JPH07146727A - Low-voltage reference voltage generation circuit - Google Patents

Low-voltage reference voltage generation circuit

Info

Publication number
JPH07146727A
JPH07146727A JP5315785A JP31578593A JPH07146727A JP H07146727 A JPH07146727 A JP H07146727A JP 5315785 A JP5315785 A JP 5315785A JP 31578593 A JP31578593 A JP 31578593A JP H07146727 A JPH07146727 A JP H07146727A
Authority
JP
Japan
Prior art keywords
transistor
circuit
voltage
resistor
reference voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5315785A
Other languages
Japanese (ja)
Inventor
Satoshi Kuwano
聡 桑野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5315785A priority Critical patent/JPH07146727A/en
Publication of JPH07146727A publication Critical patent/JPH07146727A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the decline or drivability, to secure compensation for temperature and power supply fluctuation and to lower a voltage by connecting a voltage follower circuit as a driving circuit and feeding back an output voltage. CONSTITUTION:One end of a resistor R5, one end of the resistors R1 and R4 and the collector of an NPN transistor N1 are connected in common at a node VCS'. The base of the transistor N1 is connected to the connection point of the other end of the resistor R1 and one end of the resistor R2 and the collector of the NPN transistor N2 in common. The emitter of the transistor N2 is connected to one end of the resistor R3 and the base is connected to the anode of a temperature compensation type diode D1 for supplying fixed bias and the other end of the resistor R4. The node VCS' is provided with an output terminal VCS for oucputting a reference voltage and the voltage follower circuit 100 for driving a succeeding stage circuit by the reference voltage is connected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は低電圧基準電圧発生回路
に関し、特にECL回路の定電流源回路を駆動する低電
圧基準電圧発生回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low voltage reference voltage generation circuit, and more particularly to a low voltage reference voltage generation circuit for driving a constant current source circuit of an ECL circuit.

【0002】[0002]

【従来の技術】従来の基準電圧発生回路の一例を図3に
示す。同図に示すように、抵抗R1の両端に得られる電
圧をVOとし、抵抗R2,R3に流れる電流をI1,I
2とすると、VO=R1(I1+I2)となる。
2. Description of the Related Art FIG. 3 shows an example of a conventional reference voltage generating circuit. As shown in the figure, the voltage obtained across the resistor R1 is VO, and the currents flowing through the resistors R2 and R3 are I1 and I3.
If 2, then VO = R1 (I1 + I2).

【0003】NPNトランジスタN1,N2のベース−
エミッタ間電圧をV1,V2、温度補償型ダイオードD
1の端子間電圧をV3とすると、電流I1,I2はそれ
ぞれ、I1=V1/R2,I2=(V3−V2)/R3
となり、VOは次式(1)で与えられる。
Bases of NPN transistors N1 and N2
Emitter voltage is V1, V2, temperature compensation diode D
If the voltage across the terminals of 1 is V3, the currents I1 and I2 are I1 = V1 / R2 and I2 = (V3-V2) / R3, respectively.
And VO is given by the following equation (1).

【0004】[0004]

【数1】 [Equation 1]

【0005】また、トランジスタのベース−エミッタ間
電圧VBEは、温度T(絶対温度)について次式(2)の
ように展開出来ることが知られている(例えば、ROBERT
J.WIDLAR,"New Developments in IC Voltage Regulat
ors",IEEE J. of Solid-State Circuits, Vol. SC-6,
NO.1, P.2-7 Feb. 1971参照)。
Further, it is known that the base-emitter voltage VBE of a transistor can be developed as the following equation (2) with respect to the temperature T (absolute temperature) (for example, ROBERT).
J.WIDLAR, "New Developments in IC Voltage Regulat
ors ", IEEE J. of Solid-State Circuits, Vol. SC-6,
See NO.1, P.2-7 Feb. 1971).

【0006】[0006]

【数2】 [Equation 2]

【0007】ここに、Vgoは絶対零度において外挿さ
れた半導体のバンドギャップ電圧、qは電子の電荷を表
わし、nはトランジスタの製造プロセスに依存する定数
でICトランジスタの場合約1.5とされる。また、k
はボルツマン定数、Tは絶対温度、Icはコレクタ電
流、VBEoは温度Toにおけるベース−エミッタ間電
圧、Icoは温度Toにおけるコレクタ電流をそれぞれ
表わしている。
Here, Vgo represents the band gap voltage of the semiconductor extrapolated at absolute zero, q represents the charge of electrons, and n is a constant depending on the manufacturing process of the transistor, and is about 1.5 in the case of the IC transistor. It Also, k
Is the Boltzmann constant, T is the absolute temperature, Ic is the collector current, VBEo is the base-emitter voltage at temperature To, and Ico is the collector current at temperature To.

【0008】上式(2)において、右辺の第3項、第4
項は第1項、第2項に比べて小さいため、第1項、第2
項のみで近似しても実用上不都合はなく、このベース−
エミッタ間電圧VBEを絶対温度Tで微分した微係数は、
次式(3)で与えられる。
In the above equation (2), the third and fourth terms on the right side
Since the term is smaller than the first term and the second term, the first term and the second term
There is no practical inconvenience even if only the terms are approximated.
The differential coefficient obtained by differentiating the emitter-to-emitter voltage VBE with the absolute temperature T is
It is given by the following equation (3).

