JPS60211798A - Electroluminescent element - Google Patents

Electroluminescent element

Info

Publication number
JPS60211798A
JPS60211798A JP59066438A JP6643884A JPS60211798A JP S60211798 A JPS60211798 A JP S60211798A JP 59066438 A JP59066438 A JP 59066438A JP 6643884 A JP6643884 A JP 6643884A JP S60211798 A JPS60211798 A JP S60211798A
Authority
JP
Japan
Prior art keywords
buffer layer
substrate
layer
light
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59066438A
Other languages
Japanese (ja)
Inventor
清 高橋
誠 小長井
二郎 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shingijutsu Kaihatsu Jigyodan
Original Assignee
Shingijutsu Kaihatsu Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shingijutsu Kaihatsu Jigyodan filed Critical Shingijutsu Kaihatsu Jigyodan
Priority to JP59066438A priority Critical patent/JPS60211798A/en
Publication of JPS60211798A publication Critical patent/JPS60211798A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、エレクトロルミネッセンス素子(ELJ子)
に係り、基板上に低抵抗化したバッファ層を介し℃発光
1−を形成した構成に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an electroluminescent device (ELJ device)
The present invention relates to a structure in which a .degree. C. light emitting device 1- is formed on a substrate via a buffer layer having a low resistance.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

EL素子は周知のよ5に、ZnS 、Zn5a、 Cd
5f)ような■〜■族化合物に発光中心を形成する活性
物質としてMrL%Cr、 TCEr、 T、、 Y、
Is等の遷移金属や希土類金属を添加した薄膜を用い、
電場印加により電子を発光中心に衝突させて発光を得る
ものである。従来のEL水素子構造としては次のような
ものがある。
EL elements are well-known5, including ZnS, Zn5a, and Cd.
5f) MrL%Cr, TCEr, T, Y, as active substances that form luminescent centers in group ■~■ compounds such as
Using a thin film doped with transition metals such as Is and rare earth metals,
Luminescence is obtained by causing electrons to collide with a luminescent center by applying an electric field. Conventional EL hydrogen molecular structures include the following.

(α)母体に活性物質を添加したエレクトロルミネッセ
ンス素子(EL水素子の上下に絶縁層を設は交流電圧の
印加により発光中心を電子の衝突により励起する交流駆
動型で、その駆動に1000v−ioov程度の高電圧
を必要とする。
(α) An electroluminescent element with an active substance added to the matrix (an insulating layer is provided above and below the EL hydrogen atoms; it is an AC-driven type in which the luminescent center is excited by the collision of electrons when an AC voltage is applied, and the driving requires 1000 V-IOOV). Requires high voltage.

(J) 電極膜に接してEL水素子設け、直流電圧印加
により負電極側からKL薄膜へ注入される電子で発光中
心を衝突励起させて発光させる直流駆動型でありs z
nsmのような母体化合物にM、のような活性物質を添
加した物質を抵抗加熱法によりガラス基板上のIn2O
5°8302 (所謂ITO)から成る透明電極膜へ真
空蒸着法によって被着したものであるが、このものはE
L薄膜の厚みを5000A以上しないと発光せず高輝度
が得られない。これはう000X以下の膜厚ではEL薄
膜が十分な結晶性を呈さないためと考えられる。そして
5000A程度或いはそれ以上の厚いEL薄膜において
電子による衝突励起を可能にする電場を印加する九はか
なりの高い電圧が必要となり1発元閾値電圧は最低でも
2(1’要し℃いる。
(J) It is a DC drive type in which an EL hydrogen element is provided in contact with the electrode film, and when a DC voltage is applied, electrons injected from the negative electrode side into the KL thin film collide and excite the luminescent center to emit light.
A material obtained by adding an active substance such as M to a base compound such as nsm is heated on a glass substrate using a resistance heating method.
This is a transparent electrode film made of 5°8302 (so-called ITO) that is deposited by vacuum evaporation.
Unless the thickness of the L thin film is 5000A or more, no light will be emitted and high brightness will not be obtained. This is considered to be because the EL thin film does not exhibit sufficient crystallinity when the film thickness is less than 000X. In order to apply an electric field that enables collisional excitation by electrons in a thick EL thin film of about 5000 A or more, a considerably high voltage is required, and the threshold voltage for one shot is at least 2 (1'°C).

