JPH05235661A - Constant current source circuit - Google Patents

Constant current source circuit

Info

Publication number
JPH05235661A
JPH05235661A JP4075309A JP7530992A JPH05235661A JP H05235661 A JPH05235661 A JP H05235661A JP 4075309 A JP4075309 A JP 4075309A JP 7530992 A JP7530992 A JP 7530992A JP H05235661 A JPH05235661 A JP H05235661A
Authority
JP
Japan
Prior art keywords
constant current
temperature
resistor
diode
current source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4075309A
Other languages
Japanese (ja)
Other versions
JP2809927B2 (en
Inventor
Kikuo Kato
喜久男 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4075309A priority Critical patent/JP2809927B2/en
Publication of JPH05235661A publication Critical patent/JPH05235661A/en
Application granted granted Critical
Publication of JP2809927B2 publication Critical patent/JP2809927B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a constant current source circuit without being affected by temperature change due to the temperature characteristic of a resistor. CONSTITUTION:Compensation voltage characteristic utilizing the temperature characteristic of a diode D1 or a diode-connected transistor is attached on a reference voltage source 10 compensate the attachment of the temperature characteristic on constant current output by the temperature characteristic of the resistor in the constant current source circuit which applies the voltage of the reference voltage source 10 to the resistor R1 and takes out a current I1 on the resistor as the constant current output. Thereby, the constant current source circuit without being affected by the temperature characteristic can be realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、集積回路等でよく使
用される定電流源回路に関し、特にその温度補償の改善
を図ったものに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a constant current source circuit often used in integrated circuits and the like, and more particularly to a constant current source circuit having improved temperature compensation.

【0002】[0002]

【従来の技術】図11は定電流源回路の従来例を示す回
路図である。図において、1は基準電圧V1 を発生する
基準電圧源、2はこの基準電圧源1の基準電圧V1 がそ
の非反転入力に印加される演算増幅器、3はこの演算増
幅器2の出力がベースに印加され、エミッタが演算増幅
器2の反転入力に接続されたNPN型のトランジスタ、
4はトランジスタ3のエミッタとグランド間に接続され
た抵抗である。
2. Description of the Related Art FIG. 11 is a circuit diagram showing a conventional example of a constant current source circuit. In the figure, 1 is a reference voltage source for generating a reference voltage V 1 , 2 is an operational amplifier to which the reference voltage V 1 of the reference voltage source 1 is applied to its non-inverting input, and 3 is the output of this operational amplifier 2. An NPN-type transistor whose emitter is connected to the inverting input of the operational amplifier 2,
Reference numeral 4 is a resistor connected between the emitter of the transistor 3 and the ground.

【0003】次に動作について説明する。演算増幅器2
とトランジスタ3によって負帰還回路が構成されてお
り、抵抗4には基準電圧源1と同等の電圧が印加されて
いる。基準電圧源1の電圧をV1 、抵抗4の抵抗値をR
1 とすれば、抵抗4に流れる電流は、I1 =V1 /R1
となる。トランジスタ3の電流増幅率が充分高ければ、
コレクタよりほぼI1 と同等の電流を吸い込むことがで
きる。すなわち、V1 が一定、R1 が一定であればトラ
ンジスタ3のコレクタより、一定電流が得られるので、
この回路を定電流源回路として用いることができる。
Next, the operation will be described. Operational amplifier 2
The transistor 3 constitutes a negative feedback circuit, and a voltage equal to that of the reference voltage source 1 is applied to the resistor 4. The voltage of the reference voltage source 1 is V 1 , and the resistance value of the resistor 4 is R
If 1, the current flowing through the resistor 4, I 1 = V 1 / R 1
Becomes If the current amplification factor of transistor 3 is high enough,
A current equivalent to I 1 can be absorbed from the collector. That is, if V 1 is constant and R 1 is constant, a constant current is obtained from the collector of the transistor 3,
This circuit can be used as a constant current source circuit.

【0004】[0004]

【発明が解決しようとする課題】従来の定電流源回路は
以上のように構成されていたため、抵抗に温度特性があ
ると、定電流出力も温度特性を持ってしまうため、温度
特性のない抵抗を使用する必要があった。しかしなが
ら、特に定電流源回路をIC化する場合、IC内部の抵
抗(拡散抵抗、ポリシリコン抵抗等)は、温度特性が大
きいことが通常であり、この従来回路の構成で温度特性
のない定電流源を実現するのは困難であった。
Since the conventional constant current source circuit is configured as described above, if the resistance has a temperature characteristic, the constant current output also has a temperature characteristic. Had to use. However, particularly when the constant current source circuit is integrated into an IC, the resistance (diffusion resistance, polysilicon resistance, etc.) inside the IC usually has a large temperature characteristic, and the constant current with no temperature characteristic is obtained by the configuration of this conventional circuit. It was difficult to realize the source.

【0005】こうした問題を解決するために、抵抗をI
C外部の抵抗として温度補償を行なうことが考えられる
が、それには、ICに余分な端子が必要となり、また外
付け抵抗であるため、IC内部の抵抗との相対比がとれ
ない等の欠点があった。
In order to solve these problems, the resistance is set to I
It is conceivable to perform temperature compensation as a resistance outside C, but this requires extra terminals in the IC, and since it is an external resistance, it has the drawback that the relative ratio with the resistance inside the IC cannot be obtained. there were.

