JPS58112112A - Reference voltage circuit - Google Patents

Reference voltage circuit

Info

Publication number
JPS58112112A
JPS58112112A JP56215270A JP21527081A JPS58112112A JP S58112112 A JPS58112112 A JP S58112112A JP 56215270 A JP56215270 A JP 56215270A JP 21527081 A JP21527081 A JP 21527081A JP S58112112 A JPS58112112 A JP S58112112A
Authority
JP
Japan
Prior art keywords
transistor
voltage
reference voltage
circuit
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56215270A
Other languages
Japanese (ja)
Other versions
JPH0526208B2 (en
Inventor
Masashi Shoji
庄司 正志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP56215270A priority Critical patent/JPS58112112A/en
Publication of JPS58112112A publication Critical patent/JPS58112112A/en
Publication of JPH0526208B2 publication Critical patent/JPH0526208B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/30Regulators using the difference between the base-emitter voltages of two bipolar transistors operating at different current densities

Abstract

PURPOSE:To ensure a stable supply of the reference voltage over a wide range, by putting a resistance between the base of an output transistor of a band gap regulator and an earth to obtain a variable negative temperature coefficient. CONSTITUTION:A power supply terminal 1 is connected to an output terminal 3 of the reference voltage via a current supply circuit 2, and the terminal 3 is connected to an end of each of resistances 5 and 7 as well as to the collector of a transistor (TR)10 respectively. A common contact of the collector of a TR8 and the resistance 7 is connected to an earth terminal via a resistance 11. The negative temperature coefficient of an equation showing the reference voltage is variable by a resistance ratio R7/R11, and an optional negative temperature coefficient is obtained. Therefore the zero temperature coefficient is obtained for the reference output voltage by controlling the ratio R7/R11.

Description

【発明の詳細な説明】 本発明は半導体集積回路に用いらnる定電圧源として最
適な基準電圧回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a reference voltage circuit most suitable as a constant voltage source used in a semiconductor integrated circuit.

従来、半導体集積回路の基準電圧回路としてはツェナー
ダイオードによる定電圧回路とバンドギャップレギュレ
ータによる定電圧回路が一般に用いられている。前者は
ツェナーダイオードの降伏電圧を利用するもので、約5
V以上の基準電圧を得る場合に広く用いらnている。し
かし、この場合、半導体集積回路の製造上のプルセスで
ツェナーダイオード降伏電圧が決定され、このため約5
V以下の低電圧の降伏電圧をもつツェナーダイオ−ドを
半導体集積回路に作り込む場合には新次に付加的な製造
工程が必要となるためコストの上昇をまねく、シかもツ
ェナー電圧はその特性上雑音鑞圧が大きい仁とやあるい
はツェナー電圧の温度係数が大きいなどの欠点がある。
Conventionally, as a reference voltage circuit for a semiconductor integrated circuit, a constant voltage circuit using a Zener diode and a constant voltage circuit using a bandgap regulator are generally used. The former uses the breakdown voltage of a Zener diode, which is approximately 5
It is widely used when obtaining a reference voltage of V or higher. However, in this case, the breakdown voltage of the Zener diode is determined during the manufacturing process of the semiconductor integrated circuit, and therefore the breakdown voltage of the Zener diode is approximately 5.
If a Zener diode with a low breakdown voltage of V or less is to be fabricated into a semiconductor integrated circuit, a new and additional manufacturing process will be required, leading to an increase in cost. However, there are disadvantages such as high noise, high soldering pressure, and high temperature coefficient of Zener voltage.

又後者は電流!y度の異なるトランジスタのベース・エ
ミッタ関電圧の温度係数が異なる仁とを利用したもので
あって、その具体的回路構成の一例を第1図に示して説
明する。
Also, the latter is electric current! This circuit utilizes transistors having different temperature coefficients of base-emitter voltages at different temperatures, and an example of a specific circuit configuration thereof will be described with reference to FIG.