(cl G(lA#やGeの単結晶基板上に格子整合し
たzns 、−M、単結晶層よりなるKL薄膜を分子線
エピタキシャル成長法を用いて成長させたものがある。
A KL thin film consisting of a lattice-matched zns, -M, single crystal layer is grown on a single crystal substrate of (clG(lA#) or Ge using the molecular beam epitaxial growth method.

このものはEL薄膜が薄く結晶性も良℃・ため5v前後
の低閾値電圧で高効率、高輝度の発光が可能な素子が得
られる。しかしながら基板材料のGaA。
Since this EL thin film is thin and has good crystallinity at a temperature of .degree. C., it is possible to obtain an element capable of emitting light with high efficiency and high brightness at a low threshold voltage of around 5V. However, the substrate material is GaA.

やGeの単結晶は非常釦高価であり、また大面積のもの
は得難いとい5問題がある。さらにGaA#は単結晶で
はあるが基板の表面は加工によって結晶に占;れを生じ
ているから、基板に接したZn8g−Mn層は非結晶の
ガラス基板を用いた場合に比べて少なくはあるが結晶が
乱れ易く基板の近くでは輝度が低下するとい5問題もあ
る。
Single crystals of Ge and Ge are extremely expensive, and large-area crystals are difficult to obtain. Furthermore, although GaA# is a single crystal, the surface of the substrate is occupied by crystals due to processing, so the Zn8g-Mn layer in contact with the substrate is smaller than when an amorphous glass substrate is used. However, there are also problems in that the crystals are easily disordered and the brightness decreases near the substrate.

(d) 安価な基板側斜としてガラスを用い、このガラ
ス基板上にITO電極膜を介して分子線エピタキシャル
成長法によりZnS、−Mn単結晶層を形成することも
研究されているが、非結晶のガラス基板上に直接zns
じMn結晶層を形成するため、結晶格子が整容され良好
な発光性が得られる忙は成程度の厚さが必要となり1発
光層の厚さを増し、全体に発光中心となる活性物質Mn
が分散されているにもかかわらず非結晶のガラス基板に
接したznsgの結晶性が不良でありかつ結晶の乱れが
輝度を減衰するため、基板に近い位置のMnは発光して
も輝度を上げることは出来ないという問題がある。
(d) Research has also been conducted on using glass as an inexpensive substrate and forming a ZnS, -Mn single crystal layer on this glass substrate by molecular beam epitaxial growth via an ITO electrode film. ZNS directly on glass substrate
In order to form the same Mn crystal layer, the crystal lattice is well-organized and a sufficient thickness is required to obtain good luminescence, so the thickness of one luminescent layer is increased, and the active substance Mn, which is the luminescent center, is added to the entire layer.
Although the ZNSG is dispersed, the crystallinity of the ZNSG in contact with the amorphous glass substrate is poor and the disorder of the crystal attenuates the brightness, so even if Mn near the substrate emits light, it increases the brightness. The problem is that it is not possible.

tg+ ガラス基板上にITO電極膜を介してZ、S。tg+ Z, S via ITO electrode film on glass substrate.

を主体としたバッファ層を形成しこのバッファ層上にZ
nS、−Mn発光層を形成することによりバッファ層で
結晶性を整え″C許抄佇す帰低電圧で輝度を高くしよう
とする方法があり、バッファ層の低抵抗化のためにG、
を添加する方法がある。 しかしながらバッファ層の介
在は、その厚さ分だけ電気抵抗が高くなるため、これを
可及的に低くしなければバッファ層を介在させた意味が
なくなる。またG、の添加量を増せば抵抗は低(なるが
z?&s#の結晶性がそこなわれるという問題もある。
Form a buffer layer mainly composed of Z
There is a method of increasing the brightness at a low voltage by adjusting the crystallinity in the buffer layer by forming an nS, -Mn light-emitting layer.
There is a way to add. However, since the presence of the buffer layer increases the electrical resistance by the thickness thereof, there is no point in providing the buffer layer unless this is made as low as possible. Furthermore, if the amount of G added is increased, the resistance will be low (although there is a problem that the crystallinity of z?&s# will be impaired).