【0009】[0009]

【数3】 [Equation 3]

【0010】上式(3)のバンドギャップ電圧Vgoを
トランジスタN1,N2のベース−エミッタ間電圧V
1,V2、及びダイオードD1の端子間電圧(順方向電
圧)V3について同一とし(Egoとする)、上式
(1)を絶対温度Tで微分し、これに上式(3)を代入
すると、次式(4)が導かれる。
The bandgap voltage Vgo of the above equation (3) is converted to the base-emitter voltage V of the transistors N1 and N2.
1, V2, and the voltage between the terminals of the diode D1 (forward voltage) V3 are the same (Ego), the above formula (1) is differentiated by the absolute temperature T, and the above formula (3) is substituted into it. The following equation (4) is derived.

【0011】[0011]

【数4】 [Equation 4]

【0012】ここに、V1o,V2o,V3oは、NP
NトランジスタN1,N2のベース−エミッタ間電圧V
1,V2、及びダイオードD1の端子間電圧V3の絶対
温度Toにおける電圧値をそれぞれ表わしている。Eg
oは絶対零度において外挿された半導体のバンドギャッ
プ電圧を表わし、シリコンで1.205Vである。
Here, V1o, V2o, and V3o are NPs.
Base-emitter voltage V of the N transistors N1 and N2
1, V2 and the voltage value between the terminals V3 of the diode D1 at the absolute temperature To are respectively represented. Eg
o represents the extrapolated semiconductor bandgap voltage at absolute zero, which is 1.205V for silicon.

【0013】抵抗R1の端子間電圧VOの温度係数を零
とする場合、dVO/dT=0から、次式(5)が成り
立つ。
When the temperature coefficient of the inter-terminal voltage VO of the resistor R1 is set to zero, the following equation (5) is established from dVO / dT = 0.

【0014】[0014]

【数5】 [Equation 5]

【0015】すなわち、抵抗R1,R2,R3の抵抗値
を上式(5)の関係を満たすように選択することによっ
て、抵抗R1の端子間電圧VOは温度補償され、上式
(1)と(5)から、VOは次式(6)で与えられる。
That is, by selecting the resistance values of the resistors R1, R2, and R3 so as to satisfy the relationship of the above equation (5), the terminal voltage VO of the resistor R1 is temperature-compensated, and the above equations (1) and (1) are obtained. From 5), VO is given by the following equation (6).

【0016】[0016]

【数6】 [Equation 6]

【0017】図3において、基準電圧発生回路の出力電
位をVCS、最低電位をVEEとすると、 VCS=VEE+V1+VO …(7) で与えられる。
In FIG. 3, when the output potential of the reference voltage generating circuit is VCS and the minimum potential is VEE, VCS = VEE + V1 + VO (7)

【0018】図4は、図3の基準電圧発生回路の出力を
ECL回路の定電流源回路に接続した回路構成を示して
いる。同図に示すように、基準電圧発生回路の出力端子
VCSは、ECL回路の定電流源トランジスタN401
のベースに接続されている。
FIG. 4 shows a circuit configuration in which the output of the reference voltage generating circuit of FIG. 3 is connected to the constant current source circuit of the ECL circuit. As shown in the figure, the output terminal VCS of the reference voltage generating circuit is the constant current source transistor N401 of the ECL circuit.
Connected to the base of.

【0019】図4において、定電流源トランジスタN4
01のエミッタと最低電位電源VEEの間に接続された
抵抗REの端子間電圧をV5、定電流源トランジスタ4
01のベース−エミッタ間電圧をV4で表わすと、 V5=VCS−V4−VEE=VO+(V1−V4) …(8) となる。
In FIG. 4, a constant current source transistor N4
The voltage between terminals of the resistor RE connected between the emitter of 01 and the lowest potential power supply VEE is V5, and the constant current source transistor 4
When the base-emitter voltage of 01 is represented by V4, V5 = VCS-V4-VEE = VO + (V1-V4) (8)

【0020】従って、NPNトランジスタN1と定電流
源トランジスタN401のベース−エミッタ間電圧V
1,V4の温度特性が同一であれば、抵抗REの端子間
電圧V5は温度及び電源変動に依存せず一定となり、こ
のためECL出力回路には一定電流が流れ、出力Vou
tの振幅は一定となる。
Therefore, the base-emitter voltage V of the NPN transistor N1 and the constant current source transistor N401.
If the temperature characteristics of 1 and V4 are the same, the inter-terminal voltage V5 of the resistor RE becomes constant irrespective of temperature and power supply fluctuations. Therefore, a constant current flows in the ECL output circuit and the output Vou
The amplitude of t is constant.