#I1図において電源端子lは電流供給回路2を介して
基準電圧出力端子3へ結合さnており、基準電圧出力端
子3からは抵抗5および抵抗7のそnぞnの一端と、さ
らにトランジスタ10のコレクタへ各々接続がなされて
いる。抵抗5の他端はトランジスタ6のコレクタとベー
スとの共通接続点に接続さnていると共にトランジスタ
8のベースへ接続さnている。抵抗7の他端はトランジ
スタ8のコレクタへ接続さn、さらにトランジスタ10
のベースへも接続さnている。トランジスタ6およびl
Oの工建、夕は直接に、トランジスタ8のエミッタは抵
抗9を介して接地熾子4へそnぞrt接続さnている。
#I1 In the diagram, the power supply terminal l is coupled to the reference voltage output terminal 3 via the current supply circuit 2, and the reference voltage output terminal 3 is connected to one end of a resistor 5 and a resistor 7, and further to a transistor. Connections are made to each of the 10 collectors. The other end of the resistor 5 is connected to a common connection point between the collector and base of the transistor 6, and is also connected to the base of the transistor 8. The other end of the resistor 7 is connected to the collector of the transistor 8, and further connected to the collector of the transistor 10.
It is also connected to the base of n. transistors 6 and l
The emitter of the transistor 8 is directly connected to the ground terminal 4 via a resistor 9.

ここで電流供給回路2は例えば電流源あるいは電圧源と
抵抗とで構成さnる。
Here, the current supply circuit 2 is composed of, for example, a current source or a voltage source and a resistor.

又この回路は半導体集積回路で作ら乃るため、上記各素
子は同一の接合温度で動作しておりしかも各抵抗5#7
および9の抵抗値の湘対比は正確にと9うる。
Also, since this circuit is made of a semiconductor integrated circuit, each of the above elements operates at the same junction temperature, and each resistor 5#7
The comparison of the resistance values of 9 and 9 is exactly 9.

第1図に示すバンドギャップレギュレータは上記のよう
な構成となっているため、基準電圧出力端子3の電圧■
1mνは(1)式のように表わさtL、又各動作点の電
圧、電流に対して(1)式のように表わさn、又各動作
点の電圧、電流に対して(2)〜(5)式が成立してい
る。
Since the bandgap regulator shown in Fig. 1 has the above configuration, the voltage at the reference voltage output terminal 3 is
1mν is expressed as tL as in equation (1), n is expressed as in equation (1) for the voltage and current at each operating point, and (2) to (5) for voltage and current at each operating point. ) formula holds true.

■RIP ” ”!×R? +VBI11゜    ・
・・・・・・・・・・・(1)■1!!+1 = ■1
1111 +工、×R9””””””(”九だし。
■RIP ” ”! ×R? +VBI11゜・
・・・・・・・・・・・・(1) ■1! ! +1 = ■1
1111 + 工、×R9””””””(”9 dashi.

■、□:基準電圧出力端子3の電圧、■□6:トランジ
スタ60ベース・二f、タ関電圧、■□−二トランジス
タ80ベース・工(ツタ間電圧。
■, □: Voltage of reference voltage output terminal 3, ■□6: Transistor 60 base, 2 f, voltage between terminals, ■□ - 2 transistor 80 base, terminal (voltage between terminals).

