, which is undesirable. When a hot-rolled austenitic stainless steel sheet is roughly rolled under normal conditions and then finished hot-rolled at the reduction ratio and biting temperature shown in Figure 3, and then cold-rolled without solution heat treatment. teeth,
If the rolling temperature exceeds 70°C or falls below -15°C, the earring ratio will be equal to or higher than that of the conventional manufacturing method, and the anisotropy will not be improved.
従って冷間圧延の噛込温度は一15℃以上70℃以下の
範囲でなければならないが、同時に熱延時の仕上圧延条
件は第3図に示すABCDEAの範囲の圧下率と噛込温
度を満足する必要がある。Therefore, the biting temperature during cold rolling must be in the range of -15°C to 70°C, but at the same time, the finish rolling conditions during hot rolling must satisfy the reduction rate and biting temperature in the ABCDEA range shown in Figure 3. There is a need.
第3図ABCDEAの範囲は圧延中に再結晶が生じない
条件を示すものである。一般に粗圧延は1050℃以上
の高温で完了するため圧延後の組織は再結晶を完了した
粗な粒となるが、続いて数パスの仕上圧延を行った場合
、圧延中に再結晶がくり返して生じ、熱延板の組織は極
めて小さな結晶粒を持つ様になる。The range ABCDEA in FIG. 3 indicates conditions under which recrystallization does not occur during rolling. Generally, rough rolling is completed at a high temperature of 1050°C or higher, so the structure after rolling becomes coarse grains that have completed recrystallization. However, if several passes of finish rolling are performed subsequently, recrystallization occurs repeatedly during rolling. As a result, the structure of the hot-rolled sheet has extremely small crystal grains.
細粒組織の状態の熱延板を単にデスケーリング後冷延し
、焼鈍した場合には再結晶の起点となる粒界面積が多い
ため再結晶集合組織の優先成長を促進し、(211)<
111〉が極度に増大して異方性が顕著になる。従って
異方性低減には仕上圧延を低温で行うのが望ましく、第
3図ABCDEAの範囲の条件は再結晶が生じない、即
ち粗圧延後の結晶粒を単に展伸粒化し、粒界面積を最小
に保持できる圧延条件を示すものである。 ′第3図
に於て噛込温度の上限はAB及びBCで規制されるが、
これより高温で仕上圧延を開始した場合は、再結晶が熱
延中に生じ、組織が微細粒となる。また噛込温度がDE
より低下すると変形抵抗が増大し、表面疵が急増して生
産性を阻害する。When a hot-rolled sheet with a fine grain structure is simply descaled, cold rolled, and annealed, the grain boundary area that becomes the starting point for recrystallization is large, promoting preferential growth of the recrystallization texture, and (211) <
111> increases extremely and anisotropy becomes noticeable. Therefore, it is desirable to perform finish rolling at a low temperature to reduce anisotropy, and the conditions in the range ABCDEA in Figure 3 do not cause recrystallization, that is, the grains after rough rolling are simply expanded to reduce the grain boundary area. This shows the rolling conditions that can be maintained at the minimum. 'In Figure 3, the upper limit of the biting temperature is regulated by AB and BC,
If finish rolling is started at a higher temperature than this, recrystallization occurs during hot rolling and the structure becomes fine grained. Also, the biting temperature is DE
When it is lowered further, deformation resistance increases, surface flaws rapidly increase, and productivity is inhibited.
圧下率がCよシ大きい場合は表面疵が増すと同時に耳割
れを発生しだす。圧下率がEAより低い場合は仕上板厚
が極度に厚くなるか、ノクス回数が増大し、圧延効果が
低下する。従って仕上圧延の条件は第3図に示したAB
CDgAの斜線範囲の圧下率及び噛込温度でなくてはな
らない。If the rolling reduction ratio is greater than C, surface flaws will increase and at the same time, edge cracks will begin to occur. When the rolling reduction rate is lower than EA, the finished plate thickness becomes extremely thick, or the number of times of rolling increases, and the rolling effect decreases. Therefore, the conditions for finish rolling are AB and B shown in Figure 3.
The rolling reduction rate and biting temperature must be within the shaded range of CDgA.
以下本発明を実施例によって具体的に説明する。The present invention will be explained in detail below using examples.
第1表に示すような成分のオーステナイト系ステンレス
鋼を電炉−AOD法で溶製し、160fi厚のCC鋳片
とした。その後加熱炉で1230℃に加熱し次いで第1
表に示す条件で熱延を行った。熱延板の仕上板厚は2.