【0021】また、図3に示すように、基準電圧発生回
路は、出力端子に接続される次段回路(負荷回路)のベ
ース電流による出力レベルVCSの変動を防ぐために、
NPNトランジスタN3のエミッタフォロア出力により
次段回路を駆動している。
Further, as shown in FIG. 3, the reference voltage generating circuit prevents the output level VCS from varying due to the base current of the next stage circuit (load circuit) connected to the output terminal.
The emitter follower output of the NPN transistor N3 drives the next stage circuit.

【0022】図5(B)を参照して、ECL出力回路を
出力電圧の温度及び最低電位VEE依存特性を説明す
る。図4の基準電圧発生回路として、図3の従来の基準
電圧発生回路を用いた場合、図5(B)に示すように、
0℃,75℃,125℃の各温度について、標準的なE
CL出力回路の出力端子Voutの低レベル出力電圧は
最低電位電源VEE=−2.7Vまでレベルの安定化が
実現されている。すなわち、従来の基準電圧発生回路を
用いて、ECL出力回路の定電流源回路を駆動した場
合、最低電位電源VEE=−2.7Vまで、例えばEC
L−10KHシリーズの規格(−1.8mV/℃の変
動;ECL出力回路のエミッタフォロア・トランジスタ
のベース−エミッタ間電圧の温度依存による出力電圧の
変動)の範囲内で温度及び電源変動に対する補償が行な
われる。
With reference to FIG. 5B, the temperature and minimum potential VEE dependency characteristics of the output voltage of the ECL output circuit will be described. When the conventional reference voltage generating circuit of FIG. 3 is used as the reference voltage generating circuit of FIG. 4, as shown in FIG.
Standard E for 0 ° C, 75 ° C and 125 ° C
The low level output voltage of the output terminal Vout of the CL output circuit is stabilized to the lowest potential power supply VEE = −2.7V. That is, when the constant current source circuit of the ECL output circuit is driven by using the conventional reference voltage generating circuit, the lowest potential power source VEE = −2.7V, for example, EC
Compensation for temperature and power supply fluctuation within the range of the standard of L-10KH series (change of -1.8 mV / ° C; change of output voltage due to temperature dependence of base-emitter voltage of emitter follower transistor of ECL output circuit) Done.

【0023】なお、図5(A)は、最小エミッタ面積
0.8×1.6μm2のバイポーラ・プロセスとした場
合の回路シミュレーションプログラムSPICE(NE
CSPICE)によるシミュレーション結果である。
Note that FIG. 5A shows a circuit simulation program SPICE (NE) when a bipolar process having a minimum emitter area of 0.8 × 1.6 μm 2 is used.
It is a simulation result by CSPICE.

【0024】[0024]

【発明が解決しようとする課題】しかしながら、図3に
示す従来の基準電圧発生回路では、出力端子VCS(基
準電圧)に接続される負荷回路のベース電流による出力
電圧の変動を防ぐために、次段回路の駆動用のエミッタ
フォロア・トランジスタとして、NPNトランジスタN
3を有している。
However, in the conventional reference voltage generating circuit shown in FIG. 3, in order to prevent the fluctuation of the output voltage due to the base current of the load circuit connected to the output terminal VCS (reference voltage), the following stage is used. An NPN transistor N is used as an emitter follower transistor for driving the circuit.
Have three.

【0025】このエミッタフォロア・トランジスタN3
のベース−エミッタ電圧VBEの電圧配分(トランジスタ
N3動作時に略0.8〜0.9V)により、ECL出力
回路の定電流源の基準電圧として従来の基準電圧回路を
用いた場合、図5(B)に温度変化及び電源変動に対す
る補償を行なって標準的なECL出力回路を動作させる
ことができるのは、VEE=−2.7Vまでの範囲であ
る。
This emitter follower transistor N3
When the conventional reference voltage circuit is used as the reference voltage of the constant current source of the ECL output circuit by the voltage distribution of the base-emitter voltage VBE (approximately 0.8 to 0.9 V when the transistor N3 is operating) of FIG. It is in the range up to VEE = -2.7V that the standard ECL output circuit can be operated by compensating for temperature change and power supply fluctuation.

【0026】また、エミッタフォロア・トランジスタN
3を取り除いた場合は駆動能力を欠き次段に接続される
回路を駆動できないという問題があった。
Also, the emitter follower transistor N
When 3 is removed, there is a problem that the driving ability is lacking and the circuit connected to the next stage cannot be driven.

【0027】従って、本発明は前記問題点を解消し、基
準電圧発生回路の駆動能力の低下を防ぎ、温度、電源変
動に対する補償を確保し、且つ低電圧化を実現する基準
電圧発生回路を提供することを目的とする。
Therefore, the present invention provides a reference voltage generating circuit which solves the above problems, prevents the driving capability of the reference voltage generating circuit from decreasing, ensures compensation for temperature and power supply fluctuations, and realizes a low voltage. The purpose is to do.