vmmto : )ランジスタ10のベース・エミッタ
間電圧s  ”@@ ’ )ランジスタロの飽和電流*
”@@”トランジスタ8の飽和電流s  1sxo:)
?yシxりlOの砲和電流、11ニドランジスタロに流
れるllc流、i、:):9yジスタ8に流れる電流h
  ’3:トランジスタ10に(lllnる電fll−
* ’y  ”抵抗7の抵抗値* flL+1  ”抵
抗9の抵抗値%q:電子の電荷、K:ボルツマン定数、
T:絶対温度、ここでトランジスタ8のベース・エミッ
タ間接合m積? トランジスタ6のそnのN倍の面積で
造らnているとすnば l  gN@I           、、、、、、、
、、、、、、、個811       sg が成立する。(2)式へ(3) 、 (4)および(6
)式を代入してとなる。こf’Lt(1)式に代入して
となる。ここで、右辺第り項の温度変化は正、第2項の
VBNの温度変化は負(シリコン・トランジスタでは約
−2mV/’O)であるので第1項の温度変=2mV/
”0=−〇VB11G     、、、、、、、、、(
9>θT とな□る様に各定数を選んでや扛げ、温度変動に対して
安定な出力電圧VIIIFを得ることができる。具体的
な例としてトランジスタ6e8*10として同じ特性の
トランジスタを使用しR,=600Ω會凡!=6にΩ、
R・−600ΩおよびΔ=1と各パラV  耽1.25
V        ・・・・・・・・・(lO)!II
IIF である。
vmmto : ) Voltage between base and emitter of transistor 10 s ``@@ ' ) Saturation current of transistor 10 *
"@@" Saturation current s of transistor 8 1sxo:)
? y series x 1 O gun sum current, 11 Nidrangistoro's llc current, i, :): 9y Current h flowing in y series 8
'3: Transistor 10 (lllln current full-
* 'y' Resistance value of resistor 7* flL+1 'Resistance value of resistor 9 %q: Electron charge, K: Boltzmann constant,
T: Absolute temperature, where is the base-emitter junction m product of transistor 8? If n is made with an area N times that of transistor 6, nbal gN@I , , , , ,
, , , , 811 sg holds true. (3), (4) and (6) to equation (2)
) by substituting the expression. By substituting this into the equation f'Lt(1), we get: Here, the temperature change in the first term on the right side is positive, and the temperature change in VBN in the second term is negative (approximately -2 mV/'O for silicon transistors), so the temperature change in the first term = 2 mV/'O.
”0=-〇VB11G ,,,,,,,,(
By selecting and changing each constant so that 9>θT, an output voltage VIIIF that is stable against temperature fluctuations can be obtained. As a specific example, using a transistor with the same characteristics as transistor 6e8*10, R, = 600Ω. =6 to Ω,
R・-600Ω and Δ=1 and each para V 1.25
V......(lO)! II
It is IIF.

ところがこの回路では温度係数が零となるOは一定の値
の基準電圧値についてのみである。
However, in this circuit, the temperature coefficient becomes zero only for a constant reference voltage value.

ここで(8)を偏微分し基準電圧の温度係数θVRIc
F/δTt−求めると a VRIF/a T=(VIIP −Vileso)
 、、 + 11 Vsw/aT・・・・・・・・・(
11) となり、温度係数θち。、/θTを零とするv882と
その温度係数によ−クー義的に決まってしまう。
Here, by partially differentiating (8), the temperature coefficient of the reference voltage θVRIc
F/δTt - Find a VRIF/a T = (VIIP - Vileso)
,, + 11 Vsw/aT・・・・・・・・・(
11) Then, the temperature coefficient θ is. , /θT is set to zero, and it is logically determined by v882 and its temperature coefficient.

この結果(10)式で示す電圧値となり、こnからはず
れた■RICr  t−得ようとすると(11’)式で
示す温度係数を有することとなる。
As a result, the voltage value is given by equation (10), and if one tries to obtain RICr t- which deviates from n, the temperature coefficient is given by equation (11').

仮にV工、=1.5Vに設定したとするとT−3000
に付近のVR,!iFの温度係数は0.83mV/”O
tもってし1う。
If V is set to = 1.5V, T-3000
Nearby VR,! The temperature coefficient of iF is 0.83mV/”O
I'm sure you'll like it.

以上説明したように従来のバンドギャップレギエレータ
によnば約1.25 Vで温度に対して安定な基準電圧
が得られるが、基準電圧vR1Fを変えるとffi度係
数をもってしまうため温度依存性のない安定な基準電圧
が広範囲に櫓られず、この事が設計上大きな制約となる
欠点があった。
As explained above, with the conventional bandgap regiator, a reference voltage of about 1.25 V can be obtained that is stable with respect to temperature, but if the reference voltage vR1F is changed, the ffi degree coefficient will be affected, resulting in temperature dependence. This had the drawback that a stable reference voltage could not be established over a wide range, and this was a major design constraint.

本発明の目的は上述したような欠点1に’&<して導体
集積回路に適した基準電圧回路を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to overcome the above-mentioned drawback 1 and provide a reference voltage circuit suitable for conductive integrated circuits.

本発明の他の目的は出力電圧とその温度係数とを任意に
設定できる基準電圧回路1m供することにある。
Another object of the present invention is to provide a reference voltage circuit 1m in which the output voltage and its temperature coefficient can be arbitrarily set.