7露から4.0間の間で仕上げた。Austenitic stainless steel having the components shown in Table 1 was melted using an electric furnace-AOD method to obtain a 160-fi thick CC slab. After that, it was heated to 1230℃ in a heating furnace, and then the first
Hot rolling was performed under the conditions shown in the table. The finished thickness of the hot rolled plate is 2.
Finished between 7 dew and 4.0.
これらの熱延板は固溶化熱処理を行わず、ただちにデス
ケーリングをし、第1表に示す噛込温度で冷間圧延を行
い板厚を0.8 mにした。These hot-rolled plates were not subjected to solution heat treatment, but were immediately descaled and cold-rolled at the biting temperature shown in Table 1 to a plate thickness of 0.8 m.
最終焼鈍は1100℃在炉55秒急冷で行い、製品板の
0.2チ耐力、引張強さ、伸び及びイヤリング率を求め
た。これらの結果を第2表に示す。The final annealing was performed by rapid cooling at 1100° C. for 55 seconds in a furnace, and the 0.2 inch proof stress, tensile strength, elongation, and earring ratio of the product plate were determined. These results are shown in Table 2.
熱延条件が第3図の圧下率及び噛込温度を満足し、かつ
冷間圧延の温度範囲が一15℃から70℃間にある時は
、イヤリング率が減少し、異方性が改善されることが判
る。When the hot rolling conditions satisfy the rolling reduction and biting temperature shown in Figure 3, and the cold rolling temperature range is between 115°C and 70°C, the earring ratio decreases and the anisotropy is improved. It turns out that
他方引張特性は冷間圧延の圧延温度によりほとんど影響
されず従来と同等な値を得ることが出来る。On the other hand, the tensile properties are almost unaffected by the rolling temperature of cold rolling, and values equivalent to those of conventional products can be obtained.
第゛2表 本製品板の引張特性とイヤリング率以上の本
発明製造法はSUS 304に限らず加工誘起マルテン
サイト変態を伴うオーステナイト系ステンレス鋼にはい
ずれも適用できる。Table 2: Tensile properties and earring ratio of the product sheet The manufacturing method of the present invention described above is applicable not only to SUS 304 but also to any austenitic stainless steel with deformation-induced martensitic transformation.
本発明の適用によって深絞シ加工により発生するイヤリ
ングを著しく減少させることができ、ブレス加工後の切
シ捨て量の減少、深絞り前の必要ブランクサイズの減少
等多大の効果をもたらす。By applying the present invention, it is possible to significantly reduce the amount of earrings generated by deep drawing, resulting in many effects such as a reduction in the amount of cut off after pressing and a reduction in the required blank size before deep drawing.
第1図はSUB 304冷延焼鈍板の集合組織に及ばす
冷間圧延温度の影響を示す(100)極点図((a)圧
延温度θ℃、(b)圧延温度80℃)、第2図は仕上熱
延を低温で行い熱延板焼鈍を省略した8US304冷延
焼鈍板のイヤリング率に及ばす冷間圧延温度の影響を示
す図、第3図は熱延仕上圧延に於る噛込温度とパス当り
の圧下率との関係を示す図である。
(loo ) (ioO)竿2
図
n延温度 (°c)Figure 1 shows the influence of cold rolling temperature on the texture of SUB 304 cold rolled annealed plate (100) pole figure ((a) rolling temperature θ℃, (b) rolling temperature 80℃), Figure 2 Figure 3 shows the effect of cold rolling temperature on the earring ratio of 8US304 cold rolled annealed sheet in which finish hot rolling was performed at low temperature and hot rolled plate annealing was omitted. Figure 3 shows the biting temperature in hot rolling finish rolling. It is a figure which shows the relationship between and the rolling reduction rate per pass. (loo) (ioO) Pole 2
Figure n extension temperature (°c)
Claims (1)
3図OA、B、C,D、E、AO範囲+7)圧下率、噛
込温度で熱間仕上圧延を行い、焼鈍することなく、−1
5℃以上70℃以下の温度範囲で冷間圧延機に噛込ませ
ることを特徴とするイヤリングを生じ難いオーステナイ
ト系ステンレス鋼板の製造方法。After hot rough rolling of austenitic stainless steel, hot finish rolling is performed at a rolling reduction ratio of OA, B, C, D, E, AO range +7) and a biting temperature of -1 without annealing.
