JPS58112299A - Method of producing electroluminescent element - Google Patents

Method of producing electroluminescent element

Info

Publication number
JPS58112299A
JPS58112299A JP56214045A JP21404581A JPS58112299A JP S58112299 A JPS58112299 A JP S58112299A JP 56214045 A JP56214045 A JP 56214045A JP 21404581 A JP21404581 A JP 21404581A JP S58112299 A JPS58112299 A JP S58112299A
Authority
JP
Japan
Prior art keywords
substrate
film
voltage
thin film
molecular beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56214045A
Other languages
Japanese (ja)
Other versions
JPS6314832B2 (en
Inventor
清 高橋
友義 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP56214045A priority Critical patent/JPS58112299A/en
Publication of JPS58112299A publication Critical patent/JPS58112299A/en
Publication of JPS6314832B2 publication Critical patent/JPS6314832B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (a)発明の技術分野 本発明はエレクトロルミネッセンス(EL)素子の製造
方法1こ関し、特に低電圧での直流駆動発光に適したE
LII膜をガラス基板の如き非単結晶性の基板上に形成
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a method for manufacturing an electroluminescent (EL) element, and in particular to an electroluminescent (EL) element manufacturing method that is suitable for direct current driven light emission at low voltage.
The present invention relates to a method of forming an LII film on a non-single crystal substrate such as a glass substrate.

山)従来技術と問題点 EL素子は0周知の如<、ZnS、Zn5e。M) Conventional technology and problems The EL elements are as well known, ZnS, Zn5e.

CdSのようなII−Vl族化合物母体に発光中心を形
成する活性物質としてMn、Cr、 Tb、ErTm、
Yb等の遷移金属や希土類元素を添加した1IWIAを
用い;電場印加により電子を発光中心へ衝突させて発光
を得るもので、一般には二重絶縁構造の交流駆動型素子
が主に検討されている。これはEL素子の上下に絶縁層
を設け、交流電圧の印加により発光中心を電子で衝突励
起するものであるが、その駆動に高電圧を要する欠点が
あり5通常で100OV程度、最低でも100v程度は
必要とされている。
Mn, Cr, Tb, ErTm,
Uses 1IWIA doped with transition metals such as Yb and rare earth elements; light emission is obtained by causing electrons to collide with the luminescent center by applying an electric field, and AC-driven elements with a double insulation structure are generally being considered. . In this method, an insulating layer is provided above and below the EL element, and the luminescent center is excited by collision with electrons by applying an alternating current voltage.However, it has the disadvantage of requiring a high voltage to drive.5 Normally, it is about 100 OV, and at least about 100 V. is needed.

そこで低電圧化が可能な方式として電荷注入型の直流駆
動EL素子が注目されている。この素子は、電極膜に接
してELIIllを設け、直流電圧印加により負電極側
からELIIIIImへ注入される電子で発光中心を衝
突励起させて発光させるものである。通常、この直流駆
動型EL素子を作製する場合、Zn5eのような母体化
合物にMnのような活性物質を添加して成る焼結体を電
子ビーム加熱真空蒸着法などによって1例えば(Inz
OB)・ (SnOz)(所IIITo) がらtiる
透明fl極験を設けたガラス基板上へ被着することによ
り。
Therefore, a charge injection type DC-driven EL element is attracting attention as a method capable of lowering the voltage. In this element, ELIIIll is provided in contact with an electrode film, and a luminescent center is collision-excited by electrons injected from the negative electrode side into ELIIIllm by application of a DC voltage to emit light. Normally, when producing this DC-driven EL element, a sintered body made by adding an active substance such as Mn to a base compound such as Zn5e is processed by an electron beam heating vacuum evaporation method or the like.
OB) (SnOz) (IIITo) by depositing it on a glass substrate provided with a completely transparent film.