本発明によれば電源端子と、その電源端子に電流#を介
して結合さnた出力端子と、その出力端子に第1の抵抗
と定電圧素子との直列回路ならびに第2の抵抗と第1の
トランジスタと第3の抵抗との直列回路を通して接続さ
nた接地端子と、その第2の抵抗と第1のトランジスタ
との接続点と接地端子に接続さ扛た第4の抵抗と、II
2のトランジスタのコレクタにベースが接続さn、コレ
クタ・エン、夕電流通路が上記[流源と接地端子との間
に挿入さnた第3のトランジスタとを有することを特徴
とする基準電圧回路を得る。
According to the present invention, a power supply terminal, an output terminal coupled to the power supply terminal via a current #, a series circuit of a first resistor and a constant voltage element, and a series circuit of a second resistor and a first a ground terminal connected through a series circuit of a transistor and a third resistor; a fourth resistor connected to a connection point between the second resistor and the first transistor and the ground terminal;
A reference voltage circuit having a base connected to the collector of the second transistor, and a third transistor whose collector current path is inserted between the current source and the ground terminal. get.

以下本発明の実施例につき図面を参照して詳細に説明す
る。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第2図は本発明の一実施例を示す基準電圧回路の回路図
である。
FIG. 2 is a circuit diagram of a reference voltage circuit showing one embodiment of the present invention.

11G2図において、第1図の従来例と同一のものは同
一符号を用いており異なる点はトランジスタ8のコレク
タと抵抗7の共通接続点を抵抗11を介して接地熾子に
接続した点のみで他はまったく同じである。
In Figure 11G2, the same parts as in the conventional example in Figure 1 are given the same symbols, and the only difference is that the common connection point between the collector of transistor 8 and resistor 7 is connected to the ground via resistor 11. Everything else is exactly the same.

そして、この回路を半導体集積回路で作った場合、@1
図の従来例と同様各素子は同一接合温度で動作しており
又各トランジスタ6#8及び10の飽和電流の比はそn
らの構造上の面積に比例している。さらに又各抵抗5=
7會9および11の抵抗値の相対比も正確にとられてい
る。
And if this circuit is made with a semiconductor integrated circuit, @1
As in the conventional example shown in the figure, each element operates at the same junction temperature, and the ratio of the saturation currents of each transistor 6#8 and 10 is
are proportional to their structural area. Furthermore, each resistance 5=
The relative ratio of the resistance values of 7.9 and 11 is also accurately taken.

かかる基準電圧回路は上記のような構成となっているた
め、基準電圧出力端子3の電圧VRmF ”た式が成立
つ外、(2)、・・・I())式が成立するので。
Since this reference voltage circuit has the above-mentioned configuration, the voltage VRmF of the reference voltage output terminal 3 holds true, and the formulas (2), . . . I() also hold true.

(12)式のようになる。It becomes as shown in equation (12).

V□1゜ ただし%R11は抵抗llの抵抗値で他は$1図の場合
と同様である。ここで右辺第1項の正の温温度係数 対値が等しくなるように各定数を選んでやnば、温度変
動に対して安定した出力電圧が得らnる。
V□1° However, %R11 is the resistance value of resistor 11, and the others are the same as in the $1 diagram. If each constant is selected so that the positive temperature coefficient pair value of the first term on the right side is equal, an output voltage that is stable against temperature fluctuations can be obtained.

上記(12)式と従来例の(8)式の大きな違いは。The major difference between the above equation (12) and the conventional example (8) is as follows.

第2項の■□に1よジ大きな係数がつくことでめ9、こ
の値は抵抗比Ry /R,、により可変であるから、任
意の負の温度係数が得らnることになる。
Since a coefficient larger than 1 is added to the second term □, this value is variable depending on the resistance ratio Ry /R, , so that any negative temperature coefficient can be obtained.

よってR,/R1,を調整する事により従来例の温度係
数が零とまるVR1F以上の任意の出力電圧において零
温度係数が得らnる。
Therefore, by adjusting R and /R1, a zero temperature coefficient can be obtained at any output voltage equal to or higher than VR1F, at which the temperature coefficient of the conventional example remains zero.