【0028】[0028]

【課題を解決するための手段】前記目的を達成するた
め、本発明は、最高電位電源端子に抵抗の一端が接続さ
れ、前記抵抗の他端と第1のトランジスタのコレクタ、
及び第1、第4の抵抗の一端が共通に接続され、前記第
1のトランジスタのベースは前記第1の抵抗の他端と第
2の抵抗の一端との接続点、及び第2のトランジスタの
コレクタに共通に接続され、前記第2のトランジスタの
エミッタは第3の抵抗の一端に接続され、ベースは前記
第4の抵抗の他端とダイオードのアノードとの接続点に
接続され、前記第1のトランジスタのエミッタと、前記
第2、第3の抵抗の他端、及び前記ダイオードのカソー
ドは共通に最低電位電源端子に接続され、前記第1のト
ランジスタのコレクタと前記第1、第4の抵抗の共通接
続点がボルテージ・フォロア回路の入力端子に接続さ
れ、該ボルテージ・フォロア回路の出力端子から基準電
圧を出力する低電圧基準電圧発生回路を提供する。
In order to achieve the above object, according to the present invention, one end of a resistor is connected to a highest-potential power supply terminal, the other end of the resistor and a collector of a first transistor,
And one ends of the first and fourth resistors are commonly connected, and the base of the first transistor has a connection point between the other end of the first resistor and one end of the second resistor, and the base of the second transistor. The second transistor is commonly connected to the collector, the emitter of the second transistor is connected to one end of the third resistor, and the base is connected to a connection point between the other end of the fourth resistor and the anode of the diode. The emitter of the transistor, the other ends of the second and third resistors, and the cathode of the diode are commonly connected to the lowest potential power supply terminal, and the collector of the first transistor and the first and fourth resistors Is connected to the input terminal of the voltage follower circuit, and a low voltage reference voltage generating circuit that outputs a reference voltage from the output terminal of the voltage follower circuit is provided.

【0029】本発明において、前記第1、第2のトラン
ジスタはいずれもNPNトランジスタとされる。
In the present invention, both the first and second transistors are NPN transistors.

【0030】また、本発明におけるボルテージ・フォロ
ア回路の出力端子は、好ましくは、ECL出力回路の定
電流源回路を構成する定電流源トランジスタのベースに
接続され、第1のトランジスタが該定電流源トランジス
タと温度及び電圧変動特性を同一とし、定電流源回路が
温度及び電源変動に依存せず一定電流を供給するように
駆動する。
The output terminal of the voltage follower circuit of the present invention is preferably connected to the base of a constant current source transistor which constitutes a constant current source circuit of the ECL output circuit, and the first transistor is the constant current source. The temperature and voltage fluctuation characteristics are the same as those of the transistor, and the constant current source circuit is driven so as to supply a constant current independent of temperature and power fluctuations.

【0031】[0031]

【実施例】図面を参照して、本発明の実施例を以下に説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0032】[0032]

【実施例1】図1は本発明の第1の実施例の基準電圧発
生回路である。同図に示すように、最高電位GNDに抵
抗R5の一端が接続され、抵抗R5の他端と、抵抗R
1,R4の一端、及びNPNトランジスタN1のコレク
タとが、節点VCS′において共通に接続されている。
First Embodiment FIG. 1 shows a reference voltage generating circuit according to a first embodiment of the present invention. As shown in the figure, one end of the resistor R5 is connected to the highest potential GND, and the other end of the resistor R5 and the resistor R5 are connected.
One ends of R1 and R4 and the collector of the NPN transistor N1 are commonly connected at a node VCS '.

【0033】また、NPNトランジスタN1のベース
は、抵抗R1の他端と抵抗R2の一端の接続点、及びN
PNトランジスタN2のコレクタに共通に接続されてい
る。NPNトランジスタN2のエミッタは抵抗R3の一
端に接続され、そのベースは抵抗R4の他端と一定のバ
イアスを与える温度補償型ダイオードD1のアノード
(Pチャネル側)に接続されている。
The base of the NPN transistor N1 has a connection point between the other end of the resistor R1 and one end of the resistor R2, and N.
It is commonly connected to the collectors of the PN transistors N2. The emitter of the NPN transistor N2 is connected to one end of the resistor R3, and its base is connected to the other end of the resistor R4 and the anode (P-channel side) of the temperature compensation diode D1 which provides a constant bias.

【0034】NPNトランジスタN1のエミッタ、抵抗
R2及び抵抗R3の他端、ダイオードD1のカソード
(Nチャネル側)は共通に最低電位電源VEEに接続さ
れている。
The emitter of the NPN transistor N1, the other ends of the resistors R2 and R3, and the cathode of the diode D1 (N channel side) are commonly connected to the lowest potential power supply VEE.

【0035】節点VCS′には、基準電圧を出力する出
力端子VCSを備え、次段回路を基準電圧で駆動するボ
ルテージ・フォロア回路100が接続されている。
A voltage follower circuit 100 having an output terminal VCS for outputting a reference voltage and driving the next-stage circuit with the reference voltage is connected to the node VCS '.

【0036】図1を参照してボルテージ・フォロア回路
100の回路構成を説明する。ベースが共通接続され、
該共通接続点が抵抗R103を介して最低電位電源VE
Eに接続され、コレクタがそれぞれ抵抗R101,R1
02を介して最高電位GNDに接続されたNPNトラン
ジスタN101,N102は差動対を構成している。
The circuit configuration of the voltage follower circuit 100 will be described with reference to FIG. The bases are commonly connected,
The common connection point is the lowest potential power supply VE via the resistor R103.
It is connected to E and the collectors are resistors R101 and R1 respectively.
The NPN transistors N101 and N102 connected to the highest potential GND through 02 form a differential pair.