EL薄膜を得ている。しかしながら、こうして得られる
EL素子はELllMll(7)厚みを5000人程度
以上にしないと高効率の発光を生じず、高輝度が得られ
ない。その理由は、4000〜5000Å以下の膜厚で
はELq膜が十分な結晶性を呈さないためと考えられる
。5000人程度以上はそれ以上の厚いELII膜にお
いて電子による衝突励起を可能にする電場を印加するに
は相当高い電圧が必要となり、従来技術においては発光
閾値電圧は最低でも約20Vを要している。
An EL thin film has been obtained. However, the EL element obtained in this way does not emit light with high efficiency and cannot obtain high brightness unless the thickness of ELllMll(7) is approximately 5,000 or more. The reason for this is thought to be that the ELq film does not exhibit sufficient crystallinity at a film thickness of 4000 to 5000 Å or less. For thicker ELII films of about 5,000 people or more, a considerably high voltage is required to apply an electric field that enables collisional excitation by electrons, and in conventional technology, the emission threshold voltage requires at least about 20 V. .

より低電圧の動作を可能とするためには、より薄膜EL
llllllにおいて結晶性を改善することが有効と考
えられる。このような考えに基づき2本発明者等は先に
GaAsやGeの単結晶基板上に格子整合したZnSe
−Mn単結晶層を分子線エピタキシャル成長法を用いて
エピタキシャル成長させ、EL素子を試作したところ、
5v前後の低閾値電圧で高効率・高輝度の発光が可能な
素子が得られた。この動ゲニ特性はEL素子のIC直接
駆動を可能にする優4.たものであるが、基板材料のG
a A sやGeのが結晶は非常に高価であり、また大
面積のものは得難い。このことは安価な大面[7のEL
表示装置−の実現に対する妨げになる。
In order to enable lower voltage operation, thinner film EL
It is considered effective to improve crystallinity in lllllll. Based on this idea, the present inventors first developed lattice-matched ZnSe on a GaAs or Ge single crystal substrate.
- When a Mn single crystal layer was epitaxially grown using molecular beam epitaxial growth method and an EL device was prototyped,
A device capable of emitting light with high efficiency and high brightness was obtained with a low threshold voltage of around 5V. This dynamic characteristic is an advantage that enables direct IC driving of EL elements. However, the G of the substrate material
Crystals of aAs and Ge are very expensive, and large-area crystals are difficult to obtain. This means that an inexpensive large surface [7 EL
This hinders the realization of a display device.

(C1発明の目的 本発明は以上の点に鑑み、安価な非単結晶性の基板を用
いながら低電圧(IOV以下)での駆襄。
(C1 Purpose of the Invention In view of the above points, the present invention provides a method for driving at low voltage (IOV or lower) while using an inexpensive non-single crystal substrate.

が可能な直流駆0型EL素子の製造方法を提供すること
を目的とオるものである。
The purpose of the present invention is to provide a method for manufacturing a DC-driven type 0 EL element.

(d1発明の構成 本発明によるエレクトロルミネッセンス素子の製造方法
は、II−Vl族化合物母体に発光中心を形成する活性
物質(添加して成るエレクトロルミ4ソセンス薄膜を非
単結晶性の基板上に形成するに当り、前記*aの各構成
元素単体を独立に分子線発生用セル中にt=Vし、真空
中において各セルより発生させた分子線をそれぞれ前記
基板へ照射することにより前記薄膜の成長を行うことを
特徴とするものである。即ち1本発明においては、所6
胃分子線エピタキシャル成長法を用いてE、L薄膜を非
単結晶性の基板上に成長させるものであって。
(d1 Structure of the Invention The method for manufacturing an electroluminescent device according to the present invention is to form an electroluminescent thin film on a non-single crystal substrate by adding an active substance (active substance) that forms a luminescent center to a II-Vl group compound matrix. In doing so, each component element *a above is independently placed in a molecular beam generation cell at t=V, and the molecular beams generated from each cell are irradiated onto the substrate in vacuum to form the thin film. In other words, in the present invention, 6.
The E,L thin film is grown on a non-single crystal substrate using gastric molecular beam epitaxial growth.