〔発明の目的〕[Purpose of the invention]

本発明は上述のような問題に鑑み、基板上に■〜■族化
合物例えばz1%S−を主体とし低抵抗化のためにB 
、 AI、 In、 Tjの何れか一種を添加したバッ
ファ層を形成し、このバッファ層上に■〜■族化合物例
えばznS−に発光中心となる活性物質例えばM、を添
加した発光層を形成したことにより低抵抗化したバッフ
ァ層によって結晶性を整え結晶性の最も良くなった位置
に発光層を形成し発光層の厚さを薄くして低電圧での動
作を可能圧するとともに高輝度の発光を得ようとするも
のである。
In view of the above-mentioned problems, the present invention is based on a compound of group 1 to 2, such as z1%S-, on a substrate, and B to lower resistance.
, AI, In, and Tj, and on this buffer layer, a light-emitting layer was formed in which an active substance serving as a luminescent center, for example, M, was added to a compound of the ■~■ group, for example, znS-. As a result, the crystallinity is adjusted using a buffer layer with low resistance, and the light emitting layer is formed at the position where the crystallinity is the best.The thickness of the light emitting layer is reduced to enable operation at low voltage and to emit light with high brightness. That's what you're trying to get.

〔発明の概要〕[Summary of the invention]

本発明は、基板上に■〜■族化合物を主体とし低抵抗化
のためK B 、 A1. In、 TA’の何れか一
種よりなる導電性物質を添加したバッファ層を形成し。
In the present invention, compounds of groups 1 to 2 are mainly formed on a substrate, and K B , A1. A buffer layer is formed to which a conductive substance made of either In or TA' is added.

このバッファ層上[11〜■族化合物に発光中心となる
活性物質を添加した発光層を形成し、低抵抗化したバッ
ファ層で結晶性を整え低電圧で結晶性の最良の位置に発
光層を形成するものである。
On this buffer layer, a light-emitting layer is formed by adding an active substance that becomes a light-emitting center to a group 11-III compound, and the low-resistance buffer layer adjusts the crystallinity, and the light-emitting layer is formed at the best position of crystallinity using a low voltage. It is something that forms.

〔発明の構成〕[Structure of the invention]

本発明に用いられる基板としては、ガラス。 The substrate used in the present invention is glass.

GaA、単結晶やSi単結晶等がある。バッファ層に用
ある。バッファ層の厚さは0.3μm以上必要であり。
Examples include GaA, single crystal, and Si single crystal. Used for buffer layer. The thickness of the buffer layer needs to be 0.3 μm or more.

バッファ層の膜厚が薄い場合は格子不整合、不純物混合
のために結晶性が劣ることになり、また膜厚が2μm以
上になると電気抵抗が増大し発光所要電圧を増すことに
なる。バッファ層の低抵抗化のために添加される導電性
物質としては、B、Al。
If the buffer layer is thin, the crystallinity will be poor due to lattice mismatch and impurity mixture, and if the buffer layer is thicker than 2 μm, the electrical resistance will increase and the voltage required for light emission will increase. Examples of conductive substances added to lower the resistance of the buffer layer include B and Al.

In、TI があり、これらのうちの何れか−・種がバ
くなるとznS−の結晶性が不良となる。また発光層に
用いられる■〜■族化合物はバッファ層と同一の化合物
が用いられ、0.1%〜0.5 %の活性物質としての
Mnが添加される。活性物質としてはMn、”r s 
Tb * Ers Tmb Yb等がある。発光層の厚
さはOoうμm−0,5μmであり0.2μm以下であ
ると輝度が低くなり0.6μm以上になると輝度は高く
なるが所要電圧も高くなる。また電極としては、基板が
ガラスの場合は基板とバッファ層間に1n20s、 5
n02よりなるITOと請われる透明電極が用いられる
There are In and TI, and if any of these seeds become brittle, the crystallinity of znS will be poor. Furthermore, the same compound as that for the buffer layer is used as the compound of groups 1 to 2 for the light emitting layer, and 0.1% to 0.5% of Mn as an active substance is added. The active substance is Mn, “r s
There are Tb*Ers, Tmb, Yb, etc. The thickness of the light emitting layer is 0.5 μm - 0.2 μm or less, the brightness will be low, and if it is 0.6 μm or more, the brightness will be high but the required voltage will also be high. In addition, as an electrode, if the substrate is glass, 1n20s between the substrate and the buffer layer, 5
A transparent electrode made of ITO made of n02 is used.