A method for producing an austenitic stainless steel sheet that does not easily form earrings, the method comprising rolling it in a cold rolling mill at a temperature range of 5° C. or higher and 70° C. or lower.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10702682A JPS58224113A (en) | 1982-06-22 | 1982-06-22 | Production of austenitic stainless steel plate with which earring hardly arises |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10702682A JPS58224113A (en) | 1982-06-22 | 1982-06-22 | Production of austenitic stainless steel plate with which earring hardly arises |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58224113A true JPS58224113A (en) | 1983-12-26 |
JPS6367527B2 JPS6367527B2 (en) | 1988-12-26 |
Family
ID=14448631
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10702682A Granted JPS58224113A (en) | 1982-06-22 | 1982-06-22 | Production of austenitic stainless steel plate with which earring hardly arises |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58224113A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62192537A (en) * | 1986-02-19 | 1987-08-24 | Nisshin Steel Co Ltd | Manufacture of cold rolled austenitic stainless steel sheet or strip |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5228424A (en) * | 1975-08-29 | 1977-03-03 | Kawasaki Steel Corp | Method of producing thin austenite stainless steel sheet for deep draw ing of square pipes |
JPS52104416A (en) * | 1976-03-01 | 1977-09-01 | Kawasaki Steel Co | Production of austenitic stainless steel sheets |
JPS6053727A (en) * | 1983-09-02 | 1985-03-27 | Hitachi Chem Co Ltd | Hot-water supplying device |
-
1982
- 1982-06-22 JP JP10702682A patent/JPS58224113A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5228424A (en) * | 1975-08-29 | 1977-03-03 | Kawasaki Steel Corp | Method of producing thin austenite stainless steel sheet for deep draw ing of square pipes |
JPS52104416A (en) * | 1976-03-01 | 1977-09-01 | Kawasaki Steel Co | Production of austenitic stainless steel sheets |
JPS6053727A (en) * | 1983-09-02 | 1985-03-27 | Hitachi Chem Co Ltd | Hot-water supplying device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62192537A (en) * | 1986-02-19 | 1987-08-24 | Nisshin Steel Co Ltd | Manufacture of cold rolled austenitic stainless steel sheet or strip |
Also Published As
Publication number | Publication date |
---|---|
JPS6367527B2 (en) | 1988-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6053727B2 (en) | Method for manufacturing austenitic stainless steel sheets and steel strips | |
JPS58224113A (en) | Production of austenitic stainless steel plate with which earring hardly arises | |
JPH02141536A (en) | Production of steel sheet for drawn can decreased earing | |
CN111636031A (en) | Ultra-low carbon bake-hardening steel and production method thereof | |
JPH10130734A (en) | Production of austenitic stainless steel sheet for roll forming | |
JPH0617141A (en) | Production of cold rolled steel sheet excellent in workability and shape | |
JPH04160117A (en) | Manufacture of ferritic stainless steel sheet excellent in gloss, corrosion resistance and ridging resistance | |
JPS58221232A (en) | Manufacture of austenitic stainless steel plate causing hardly ear-ring | |
JPH0617140A (en) | Production of cold rolled steel sheet for deep drawing | |
JPS6024325A (en) | Production of ferritic stainless steel plate having less ridging and excellent formability | |
JPH0257128B2 (en) | ||
JPS5896851A (en) | Ferritic stainless steel for formed steel plate with improved ridging resistance | |
JPH1017937A (en) | Production of ferritic stainless steel sheet excellent in workability | |
JPH06271944A (en) | Production of ferritic stainless thin steel sheet excellent in formability and ridging resistance and furthermore small in anisotropy | |
JPS62185833A (en) | Manufacture of cold rolled steel strip or steel sheet of austenitic stainless steel | |
JPH0570841A (en) | Manufacture of hot rolled steel sheet excellent in deep drawability by using thin slab | |
JP2612453B2 (en) | Method for producing hot-rolled mild steel sheet with excellent drawability | |
JPS58104124A (en) | Production of cold-rolled steel plate for working by continuous annealing | |
JPH09137230A (en) | Production of ferritic stainless steel sheet excellent in surface characteristic | |
JPH0639624B2 (en) | Manufacturing method of high carbon hot rolled steel sheet with excellent cold rolling workability | |
JPS6075519A (en) | Manufacture of cold rolled steel sheet for continuous annealing | |
JPS6210219A (en) | Manufacture of as-rolled feritic stainless steel sheet having superior ridging resistance | |
JPH10128409A (en) | Manufacture of austenitic stainless steel having small intra-plane anisotropy | |
JPS5947332A (en) | Production of cold-rolled steel sheet for pressing having excellent deep drawability and surface characteristic | |
JPS60155625A (en) | Hot rolling method of dead soft steel for forming finer grain |