このような基板上では成長する膜の結晶性は真空蒸着の
場合と大差ないと予想されるのに対し、実際に成長され
たELII論は特に<111>方向に沿って配向した極
めて優れた結晶性を呈することを見出して本発明がなさ
れたのである。ZnS。
The crystallinity of the film grown on such a substrate is expected to be not much different from that of vacuum evaporation, but the ELII theory that was actually grown shows extremely good crystallinity, especially oriented along the <111> direction. The present invention was made based on the discovery that the material exhibits the same characteristics as the above. ZnS.

Zn5eのようなIf−VI族化合物を主成分とするE
LII膜では*  Z ”+  S−S e単体の蒸気
圧は成長温度においては前記化合物の蒸気圧よりずっと
高いため、特に基板を十分高い温度に加熱した状態下で
はこれら単体は成長せず、基板上において生成された前
記化合物のみが基板上に被着され。
E whose main component is an If-VI group compound such as Zn5e
In the LII film, the vapor pressure of *Z ''+ S-S e alone is much higher than that of the above-mentioned compound at the growth temperature, so these alone do not grow, especially when the substrate is heated to a sufficiently high temperature, and the substrate Only the compound produced above is deposited onto the substrate.

結晶成長の生じ易い<llt>方向に沿って薄膜が成長
する結果、良好な結晶性を呈する膜が得られるものと考
えられる。かくして結晶性に優れたELIIIlllを
例えばITO被覆ガラス基板上に形成でき、これをもっ
て直流駆動型EL素子を構成することにより、10V以
下の低電圧駆動で十分な輝度のEL全発光実現できるの
である。
It is thought that as a result of the thin film growing along the <llt> direction in which crystal growth tends to occur, a film exhibiting good crystallinity is obtained. In this way, ELIIIll with excellent crystallinity can be formed on, for example, an ITO-coated glass substrate, and by constructing a DC drive type EL element with this, full EL light emission with sufficient brightness can be achieved with low voltage drive of 10 V or less.

(El)発明の実施例 次に本発明実於例を図面に沿って説明する。(El) Examples of the invention Next, an example of the present invention will be explained along with the drawings.

本発明で基板上にELII膜を形成するのに使用する分
子線エピタキシャル成長装置の基本構成を第1図に示す
。この成長装置自体は周知のものであって、超高真空へ
ルジャー1内に基板2を配置して、成長すべき卜′膜の
構成元素単体を個々に分子線発′生用セル3,4.5中
にチャージし、各セルからの分子ビームを基板1に照射
して成長を行うものである。各支ル3,4.5の周囲は
液体窒素のシェラウド6で囲まれ、冷却されており、成
長中に周囲から不歓な蒸気が発生するのが防がれている
。7はシャッタであり、外部からの操作で所用期間の、
み基板上への分子線成長を実施できるように構成されて
いる。基板2は例えば0.2μ厚のITO被覆ガラス基
板であり1分子線成長装置内ではヒータが付設され温度
制御された基板ホルダ8上に設置される。本実施例では
成長中の基板温度は530℃に保たれ、  Zn3e−
MnllJ膜の成長が行われた。分子線セル3.4.5
中にはそれぞれZn、Se、Mnが配置され、各々独立
に付設されたヒータによって温度制御がなされ、2nセ
ル3は340℃、Seセル4は160〜170℃、Mn
セル5は600℃とされた。成長中のペルジャー1内の
真空度は望ましくは10のマイナス8乗T、orr程度
以下であるが、10のマイデフ6乗Torr程度でも結
果には大差は認められなかった。この操作によりITO
基板2上にはMnドープのZn5e多結晶薄膜が成長す
る。成長した膿は電子線回折測定の結果(111)面を
示す鋭い単一の回折ピークが見られ、非常に良好な結晶
性を示していることがi11認された。本実施例では、
ZnSe−Mn薄膜は厚さ0.2μに成長された。その
後、このELillll上にA1電極膜を厚さ0.3μ
に真空蒸着により被着し、EL素子用基板を完成した。
FIG. 1 shows the basic configuration of a molecular beam epitaxial growth apparatus used in the present invention to form an ELII film on a substrate. This growth apparatus itself is a well-known one, in which a substrate 2 is placed in an ultra-high vacuum herger 1, and molecular beam generation cells 3 and 4 are used to individually separate the constituent elements of the film to be grown. .5, and growth is performed by irradiating the substrate 1 with molecular beams from each cell. Each support 3, 4.5 is surrounded and cooled by a sheroud 6 of liquid nitrogen to prevent unwanted vapors from being generated from the surrounding area during growth. 7 is a shutter, which can be operated from the outside to determine the required period.
It is configured so that molecular beam growth can be performed on a substrate. The substrate 2 is, for example, an ITO-coated glass substrate with a thickness of 0.2 μm, and is placed on a temperature-controlled substrate holder 8 equipped with a heater in the single molecular beam growth apparatus. In this example, the substrate temperature during growth was kept at 530°C, and Zn3e-
Growth of MnllJ film was performed. Molecular beam cell 3.4.5
Zn, Se, and Mn are placed inside, and the temperature is controlled by independently attached heaters.
Cell 5 was set at 600°C. The degree of vacuum in the Pelger 1 during growth is preferably about 10 to the minus 8th power T, orr, but even if it is about 10 to the 6th power Torr, no significant difference was observed in the results. With this operation, ITO
A Mn-doped Zn5e polycrystalline thin film is grown on the substrate 2. As a result of electron diffraction measurement, the grown pus was found to have a single sharp diffraction peak representing the (111) plane, and was found to exhibit very good crystallinity. In this example,
ZnSe-Mn thin films were grown to a thickness of 0.2μ. After that, an A1 electrode film was placed on this ELilll to a thickness of 0.3 μm.
The substrate for the EL element was completed by vacuum evaporation.