【0037】NPNトランジスタ102のコレクタと抵
抗R102の接続点はNPNトランジスタN103のベ
ースに接続され、トランジスタN103のエミッタと抵
抗R104の接続点は出力VCSに接続され、出力VC
SはトランジスタN103のエミッタ・フォロア出力と
なっている。また、NPNトランジスタN101のベー
スには節点VCS′が接続され、NPNトランジスタN
102のベースには出力VCSが帰還されている。
The connection point between the collector of the NPN transistor 102 and the resistor R102 is connected to the base of the NPN transistor N103, the connection point between the emitter of the transistor N103 and the resistor R104 is connected to the output VCS, and the output VC.
S is the emitter-follower output of the transistor N103. The node VCS 'is connected to the base of the NPN transistor N101,
The output VCS is fed back to the base of 102.

【0038】本実施例に係る低電圧基準電圧発生回路に
おいて、抵抗R1の両端に得られる端子間電圧VOは、
図3の前記従来例と同様にして得られる(上式(1)参
照)。そして前述した通り、図1の抵抗R1,R2,R
3について上式(5)の条件が成り立つときに、抵抗R
1の端子間電圧VOの温度係数は零とされ、このときV
Oは前記従来例と同様にして、次式(9)で与えられ
る。 VO=(R1/R2)Ego …(9) なお、Egoはバンドギャップ電圧である。
In the low voltage reference voltage generating circuit according to this embodiment, the inter-terminal voltage VO obtained across the resistor R1 is
It is obtained in the same manner as the conventional example of FIG. 3 (see the above formula (1)). As described above, the resistors R1, R2 and R of FIG.
When the condition of the above equation (5) is satisfied with respect to 3, the resistance R
The temperature coefficient of the inter-terminal voltage VO of 1 is set to zero, and at this time, V
O is given by the following equation (9) in the same manner as in the conventional example. VO = (R1 / R2) Ego (9) Note that Ego is a bandgap voltage.

【0039】本実施例では、図3に示した従来の基準電
圧発生回路において次段回路駆動用に設けられたエミッ
タフォロア・トランジスタN3を用いていないために、
トランジスタN3のベース−エミッタ電圧VBE分マージ
ンが広がる。
In this embodiment, since the emitter follower transistor N3 provided for driving the next stage circuit is not used in the conventional reference voltage generating circuit shown in FIG. 3,
The margin is expanded by the base-emitter voltage VBE of the transistor N3.

【0040】また、本実施例においては、従来の基準電
圧発生回路のエミッタフォロア・トランジスタN3を取
り除き低電圧化を図ると共に、ボルテージ・フォロア回
路100を節点VCS′に接続して駆動能力を高めてい
る。
Further, in the present embodiment, the emitter follower transistor N3 of the conventional reference voltage generating circuit is removed to reduce the voltage, and the voltage follower circuit 100 is connected to the node VCS 'to enhance the driving capability. There is.

【0041】さらに、本実施例においては、出力VCS
を入力端子にフィードバックさせることにより、VC
S′=VCSが保たれる。このため、基準電圧の安定化
を図ると共に、温度、電源変動に対する補償が確保さ
れ、且つ高負荷時にも低電圧化が実現できる。
Further, in this embodiment, the output VCS
Is fed back to the input terminal,
S '= VCS is kept. Therefore, it is possible to stabilize the reference voltage, ensure compensation for temperature and power supply fluctuations, and realize a low voltage even when the load is high.

【0042】図4の基準電圧発生回路として、本実施例
に係る基準電圧発生回路を用いた場合、図5(A)に示
すように、ECL出力回路の出力端子Voutの低レベ
ル出力電圧は、最低電位VEE=−2.3Vまでレベル
が安定しており、温度、電源変動に対して補償される。
すなわち、本実施例は、標準的なECL出力回路の動作
限界レベルの最低電位電源VEE=−2.5V(電源変
動±0.2V)動作での温度、電源変動に対する補償を
可能としている。なお、図1のNPNトランジスタN1
と図3の出力回路の定電流源トランジスタのN401ベ
ース−エミッタ間電圧の温度及び電源電圧変動に対する
特性は同一であるものとする。
When the reference voltage generating circuit according to this embodiment is used as the reference voltage generating circuit of FIG. 4, the low level output voltage of the output terminal Vout of the ECL output circuit is as shown in FIG. 5 (A). The level is stable up to the lowest potential VEE = −2.3V, and is compensated for temperature and power supply fluctuations.
That is, this embodiment enables compensation for temperature and power supply fluctuations in the operation of the lowest potential power supply VEE = -2.5V (power supply fluctuation ± 0.2V) at the operation limit level of a standard ECL output circuit. The NPN transistor N1 shown in FIG.
3 and the characteristics of the constant current source transistor of the output circuit of FIG. 3 with respect to temperature and power supply voltage variations of the N401 base-emitter voltage.