基板がGaA、の場合は* GaA#基板上に直接バッ
ファ層が形成される。
When the substrate is GaA, the buffer layer is formed directly on the *GaA# substrate.

〔発明の実施例〕[Embodiments of the invention]

次に本発明の詳細な説明する。 Next, the present invention will be explained in detail.

実施例1 牙1図に示すように、ガラス基板111上に厚さ0゜2
μmのITO透明電極膜(2)、低抵抗用にItsをド
ープしたZfiS−よりなる厚さ0.3μmのバッフ7
層13)。
Example 1 As shown in FIG.
A 0.3 μm thick buffer 7 made of μm ITO transparent electrode film (2) and ZfiS doped with Its for low resistance.
Layer 13).

Mn0.11をドープしたZfiS−よりなる厚さo、
uttmノ発光層+41.Al蒸着による厚さO0歿珈
の電極層(5)が順次形成されている。そしてバッファ
層(3)と発光層14)はZs 、 S g 、 Mn
、I%の各元素単体を独立に分子線エピタキシャル成長
法によって形成させたものである。
thickness o of ZfiS- doped with Mn0.11;
uttm luminescent layer +41. An electrode layer (5) having a thickness of O0 is sequentially formed by Al vapor deposition. The buffer layer (3) and the light emitting layer 14) are made of Zs, Sg, Mn
, I% of each element was formed independently by molecular beam epitaxial growth.

次に実施例1の構造を有するEL素子を分子線エピタキ
シャル成長装置を用いて製造する方法を矛2図について
説明する。
Next, a method for manufacturing an EL element having the structure of Example 1 using a molecular beam epitaxial growth apparatus will be explained with reference to FIG.

この成長装置自体は周知のものであって、超高真空ペル
ジャー(71内に基板(1)を配置して、成長すべき薄
膜の構成元素単体Zr&、8..M、、■露を個りに分
子線発生用セル+81 +911(l 1ull中にチ
ャージし1%各セル181191001 ttllから
の分子ビームを基板Illに照射して成長を行うもので
ある。各セル+81191110111υの周囲は液体
窒素のシュラウド(121で囲まれ、冷却されており。
This growth apparatus itself is well known, and the substrate (1) is placed in an ultra-high vacuum Pelger (71), and the constituent elements of the thin film to be grown are individually exposed to Zr&, 8...M, . The molecular beam generation cells +81 +911 (l) are charged in 1 ull, and the molecular beam from each cell 181191001 ttll is irradiated onto the substrate Ill to perform growth. Each cell +81191110111υ is surrounded by a shroud of liquid nitrogen ( 121 and is cooled.

成長中に周囲から不要な蒸気が発生するのが防がれてい
る。Uはシャッタであり、外部からの操作で所要期間の
み基板ttllへの分子線成長を実施できるよ5に構成
され℃いる。基板…は例えば0.2μm厚さのITO被
覆ガラス基板であり1分子線成長装置内ではヒータが付
設され温度制御された基板ホルダ(141上に設置され
る。本実施例では成長中の基板+11の温度は550C
に保たれ、2ルS 、−1nバッファ層131. Zn
S、−Mn発光層(4)の成長が順次行われる。分子線
セル(81f9+ ffα[]J中にはそれぞれZ3.
Ss、Mn、I、が元素単体で配置され、各々独立に付
設されたヒータによって温度制御がなされ、znセル(
8)は5#OU、8gセル19)は160〜170 C
、Mnセル+1(lは600C,Iルセルσυは300
Cに保たれている。成長中のペルジャー(71内の真空
度は望ましくは10Torr程度以下であるが、10T
orr程度でも結果には大差は認められなかった。次に
発光層(4)上忙はAI電極膜(5)を真空蒸着により
被覆する。
Unwanted steam from the surrounding area is prevented during growth. U is a shutter, which is configured at 5° C. so that molecular beam growth can be performed on the substrate ttll only for a required period by external operation. The substrate... is, for example, an ITO-coated glass substrate with a thickness of 0.2 μm, and is placed on a temperature-controlled substrate holder (141) equipped with a heater in the single molecular beam growth apparatus. The temperature of is 550C
2LS, -1N buffer layer 131. Zn
Growth of the S, -Mn light-emitting layer (4) is performed sequentially. In the molecular beam cell (81f9+ffα[]J, Z3.
Ss, Mn, and I are arranged as single elements, and the temperature is controlled by independently attached heaters, and the Zn cell (
8) is 5#OU, 8g cell 19) is 160-170C
, Mn cell +1 (l is 600C, I cell συ is 300
It is kept at C. The degree of vacuum in the Pelger (71) during growth is preferably about 10 Torr or less, but
No significant difference was observed in the results even at ORR level. Next, the light emitting layer (4) is covered with an AI electrode film (5) by vacuum deposition.