第3図は1本発明の他の実施例を示す回路接続図で、ト
ランジスタ6および8に流nる電流比1゜/Is  を
温度変化に対して変動しない安舅なものとすることによ
り出力電圧■IIF の温度係数を広範囲の温度変動に
対しても一定な所定の+1を選ぶことを容易にした基準
電圧回路を提供するものである。
FIG. 3 is a circuit connection diagram showing another embodiment of the present invention, in which the current ratio 1°/Is flowing through transistors 6 and 8 is set to a value that does not fluctuate with temperature changes, so that the output is The present invention provides a reference voltage circuit which makes it easy to select a predetermined temperature coefficient of +1 that is constant even over a wide range of temperature fluctuations as the temperature coefficient of the voltage ■IIF.

第2図の実施例において電流比L!71.を求めで表わ
さnこnは温度変動を有することがわかる。
In the embodiment of FIG. 2, the current ratio L! 71. It can be seen that n has a temperature fluctuation.

定の直に設定しても、広い温度間1では該所定の値から
変動してしまうことを意味する。従って第2図の実施例
の出力電圧は前記任意の温度付近ではその@度係数を零
となし得るが、前記任意の湿層から隔たった温度では温
度係数をもってしまうわけ′″あ6・     、、 
、、j、l、j。
This means that even if it is set directly to a certain value, it will fluctuate from the predetermined value over a wide range of temperatures. Therefore, the output voltage of the embodiment shown in FIG. 2 can have a temperature coefficient of zero near the arbitrary temperature mentioned above, but it has a temperature coefficient at a temperature far away from the arbitrary humidity layer.'''A6.
,,j,l,j.

さて、第3図において;第2図に示す実施例と異なる点
はトランジスタ60ベース・コレクタ接続点が抵抗12
を介して接地端子4に接続されていることである。上記
構成の基準電圧回路の出方電圧VRIFは第2図の実施
例と同様前記(12)式で表わさnる。
Now, in FIG. 3, the difference from the embodiment shown in FIG. 2 is that the base-collector connection point of the transistor 60 is connected to the resistor 12.
It is connected to the ground terminal 4 via. The output voltage VRIF of the reference voltage circuit having the above configuration is expressed by the above equation (12) as in the embodiment shown in FIG.

ここでトランジスタ6および8に流nる電流は各々 び12の抵抗値を となる様選べばll/I、の温度係数室零にすることが
出来る。但し、VB1$−VII□。となるようにエミ
ッタ′峨流密度を設定するものとする。
Here, the current flowing through the transistors 6 and 8 can be made to have a temperature coefficient of 11/I of zero by selecting the resistance value of each transistor 12 to be 11/I. However, VB1$-VII□. Let us set the emitter' surge density so that.

(16)式を満足する時の出力電圧VBIPは・VBi
ml。・・・・・・(17) となり右辺第1項の正のfif係数は りこrLFi抵抗比および面積比だけで決まり温度のパ
ラメータを含まないため広範囲の温度変動でも一定とな
9第2項の負の温度係数(温度に対し一定)との絶対値
が等しくなる様各定数を容易に選定できる。なお温度係
数は次式(18)となる。
The output voltage VBIP when satisfying formula (16) is ・VBi
ml. ......(17) Therefore, the positive fif coefficient in the first term on the right side is determined only by the resistance ratio and area ratio of LFi and does not include the temperature parameter, so it remains constant even over a wide range of temperature fluctuations. Each constant can be easily selected so that the absolute value is equal to the negative temperature coefficient (constant with respect to temperature). Note that the temperature coefficient is expressed by the following equation (18).

又本実施例においても第2図の実施例と同様温度変動に
対して安定な任意の出力電圧が得らnることは言うまで
もない。
It goes without saying that in this embodiment as well, it is possible to obtain an arbitrary output voltage that is stable against temperature fluctuations, as in the embodiment shown in FIG.