112図に本実施例により作成したEL素子の断面構造
の概略図を示す。同図にて、10はガラス基板を示し、
11は厚さ0.2μのITO薄膜。
FIG. 112 shows a schematic diagram of the cross-sectional structure of the EL element produced according to this example. In the figure, 10 indicates a glass substrate,
11 is an ITO thin film with a thickness of 0.2μ.

12は同じく厚さ0.2μのZnSe−Mn薄M、13
は厚さ0.3μのAl1膿である。このEL素子のAI
薄欣側に負、ITO薄膜側に正の電圧を印加したところ
、[(I!電圧5■程度で中心波長5700〜5800
人の黄色の発光が始まり。
12 is ZnSe-Mn thin M with a thickness of 0.2μ, 13
is an Al1 pus with a thickness of 0.3μ. AI of this EL element
When a negative voltage was applied to the thin film side and a positive voltage was applied to the ITO thin film side, the center wavelength was 5700 to 5800 at a voltage of about 5
A person's yellow luminescence begins.

9■で30〜60fLの輝度での発光がガラス裁板10
を通して観察された。第3図はこのEL索子の発光特性
を示し、横軸は印加電圧、縦軸は発光輝度を示す。同図
中で曲線Aは本実施例のEL素子9曲#lBは従来の真
空蒸着によりI T Ou kZ上に形成したEL薄膜
を用いた素子の特性をそれぞれ示す。このLし較から明
らかなように9本R明によれば低電圧で十分な輝度の発
光が得られこう以上の実施例においては、ITO基板上
にE L薄膜を分子線成↓、法でもって成長しているが
、他の任意の非単結晶、性の基板上に同様に成長した場
合でも本発明のクツ−・果は得られるものである。即ち
本発明では2分イ線エピタキシャル成長法としては周知
の方・法を、tr−vt族化合物EL用母体材料の薄膜
を非単結晶性の基板上へ成長するのに適用した場合に、
予想を瘍かに越える結晶性が得られるため、単結晶EL
薄膜を用いたEL素子に匹敵する特性を実現できること
を見出した点に最大の特徴があるのであって、従って基
板材料等には特別の制約は無い。
The glass cutting plate 10 emits light with a brightness of 30 to 60 fL at 9■.
observed through. FIG. 3 shows the luminescence characteristics of this EL cell, where the horizontal axis shows the applied voltage and the vertical axis shows the luminance. In the figure, curve A shows the characteristics of the EL element of this example, and curve #1B shows the characteristics of the element using the EL thin film formed on IT Ou kZ by conventional vacuum deposition. As is clear from this L comparison, light emission with sufficient brightness can be obtained with low voltage according to the 9-light R light. However, the results of the present invention can be obtained even when the crystal is grown on any other non-single crystal substrate. That is, in the present invention, when a well-known bisected line epitaxial growth method is applied to grow a thin film of a tr-vt group compound EL host material on a non-single crystal substrate,
Because crystallinity far exceeds expectations, single-crystal EL
The greatest feature is that it has been found that characteristics comparable to those of EL elements using thin films can be achieved, and therefore there are no particular restrictions on the substrate material, etc.