【0043】なお、図5(B)は、本実施例において、
最小エミッタ面積0.8×1.6μm2のバイポーラ・
プロセスとした場合の回路シミュレーションプログラム
SPICE(NECSPICE)によるシミュレーショ
ン結果である。
In addition, FIG. 5B shows in this embodiment,
Bipolar with a minimum emitter area of 0.8 x 1.6 μm 2
It is a simulation result by the circuit simulation program SPICE (NECSPICE) when it is set as a process.

【0044】[0044]

【実施例2】次に、図2を参照して本発明の第2の実施
例を説明する。前記第1の実施例と同様、本実施例にお
いても、次段に接続される回路を駆動するためにボルテ
ージ・フォロア回路200を用いている。
Second Embodiment Next, a second embodiment of the present invention will be described with reference to FIG. Similar to the first embodiment, this embodiment also uses the voltage follower circuit 200 to drive the circuit connected to the next stage.

【0045】図2に示すように、本実施例と前記第1の
実施例(図1参照)との回路構成上の相違点は、ボルテ
ージ・フォロア回路200において、差動対トランジス
タN201,N202のコレクタにトランジスタN20
3,N204から成る差動回路をさらに1段追加してい
る点である。従って本実施例について、前記第1の実施
例との相違点のみを以下に説明する。
As shown in FIG. 2, the difference between the present embodiment and the first embodiment (see FIG. 1) in the circuit configuration is that in the voltage follower circuit 200, the differential pair transistors N201 and N202 are different. Transistor N20 on collector
The point is that one more differential circuit including N3 and N204 is added. Therefore, in this embodiment, only the differences from the first embodiment will be described below.

【0046】節点VCS’に接続されたボルテージ・フ
ォロア回路200のトランジスタN203,N204の
ベースは共通接続されて定電流源ICS201に接続さ
れ、コレクタはそれぞれ負荷抵抗R204,R205を
介して最高電位GNDに接続され、ベースは差動対トラ
ンジスタN201,N202のコレクタに接続されてい
る。このため、ボルテージ・フォロア回路の駆動能力を
バッファ一段分大きくすることができ、また出力VCS
を入力端子にフィードバックさせることにより、さらに
負荷が大きい場合でも、VCS′=VCSの平衡状態を
保つことができ、より一層の安定化を図れる。
The bases of the transistors N203 and N204 of the voltage follower circuit 200 connected to the node VCS 'are commonly connected to the constant current source ICS201, and the collectors thereof are respectively set to the highest potential GND through the load resistors R204 and R205. The bases are connected to the collectors of the differential pair transistors N201 and N202. Therefore, the driving capability of the voltage follower circuit can be increased by one stage of the buffer, and the output VCS
Is fed back to the input terminal, the balanced state of VCS ′ = VCS can be maintained even when the load is further increased, and further stabilization can be achieved.

【0047】本実施例は、前記第1の実施例と同様に、
次段に接続される負荷回路の駆動用にエミッタフォロア
・トランジスタN3(図3参照)を用いていないため
に、その分の電圧配分の余裕ができる。また本実施例に
おいては駆動能力を差動回路一段分向上させ、出力VC
Sの信号がフィードバックさせることにより、VCS′
=VCSとなり、基準電圧の安定化を図れ、温度及び電
源変動を補償した上で高負荷時にも低電圧化が実現でき
る。
This embodiment is similar to the first embodiment,
Since the emitter follower transistor N3 (see FIG. 3) is not used for driving the load circuit connected to the next stage, the voltage distribution margin can be increased. Further, in this embodiment, the driving capability is improved by one stage of the differential circuit, and the output VC is
By feeding back the signal of S, VCS '
= VCS, the reference voltage can be stabilized, the temperature and the power supply fluctuations can be compensated, and the low voltage can be realized even when the load is high.

【0048】なお、本発明は前記第1、第2の実施例の
構成に限定されるものでなく、本発明の原理に準ずる各
種実施態様を含む。例えば、上記実施例のNPNトラン
ジスタをPNPトランジスタで構成した実施態様等であ
る。
The present invention is not limited to the configurations of the first and second embodiments, but includes various embodiments according to the principle of the present invention. For example, it is an embodiment in which the NPN transistor of the above-described embodiment is configured by a PNP transistor.

【0049】[0049]

【発明の効果】以上説明したように、本発明の低電圧基
準電圧発生回路は、従来のこの種の基準電圧発生回路に
設けられた負荷駆動用のエミッタフォロア・トランジス
タを取り除き、回路の低電圧化を図る一方、駆動能力の
低下による出力レベルの変動を防ぐために、駆動回路と
してボルテージ・フォロア回路を接続して出力電圧をフ
ィードバックすることにより、温度及び電源変動を補償
した上で出力電位の安定化を図っている。
As described above, in the low voltage reference voltage generating circuit of the present invention, the emitter follower transistor for driving a load provided in the conventional reference voltage generating circuit of this type is removed, and the low voltage of the circuit is eliminated. On the other hand, in order to prevent fluctuations in the output level due to a decrease in driving capability, a voltage follower circuit is connected as a driving circuit to feed back the output voltage to stabilize the output potential after compensating for temperature and power supply fluctuations. It is trying to make it.