実施例2 矛)図に示すものは、単結晶のGaAs基板11+上に
Example 2: The one shown in the figure is on a single-crystal GaAs substrate 11+.

InをドープしたZ、S、よりなるバッファ層131 
、 MnをドープしたZ、8gよりなる発光層(4)が
順次分子線エピタキシャル成長法によって形成され、基
板il+と発光層(4)圧夫々A、−G、−電電極α9
とAμ電極(161とが蒸着形成されたものである。
Buffer layer 131 made of In-doped Z and S
, Mn-doped Z, a light emitting layer (4) consisting of 8 g is sequentially formed by molecular beam epitaxial growth, and the substrate il+ and the light emitting layer (4) are connected to electrodes A, -G, and -electrode α9, respectively.
and Aμ electrode (161) are formed by vapor deposition.

〔発明の実験例〕[Experimental example of invention]

バッファ層に導電性物質としてInを添加した実施例1
のEL累子<11と、実施例1においてバッファ層にI
n1C代えてGaを!添・、加したEL素子(II)と
、実施例1においてバッファ層に導電性物質を全く添加
しないEL素子(Jを、バッファ層の厚さを変化させな
がらその輝度を比較した結果を矛4図に示す。実験の方
法は、夫人の素子の輝度を受元累子<Si太陽電池)の
短絡電流により測定し、ii子効率として表わした。
Example 1 in which In was added as a conductive substance to the buffer layer
In Example 1, I
Ga instead of n1C! The results of comparing the brightness of the added EL element (II) and the EL element (J) in which no conductive substance was added to the buffer layer in Example 1 while changing the thickness of the buffer layer are compared. The method of the experiment was to measure the brightness of the element using the short circuit current of the receiver <Si solar cell), and express it as the ii element efficiency.

この矛舖図より、バッファ層に導電物質Inを添加した
(I)が最も効率が良< b Ga添加(1)が稍劣り
From this contradictory diagram, it can be seen that (I) in which the conductive material In is added to the buffer layer has the highest efficiency<b, and (1) in which Ga is added is slightly inferior.

導電性物質無添加の(Iは、バッファ層を介在させた効
果が殆んど表われていない。
In the case of (I) with no conductive substance added, the effect of interposing the buffer layer is hardly visible.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、基板上に■〜■族化合物を主体とし低
抵抗化のためにB 、 AI、 In、 Tlの何れか
一種よりなる導電性物質を添加したバッフ7層を形成し
、このバッファ層上Klf(〜■族化合物に発光中心と
なる活性物質を添加した発光層を形成したから、基板上
に形成されたバッファ層の結晶性が最良になった位置に
発光層を形成することにより発光層の結晶性を高め高輝
度の発光を得ることが出来、しか本発光層は結晶格子が
整合されているから層の厚さを可及的に薄くすることが
出来。
According to the present invention, seven buff layers are formed on a substrate, which are mainly composed of compounds of groups 1 to 2 and to which a conductive substance made of any one of B, AI, In, and Tl is added to reduce resistance. Since the light-emitting layer is formed by adding an active substance that becomes a light-emitting center to the Klf (~■ group compound) on the buffer layer, the light-emitting layer is formed at the position where the crystallinity of the buffer layer formed on the substrate is the best. This makes it possible to improve the crystallinity of the light-emitting layer and obtain high-intensity light emission, and since the crystal lattice of this light-emitting layer is matched, the thickness of the layer can be made as thin as possible.

さら九、バッファ層釦は、低抵抗化のためにB。Also, the buffer layer button is B for lower resistance.