84図は第3図の実施例を用いて実現した出方電圧1.
5Vの定電圧発生回路を示す回路接続図である。
Figure 84 shows the output voltage 1. realized using the embodiment of Figure 3.
FIG. 2 is a circuit connection diagram showing a 5V constant voltage generation circuit.

w、4図において、第3図の基準電圧回路に相当する部
分は同一符号を用いており、異なる点について説明する
。第4図において抵抗13.)?ンジスタ14.ダイオ
ード15*16は電源投入時のスタート回路を構成して
おり、出力端子の出力電圧■m1eyが1.5 Vにな
nばトランジスタ14はオフになり定電圧発生回路とし
ての動作には寄与しなくなる。トランジスタ18*19
I22−抵抗17*20s21は第3図の2に相当する
定電流源を構成しており、トランジスタ19は出力端子
からバイアスさnている。トランジスタ23はレギュレ
ーションを曳好にする為に負帰還をかけらnた電流増幅
用トランジスタとして作用する。コンデンサ24は発振
防止用のコンデンサである。
In FIG. 4, the same reference numerals are used for parts corresponding to the reference voltage circuit in FIG. 3, and the differences will be explained. In FIG. 4, resistor 13. )? 14. The diode 15 * 16 constitutes a start circuit when the power is turned on, and when the output voltage m1ey at the output terminal reaches 1.5 V, the transistor 14 turns off and does not contribute to the operation as a constant voltage generation circuit. It disappears. Transistor 18*19
I22-resistor 17*20s21 constitutes a constant current source corresponding to 2 in FIG. 3, and transistor 19 is biased from the output terminal. The transistor 23 functions as a current amplification transistor to which negative feedback is applied in order to improve regulation. The capacitor 24 is a capacitor for preventing oscillation.

今、この定電圧発生回路の出力電圧が所定の設定値より
高くなると、この電圧は抵抗7を通してトランジスタl
Oのベース電位をよりもち上げる為そのコレクタ電流は
増大する。こnにより、トランジスタ23のベース電流
が減少して出力端子3の電圧線低下し、所定の値で定常
状態となる。
Now, when the output voltage of this constant voltage generation circuit becomes higher than a predetermined set value, this voltage is passed through the resistor 7 to the transistor l.
In order to raise the base potential of O, its collector current increases. As a result, the base current of the transistor 23 decreases, and the voltage line of the output terminal 3 decreases to a steady state at a predetermined value.

ここで各抵抗の抵抗値t−Hの記号の添字に対応して、 R,=6000−By=1.2にΩ−R,=1000−
’o = 6 k <1 +  )Ll、 =t、 3
 kΩ、 R,、z 59 kΩ。
Here, corresponding to the subscript of the symbol of the resistance value t-H of each resistor, R, = 6000-By = 1.2 and Ω-R, = 1000-
'o = 6 k < 1 + )Ll, =t, 3
kΩ, R,,z 59 kΩ.

kL1? = k21= 2000”go=6000と
し、又N;5と選定すればトランジスタ100ベース・
エミ、り関電圧■11110の代表的な値はT−300
’にで0.65Vであるので(17)式よりVR肝81
・5V となる、即ち基準電圧出力端子3には温度係数が零で出
力電圧1.5Vの基準電圧が得らnる。向上記定数に限
らず前述の(16)I(17)、(1B)式を満足する
ように選定すnばよい。
kL1? = k21 = 2000"go = 6000, and if N; 5 is selected, the transistor is 100 base.
Typical value of electrical voltage ■11110 is T-300
' Since it is 0.65V, from equation (17), VR liver 81
-5V, that is, a reference voltage with a temperature coefficient of zero and an output voltage of 1.5V is obtained at the reference voltage output terminal 3. It is sufficient to select not only the constants described above but also to satisfy the above-mentioned equations (16), I(17), and (1B).

以上説明したように本発明によnば半導体集積回路化に
適した回路構成の基準電圧回路が得られ基準電圧とその
温度係数を独立に設定できる利点があるため設計上の自
由度を大きくとれる。又。
As explained above, the present invention provides a reference voltage circuit with a circuit configuration suitable for semiconductor integrated circuits, and has the advantage that the reference voltage and its temperature coefficient can be set independently, allowing a greater degree of freedom in design. . or.

ツェナーグイオードを用いないので低雑音の基準電圧が
得らnる利点がある。
Since no Zener diode is used, there is an advantage that a low-noise reference voltage can be obtained.