【0050】また、従来のこの種の基準電圧発生回路で
ECL(ECL−10KH)の出力回路の定電流源回路
を駆動した場合、温度及び電源変動が補償される範囲
が、例えば最低電源電位VEE=−2.7Vまでである
のに対して、本発明によれば、最低電源電位VEE=−
2.3Vとなり、従来のものと比べて0.4Vもの大幅
な低電圧化が達成され、さらにボルテージ・フォロアの
回路構成により駆動能力の向上が達成できるという効果
を有する。
When a constant current source circuit of an ECL (ECL-10KH) output circuit is driven by the conventional reference voltage generating circuit of this type, the range in which temperature and power supply fluctuations are compensated is, for example, the lowest power supply potential VEE. = -2.7V, whereas according to the present invention, the lowest power supply potential VEE =-
This is 2.3 V, which is a significant reduction in voltage of 0.4 V compared to the conventional one, and further has the effect that the driving capability can be improved by the circuit configuration of the voltage follower.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の回路構成を示す回路図
である。
FIG. 1 is a circuit diagram showing a circuit configuration of a first embodiment of the present invention.

【図2】本発明の第2の実施例の回路構成を示す回路図
である。
FIG. 2 is a circuit diagram showing a circuit configuration of a second embodiment of the present invention.

【図3】従来の基準電圧発生回路図の構成を示す回路図
である。
FIG. 3 is a circuit diagram showing a configuration of a conventional reference voltage generating circuit diagram.

【図4】基準電圧発生回路をECL出力回路に使用した
構成を示すブロック図である。
FIG. 4 is a block diagram showing a configuration in which a reference voltage generation circuit is used in an ECL output circuit.

【図5】(A)は本発明に係る基準電圧発生回路を用い
た場合のECL回路(図4参照)の低レベル出力電圧の
電源変動特性図である。(B)は従来例の基準電圧発生
回路を用いた場合のECL回路(図4参照)の低レベル
出力電圧の電源変動特性図である。
FIG. 5A is a power supply variation characteristic diagram of a low level output voltage of the ECL circuit (see FIG. 4) when the reference voltage generating circuit according to the present invention is used. FIG. 6B is a power supply variation characteristic diagram of a low level output voltage of the ECL circuit (see FIG. 4) when the reference voltage generating circuit of the conventional example is used.

【符号の説明】[Explanation of symbols]

N1〜N3,N101〜N103,N201〜N20
5,N401 NPNトランジスタ R1〜R5,R101〜R104,R201〜R206
抵抗 ICS201 定電流源 VO 抵抗R1の端子間電圧 VEE 最低電位 VCS 出力電圧 VCS′節点
N1 to N3, N101 to N103, N201 to N20
5, N401 NPN transistors R1 to R5, R101 to R104, R201 to R206
Resistor ICS201 Constant current source VO Resistor R1 terminal voltage VEE Minimum potential VCS output voltage VCS 'node

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H02J 1/00 306 C 7509−5G H03F 3/50 8124−5J ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication location H02J 1/00 306 C 7509-5G H03F 3/50 8124-5J

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】最高電位電源端子に抵抗の一端が接続さ
れ、前記抵抗の他端と第1のトランジスタのコレクタ、
及び第1、第4の抵抗の一端が共通に接続され、前記第
1のトランジスタのベースは前記第1の抵抗の他端と第
2の抵抗の一端との接続点、及び第2のトランジスタの
コレクタに共通に接続され、前記第2のトランジスタの
エミッタは第3の抵抗の一端に接続され、ベースは前記
第4の抵抗の他端とダイオードのアノードとの接続点に
接続され、前記第1のトランジスタのエミッタと、前記
第2、第3の抵抗の他端、及び前記ダイオードのカソー
ドは共通に最低電位電源端子に接続され、前記第1のト
ランジスタのコレクタと前記第1、第4の抵抗の共通接
続点がボルテージ・フォロア回路の入力端子に接続さ
れ、該ボルテージ・フォロア回路の出力端子から基準電
圧を出力する低電圧基準電圧発生回路。
1. A one end of a resistor is connected to a highest potential power supply terminal, the other end of the resistor and a collector of a first transistor,
And one ends of the first and fourth resistors are commonly connected, and the base of the first transistor has a connection point between the other end of the first resistor and one end of the second resistor, and the base of the second transistor. The second transistor is commonly connected to the collector, the emitter of the second transistor is connected to one end of the third resistor, and the base is connected to a connection point between the other end of the fourth resistor and the anode of the diode. The emitter of the transistor, the other ends of the second and third resistors, and the cathode of the diode are commonly connected to the lowest potential power supply terminal, and the collector of the first transistor and the first and fourth resistors Is connected to the input terminal of the voltage follower circuit, and the reference voltage is output from the output terminal of the voltage follower circuit.
【請求項2】前記ボルテージ・フォロア回路の出力端子
が、定電流源回路を構成する定電流源トランジスタのベ
ースに接続され、前記第1のトランジスタが該定電流源
トランジスタと温度及び電圧変動特性を同一とし、前記
定電流源回路が温度及び電源変動に依存せず一定電流を
供給するように駆動することを特徴とする請求項1記載
の低電圧基準電圧発生回路。
2. An output terminal of the voltage follower circuit is connected to a base of a constant current source transistor forming a constant current source circuit, and the first transistor has a temperature and voltage variation characteristic with the constant current source transistor. 2. The low voltage reference voltage generating circuit according to claim 1, wherein the constant current source circuits are driven so as to supply a constant current independently of temperature and power supply fluctuations.
【請求項3】前記各トランジスタがいずれもNPNトラ
ンジスタである請求項1又は2記載の低電圧基準電圧発
生回路。
3. The low voltage reference voltage generating circuit according to claim 1, wherein each of the transistors is an NPN transistor.
【請求項4】前記定電流回路がECLの出力回路の定電
流源を構成する請求項2記載の低電圧基準電圧発生回
路。
4. The low voltage reference voltage generating circuit according to claim 2, wherein the constant current circuit constitutes a constant current source of an ECL output circuit.
JP5315785A 1993-11-24 1993-11-24 Low-voltage reference voltage generation circuit Pending JPH07146727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5315785A JPH07146727A (en) 1993-11-24 1993-11-24 Low-voltage reference voltage generation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5315785A JPH07146727A (en) 1993-11-24 1993-11-24 Low-voltage reference voltage generation circuit