(f1発明の効果 以上より明らかな如く、オ発明によれば、  I’17
0基板の如き安価で大面積のものも容易に得られる任意
の基板を用いて、低電圧で高輝度が得られる高効率の直
流駆動型EL素子を実現できると云う優れた効果が得ら
れるものである。
(Effects of the f1 invention As is clear from the above, according to the f1 invention, I'17
It is possible to achieve the excellent effect of realizing a highly efficient DC-driven EL element that can obtain high brightness at low voltage using any inexpensive and easily obtained large-area substrate such as a zero substrate. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施に使用する分子線成長装たEL素
子の断面構造の概略図、第3図はこのEL素子の発光特
性を示し、横軸は印加電圧、vl軸は発光輝度を示す。 3.4.5−・−・分子線に主用セル 10−−−−−−−・−−−−−・−ガラス基板11−
−−−−−−−− ・−I T 0111112−−−
−−・・・−m=−・−ELIIIm13・−−−m=
−−・−−−−−−A、 l II膜’、、? 、’、
、Eプ 簿 1 口 、1. 3  e+ Otθ           どρ t1’r力[:r電丘(V)
Fig. 1 is a schematic diagram of the cross-sectional structure of an EL device using molecular beam growth used in the practice of the present invention, and Fig. 3 shows the emission characteristics of this EL device, with the horizontal axis representing the applied voltage and the vl axis representing the luminance. show. 3.4.5 - Main cell 10 for molecular beam - Glass substrate 11 -
---------- ・-I T 0111112---
−−・−m=−・−ELIIIm13・−−m=
--・------A, l II membrane',,? ,',
, Epbook 1 entry, 1. 3 e+ Otθ doρ t1'r force [:r electric hill (V)

Claims (1)

【特許請求の範囲】[Claims] 1l−Vl族化合物母体に発光中心を形成する活性物質
を添加して成るエレクトロルミネッセンス薄膜を非単結
晶性の基板上に形成するに当り、前記1IIIIの各構
成元素単体を独立に分子線発生用セル中に配置し、真空
中において各セルより発生させた分子線をそれぞれ前記
基板へ照射することにより前記S膿の成長を行うことを
特徴とするエレクトロルミネッセンス素子の製造方法。
When forming an electroluminescent thin film on a non-single-crystal substrate by adding an active substance that forms a luminescent center to a 1l-Vl group compound matrix, each constituent element of 1III above is independently used for molecular beam generation. A method for manufacturing an electroluminescent device, characterized in that the S pus grows by irradiating the substrate with molecular beams generated from each cell in a vacuum.
JP56214045A 1981-12-26 1981-12-26 Method of producing electroluminescent element Granted JPS58112299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56214045A JPS58112299A (en) 1981-12-26 1981-12-26 Method of producing electroluminescent element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56214045A JPS58112299A (en) 1981-12-26 1981-12-26 Method of producing electroluminescent element

Publications (2)

Publication Number Publication Date
JPS58112299A true JPS58112299A (en) 1983-07-04
JPS6314832B2 JPS6314832B2 (en) 1988-04-01