同1本発明は上記実施−に限定されることなく例えば電
源端子lおよび接地端子4にある所定のバイアス電位を
もってもよく、適宜所定位置に回路の壷金をとるために
抵抗を挿入してもよい。
1. The present invention is not limited to the above-mentioned implementation, and for example, the power terminal 1 and the ground terminal 4 may have a predetermined bias potential, or a resistor may be inserted at an appropriate predetermined position to secure the circuit. good.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のバンドギヤ、プレギュレータの1例を示
す回路接続図、第2図は本発明の一実施例を示す基準電
圧回路の回路接続図、第3図は本発明の他の実施例を示
す基準電圧回路の回路接続図、第4図は本発明の基準電
圧回路の具体的な実施例である定電圧発生回路の回路接
、続図を示す。 l・・・・・・電源端子、3・・・・・・出力熾子、4
・・・・・・接地端子、2・・・・・・定電流源、5t
7嘗9*11−12+13 * 17 + 20 e 
21”””抵抗%6.8t10114+18*19t2
2+23・・・・・・トランジスタ、15*16・・・
・・・ダイオード、24・・・・・・コンデンサ。 第1図 第2図 第3図 第4図
Fig. 1 is a circuit connection diagram showing an example of a conventional band gear and preregulator, Fig. 2 is a circuit connection diagram of a reference voltage circuit showing an embodiment of the present invention, and Fig. 3 is another embodiment of the present invention. FIG. 4 shows a circuit connection diagram of a constant voltage generation circuit which is a specific embodiment of the reference voltage circuit of the present invention. l...Power terminal, 3...Output terminal, 4
...Ground terminal, 2...Constant current source, 5t
7 years 9 * 11-12 + 13 * 17 + 20 e
21"""Resistance%6.8t10114+18*19t2
2+23...transistor, 15*16...
...Diode, 24...Capacitor. Figure 1 Figure 2 Figure 3 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)allの電圧端子と、該第1の電圧端子に電流供
給手段を介して結合さnた出力端子と、該出力端子に第
1の抵抗とダイオード接続さnた第1のトランジスタと
の直列回路を介して接続さnた第2の電圧端子・と、直
列接続さ−n%一端が出力端子に他端が前記第2の′電
圧端子にそnぞ扛fij!続さ扛た第2#第3の抵抗と
、第2−第3の抵抗の接続点にコレクタが接続さn前記
第1のトランジスタのベースにペースが接続さnた第2
のトランジスタと、該第2のトランジスタのエミッタと
前記fit!2の電圧端子間に接続さnた第4の抵抗と
、前記第2伊第3の抵抗の接続記第2の′電圧端子との
間に挿入さnた第3のトランジスタとを含むことを特徴
とする基準電圧回路。
(1) all voltage terminals, an output terminal coupled to the first voltage terminal via a current supply means, and a first transistor diode-connected to a first resistor to the output terminal; The second voltage terminals are connected in series through a series circuit, with one end being the output terminal and the other end being the second voltage terminal. The collector is connected to the connection point between the second and third resistors, and the base of the first transistor is connected to the second resistor.
transistor, the emitter of the second transistor and the fit! a fourth resistor connected between the two voltage terminals; and a third transistor inserted between the second voltage terminal and the second voltage terminal of the second and third resistors. Characteristic reference voltage circuit.
(2)  前記第1の抵抗と前記第1のトランジスタと
の接続点を第5の抵抗を介して前記第2の電圧端子に接
続し九特許請求の範囲第1項記載の基準電圧回路。
(2) The reference voltage circuit according to claim 1, wherein a connection point between the first resistor and the first transistor is connected to the second voltage terminal via a fifth resistor.
JP56215270A 1981-12-25 1981-12-25 Reference voltage circuit Granted JPS58112112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56215270A JPS58112112A (en) 1981-12-25 1981-12-25 Reference voltage circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56215270A JPS58112112A (en) 1981-12-25 1981-12-25 Reference voltage circuit

Publications (2)

Publication Number Publication Date
JPS58112112A true JPS58112112A (en) 1983-07-04
JPH0526208B2 JPH0526208B2 (en) 1993-04-15

Family

ID=16669523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56215270A Granted JPS58112112A (en) 1981-12-25 1981-12-25 Reference voltage circuit

Country Status (1)