All、 In、 TIの何れか一種よりなる導電性物
質を添加したから、バッファ層の介在によっても抵抗値
が高くなることがなく、前述の発う′e層を薄く形成し
得ることと相まって発光閾値電圧を低くすることが出来
る。
Since the conductive material made of any one of All, In, and TI is added, the resistance value does not increase even with the presence of a buffer layer, and together with the ability to form the above-mentioned 'e layer thinly, light emission is improved. Threshold voltage can be lowered.

【図面の簡単な説明】[Brief explanation of the drawing]

矛1図は本発明の一実施例を示すエレクトロルミネツセ
ン不素子の拡大断面図、矛2図は同上素す図表である。 (l)0・基板、(3)・・バッファ層、14)・・発
光層。 バッフ1層の厚ぐ (7”m)
Figure 1 is an enlarged sectional view of an electroluminescent element showing an embodiment of the present invention, and Figure 2 is a diagram of the same. (l)0.Substrate, (3).Buffer layer, 14).Light emitting layer. Thickness of 1 layer of buff (7”m)

Claims (1)

【特許請求の範囲】[Claims] Ill 基板上に■〜■族化合物を主体とし低抵抗化の
ためにB 、 A1. L%、T/の何れか一種よりな
る導電性物質を添加したバッファ層を形成し、このバッ
ファ層上にトl族化合物に発光中心となる活性物質を添
加した発光層を形成したことを特徴とするエレクトロル
ミネッセンス素子。
B, A1. mainly composed of ■~■ group compounds on the Ill substrate to reduce resistance. A buffer layer is formed to which a conductive substance consisting of one of L% and T/ is added, and a light-emitting layer is formed on this buffer layer by adding an active substance serving as a luminescent center to a Tol group compound. Electroluminescent element.
JP59066438A 1984-04-03 1984-04-03 Electroluminescent element Pending JPS60211798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59066438A JPS60211798A (en) 1984-04-03 1984-04-03 Electroluminescent element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59066438A JPS60211798A (en) 1984-04-03 1984-04-03 Electroluminescent element

Publications (1)

Publication Number Publication Date
JPS60211798A true JPS60211798A (en) 1985-10-24

Family

ID=13315774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59066438A Pending JPS60211798A (en) 1984-04-03 1984-04-03 Electroluminescent element

Country Status (1)

Country Link
JP (1) JPS60211798A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993021744A1 (en) * 1992-04-16 1993-10-28 Kabushiki Kaisha Komatsu Seisakusho Thin-film el element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993021744A1 (en) * 1992-04-16 1993-10-28 Kabushiki Kaisha Komatsu Seisakusho Thin-film el element
US5641582A (en) * 1992-04-16 1997-06-24 Komatsu Ltd. Thin-film EL element
US5670207A (en) * 1992-04-16 1997-09-23 Komatsu Ltd. Forming a thin-film EL element

Similar Documents

Publication Publication Date Title
JP2879080B2 (en) EL device
JP2869446B2 (en) EL device
US5581150A (en) TFEL device with injection layer
US4326007A (en) Electo-luminescent structure
JPH0697704B2 (en) MIS type ZnS blue light emitting device
US4717858A (en) Thin film electroluminescence device
JPS60124397A (en) Electroluminescent element
JPS60211798A (en) Electroluminescent element
JPS58112299A (en) Method of producing electroluminescent element
US7923288B2 (en) Zinc oxide thin film electroluminescent devices
JPH077713B2 (en) Thin film EL device
JPH0485388A (en) Organic electroluminescent element
JPS59169095A (en) Electroluminescent element
JP3514542B2 (en) Brightness modulation type diamond light emitting device
JPS6244984A (en) Thin film electroluminescence element and manufacture thereof
JP2000173775A (en) Ultraviolet emission electroluminescent element and its manufacture
JPS60100398A (en) Thin film light emitting element
JPH067601B2 (en) Light emitting element
JPS5960874A (en) Field light emitting dispaly element
JPS6158194A (en) Method of producing zns:mn thin film el element
JPS61253797A (en) Manufacture of electroluminescence element
JPH0632300B2 (en) Method for manufacturing EL element
JPS618895A (en) Electric field light emitting display element
JPS60172196A (en) Electroluminescent element and method of producing same
JPS62157694A (en) Manufacture of thin film el device