Family

ID=16649352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56214045A Granted JPS58112299A (en) 1981-12-26 1981-12-26 Method of producing electroluminescent element

Country Status (1)

Country Link
JP (1) JPS58112299A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6180792A (en) * 1984-09-28 1986-04-24 宮田 直之 Manufacture of electroluminescence element
JPS61211993A (en) * 1985-03-14 1986-09-20 富士通株式会社 Manufacture of el panel
JPS62160694A (en) * 1986-01-08 1987-07-16 株式会社小松製作所 Thin film el device and manufacture of the same
JPH0845666A (en) * 1995-08-11 1996-02-16 Komatsu Ltd Thin film el element
JPH0845664A (en) * 1995-08-11 1996-02-16 Komatsu Ltd Manufacture of thin film el element
WO2007139032A1 (en) 2006-05-26 2007-12-06 Fujifilm Corporation Surface emitting electroluminescent element
JP2008311231A (en) * 2008-06-26 2008-12-25 Seiko Epson Corp Film forming device, method of manufacturing electronic device, and method of manufacturing electro-optic device

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
J APPL PHY=1980 *
JAPANESE JOURNAL OF APPLIED PHYSICS=1978 *
JAPPL PHYS=1981 *
THIN SOLID FILMS=1979 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6180792A (en) * 1984-09-28 1986-04-24 宮田 直之 Manufacture of electroluminescence element
JPH0533513B2 (en) * 1984-09-28 1993-05-19 Naoyuki Myata
JPS61211993A (en) * 1985-03-14 1986-09-20 富士通株式会社 Manufacture of el panel
JPS62160694A (en) * 1986-01-08 1987-07-16 株式会社小松製作所 Thin film el device and manufacture of the same
JPH0845666A (en) * 1995-08-11 1996-02-16 Komatsu Ltd Thin film el element
JPH0845664A (en) * 1995-08-11 1996-02-16 Komatsu Ltd Manufacture of thin film el element
WO2007139032A1 (en) 2006-05-26 2007-12-06 Fujifilm Corporation Surface emitting electroluminescent element
US7990057B2 (en) 2006-05-26 2011-08-02 Fujifilm Corporation Surface emitting-type electroluminescent device
JP2008311231A (en) * 2008-06-26 2008-12-25 Seiko Epson Corp Film forming device, method of manufacturing electronic device, and method of manufacturing electro-optic device

Also Published As

Publication number Publication date
JPS6314832B2 (en) 1988-04-01

Similar Documents

Publication Publication Date Title
US5773085A (en) Method of manufacturing ternary compound thin films
JPH0152910B2 (en)
EP0195395A2 (en) Electroluminescent device
JPS58112299A (en) Method of producing electroluminescent element
EP0189157B1 (en) Thin film electroluminescence device
US5372839A (en) Process for preparing an electroluminescent film
JP5019326B2 (en) Method for producing MgaZn1-aO single crystal thin film
US7923288B2 (en) Zinc oxide thin film electroluminescent devices
JPH0158839B2 (en)
JPH0485388A (en) Organic electroluminescent element
JP3541690B2 (en) Light emitting device manufacturing method
JP3514542B2 (en) Brightness modulation type diamond light emitting device
Khomchenko et al. Doping the thin films by using the original Close Space Sublimation method.
JPS60211798A (en) Electroluminescent element
JPS59169095A (en) Electroluminescent element
JPS6244984A (en) Thin film electroluminescence element and manufacture thereof
JP2779427B2 (en) Method for producing amorphous film for electroluminescence
Kobayashi et al. Modulation‐doped ZnSe: Mn dc thin‐film electroluminescent devices
JPS61253797A (en) Manufacture of electroluminescence element
JPH06251873A (en) Forming method of electroluminescent element
JPH0290493A (en) Alternating current drive type thin film el element
JP2007149519A (en) Light-emitting element and display device
JPS618895A (en) Electric field light emitting display element
JPH0636876A (en) Electroluminescent element
JPS61253794A (en) Manufacture of light emitting element