Country Link
JP (1) JPS58112112A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6020733U (en) * 1983-07-18 1985-02-13 象印マホービン株式会社 water bottle with straw
JPS6020732U (en) * 1983-07-18 1985-02-13 象印マホービン株式会社 water bottle with straw
JPS6020729U (en) * 1983-07-18 1985-02-13 象印マホービン株式会社 water bottle with straw
JPS6146508A (en) * 1984-08-11 1986-03-06 Fujitsu Ltd Stabilizing circuit for constant current source
JPS6163924U (en) * 1985-05-23 1986-05-01
JPH01288911A (en) * 1988-02-02 1989-11-21 Natl Semiconductor Corp <Ns> Bicmos reference voltage generator
JPH01292411A (en) * 1988-05-19 1989-11-24 Sanyo Electric Co Ltd Band gap reference voltage circuit
JPH0210415A (en) * 1988-02-29 1990-01-16 Texas Instr Inc <Ti> Hand gap reference voltage circuit
JPH07146727A (en) * 1993-11-24 1995-06-06 Nec Corp Low-voltage reference voltage generation circuit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5058550A (en) * 1974-10-30 1975-05-21
JPS5436724A (en) * 1977-04-06 1979-03-17 Agfa Gevaert Nv Reversal multiicolor silver halide meaterial

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5058550A (en) * 1974-10-30 1975-05-21
JPS5436724A (en) * 1977-04-06 1979-03-17 Agfa Gevaert Nv Reversal multiicolor silver halide meaterial

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0127696Y2 (en) * 1983-07-18 1989-08-22
JPS6020732U (en) * 1983-07-18 1985-02-13 象印マホービン株式会社 water bottle with straw
JPS6020729U (en) * 1983-07-18 1985-02-13 象印マホービン株式会社 water bottle with straw
JPS6020733U (en) * 1983-07-18 1985-02-13 象印マホービン株式会社 water bottle with straw
JPH0127699Y2 (en) * 1983-07-18 1989-08-22
JPH0127698Y2 (en) * 1983-07-18 1989-08-22
JPS6146508A (en) * 1984-08-11 1986-03-06 Fujitsu Ltd Stabilizing circuit for constant current source
JPS6163924U (en) * 1985-05-23 1986-05-01
JPH0216664Y2 (en) * 1985-05-23 1990-05-09
JPH01288911A (en) * 1988-02-02 1989-11-21 Natl Semiconductor Corp <Ns> Bicmos reference voltage generator
JPH0210415A (en) * 1988-02-29 1990-01-16 Texas Instr Inc <Ti> Hand gap reference voltage circuit
JPH01292411A (en) * 1988-05-19 1989-11-24 Sanyo Electric Co Ltd Band gap reference voltage circuit
JPH07146727A (en) * 1993-11-24 1995-06-06 Nec Corp Low-voltage reference voltage generation circuit

Also Published As

Publication number Publication date
JPH0526208B2 (en) 1993-04-15

Similar Documents

Publication Publication Date Title
US4085359A (en) Self-starting amplifier circuit
US4100436A (en) Current stabilizing arrangement
JPS58502170A (en) precision current source
WO1982001105A1 (en) Current source with modified temperature coefficient
US6124704A (en) Reference voltage source with temperature-compensated output reference voltage
JPS58112112A (en) Reference voltage circuit
US4283674A (en) Constant voltage output circuit
JPH0123802B2 (en)
US4063120A (en) Constant voltage circuit
JPS5926046B2 (en) Low voltage reference source circuit
KR920005258B1 (en) Reference voltage circuit
US4675592A (en) Voltage output circuit
JPS604611B2 (en) Bias current supply circuit
JPH11505053A (en) Reference voltage source with temperature compensation
EP0116995B1 (en) Current stabilizing arrangement
JPH0461368B2 (en)
JPS647684B2 (en)
JPH08185232A (en) Shunt regulator
JPH05235661A (en) Constant current source circuit
JPS6258009B2 (en)
JPS6051126B2 (en) constant voltage circuit
JP2006074129A (en) Temperature characteristic correction circuit
JP3024026B2 (en) Band gap type constant voltage generator
JPS6037484B2 (en) current stabilization circuit
JP2705301B2 (en) Constant current circuit