Publications (1)

Publication Number Publication Date
JPH07146727A true JPH07146727A (en) 1995-06-06

Family

ID=18069531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5315785A Pending JPH07146727A (en) 1993-11-24 1993-11-24 Low-voltage reference voltage generation circuit

Country Status (1)

Country Link
JP (1) JPH07146727A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11134043A (en) * 1997-10-30 1999-05-21 Sharp Corp Dc stabilized power supply circuit
JP2008070856A (en) * 2006-09-11 2008-03-27 Samsung Sdi Co Ltd Plasma display and voltage generator thereof
JP2016212476A (en) * 2015-04-30 2016-12-15 日本電信電話株式会社 Band gap reference circuit
CN116755502A (en) * 2023-08-17 2023-09-15 深圳奥简科技有限公司 Source follower driving circuit, electronic circuit and electronic equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58112112A (en) * 1981-12-25 1983-07-04 Nec Corp Reference voltage circuit
JPS63124618A (en) * 1986-11-14 1988-05-28 Nec Corp Logical gate drive control circuit
JPH056231A (en) * 1991-02-07 1993-01-14 Alps Electric Co Ltd Constant voltage circuit and power supply circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58112112A (en) * 1981-12-25 1983-07-04 Nec Corp Reference voltage circuit
JPS63124618A (en) * 1986-11-14 1988-05-28 Nec Corp Logical gate drive control circuit
JPH056231A (en) * 1991-02-07 1993-01-14 Alps Electric Co Ltd Constant voltage circuit and power supply circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11134043A (en) * 1997-10-30 1999-05-21 Sharp Corp Dc stabilized power supply circuit
JP2008070856A (en) * 2006-09-11 2008-03-27 Samsung Sdi Co Ltd Plasma display and voltage generator thereof
JP2016212476A (en) * 2015-04-30 2016-12-15 日本電信電話株式会社 Band gap reference circuit
CN116755502A (en) * 2023-08-17 2023-09-15 深圳奥简科技有限公司 Source follower driving circuit, electronic circuit and electronic equipment
CN116755502B (en) * 2023-08-17 2023-10-20 深圳奥简科技有限公司 Source follower driving circuit, electronic circuit and electronic equipment

Similar Documents

Publication Publication Date Title
JPS635923B2 (en)
US4433283A (en) Band gap regulator circuit
JPH07146727A (en) Low-voltage reference voltage generation circuit
JPH1124769A (en) Constant current circuit
KR0128251B1 (en) Constant voltage circuit
JP2003283306A (en) Oscillator
JPH0365716A (en) Constant voltage circuit
JPS6154286B2 (en)
JPH01288911A (en) Bicmos reference voltage generator
JPH0784658A (en) Current source
JP2000134045A (en) Voltage-to-current conversion circuit
JPH08185236A (en) Reference voltage generating circuit
JP3655989B2 (en) Reference voltage generation circuit
JP3529601B2 (en) Constant voltage generator
JPS60250418A (en) Reference voltage circuit
JP2855726B2 (en) Reference voltage generation circuit
JP2643855B2 (en) Reference current circuit
JPH0477329B2 (en)
JPH04104517A (en) Bias circuit
JPH0816267A (en) Constant voltage circuit
JPH06236219A (en) Constant current circuit
JPS63182723A (en) Reference voltage generating circuit
JPH0643956A (en) Reference voltage generating circuit
JPH07121256A (en) Current mirror circuit
JPS63205714A (en) Constant-current source circuit

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19960730