【0006】本発明は、上記のような問題点を解決する
ためになされたもので、温度特性の補償された定電流源
回路を、IC化に最適な形で提供せんとするものであ
る。
The present invention has been made in order to solve the above-mentioned problems, and an object of the present invention is to provide a constant current source circuit whose temperature characteristics are compensated in an optimum form for IC implementation.

【0007】[0007]

【課題を解決するための手段】この発明に係る定電流源
回路は、抵抗の温度特性を補償するために、基準電圧源
に温度補償特性を持たせることによって、定電流源を実
現したものであり、この基準電圧源の温度補償特性はダ
イオードもしくはダイオード接続されたトランジスタの
順方向電圧温度特性を用いて実現したものである。
A constant current source circuit according to the present invention realizes a constant current source by providing a reference voltage source with a temperature compensation characteristic in order to compensate the temperature characteristic of a resistor. The temperature compensation characteristic of the reference voltage source is realized by using the forward voltage temperature characteristic of a diode or a diode-connected transistor.

【0008】[0008]

【作用】この発明においては、上述のように構成したこ
とにより、温度特性の大きいIC内部の抵抗を用いて
も、基準電圧源によって温度補償されるため、温度特性
のない外部抵抗等を用いる必要がなく、温度特性を持た
ない定電流源回路が実現できる。
In the present invention, because of the above-described configuration, even if the internal resistance of the IC having a large temperature characteristic is used, the temperature is compensated by the reference voltage source, so that it is necessary to use an external resistor having no temperature characteristic. And a constant current source circuit having no temperature characteristic can be realized.

【0009】[0009]

【実施例】以下、この発明の一実施例を図について説明
する。図1は本発明の一実施例による定電流源回路を示
すものであり、図において、図11と同一符号は同一の
ものを示す。10は本実施例における基準電圧源であ
り、相互に直列接続された、電流源I2 ,ダイオードD
1 ,電圧源V1 から構成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a constant current source circuit according to an embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 11 denote the same elements. Reference numeral 10 is a reference voltage source in this embodiment, which is a current source I 2 and a diode D connected in series with each other.
1 and a voltage source V 1 .

【0010】この実施例は、基準電圧源10が、電流源
2 ,ダイオードD1 ,電圧源V1から構成され、抵抗
4の温度特性を補償すべくダイオードD1 により温度補
償特性が付与されている点を除けば、従来例と同様の構
成を持つ。
In this embodiment, the reference voltage source 10 comprises a current source I 2 , a diode D 1 and a voltage source V 1, and a temperature compensation characteristic is given by the diode D 1 to compensate the temperature characteristic of the resistor 4. Except for the above point, it has the same configuration as the conventional example.

【0011】したがって得られる定電流出力I1 は、I
1 =V2 /R1 で、これは従来例と同様である。ここで
2 は、基準電圧源10の基準電圧である。
Therefore, the constant current output I 1 obtained is I
1 = V 2 / R 1 , which is the same as the conventional example. Here, V 2 is the reference voltage of the reference voltage source 10.

【0012】次にその温度補償動作について説明する。
ダイオードD1 の順方向電圧VF の温度係数をαとす
る。また抵抗4の温度係数をρとすると、電流I1 は、
Next, the temperature compensation operation will be described.
The temperature coefficient of the forward voltage V F of the diode D 1 is α. If the temperature coefficient of the resistor 4 is ρ, the current I 1 is

【0013】 I1 =〔V1 +VF (1+αT)〕/〔R1 (1+ρT)〕 …(1) I 1 = [V 1 + V F (1 + αT)] / [R 1 (1 + ρT)] (1)

【0014】で表わせる。Tは温度変化値である。した
がって、
Can be expressed as T is a temperature change value. Therefore,

【0015】 〔V1 +VF (1+αT)〕/(1+ρT) …(2) [V 1 + V F (1 + αT)] / (1 + ρT) (2)

【0016】を一定とすれば、I1 の温度補償が実現で
きる。
If I is constant, temperature compensation of I 1 can be realized.

【0017】以下、理解を容易にするため具体的な数値
例を用いて説明する。室温(25°C)にて抵抗4の値
をR1 =10kΩ,ダイオードD1 の順方向電圧をVF
=0.7V,電圧源V1 の電圧をV1 =0.3Vとする
と、定電流出力をI1 =100μAと設定できる。
In order to facilitate understanding, a specific numerical example will be described below. The value of the resistor 4 is R 1 = 10 kΩ and the forward voltage of the diode D 1 is V F at room temperature (25 ° C.).
= 0.7 V and the voltage of the voltage source V 1 is V 1 = 0.3 V, the constant current output can be set to I 1 = 100 μA.

【0018】抵抗4の温度係数ρをρ=−2000pp
m/°Cとする。ダイオードD1 はシリコンであれば、
順方向電圧VF の温度特性は絶対値で−2mV/°Cで
あることが理論上知られているため、この温度特性を温
度係数に換算すると、順方向電圧VF の温度係数αはα
=−2860ppm/°Cとなる。
The temperature coefficient ρ of the resistor 4 is ρ = −2000 pp
m / ° C. If the diode D 1 is silicon,
It is theoretically known that the temperature characteristic of the forward voltage V F is −2 mV / ° C in absolute value. Therefore, when converting this temperature characteristic into a temperature coefficient, the temperature coefficient α of the forward voltage V F is α
= -2860 ppm / ° C.

【0019】温度が100°C上昇した場合を考えてみ
ると、抵抗4の値R1 は、R1 =10kΩ・(1+ρ×
100°C)=8kΩとなる。また基準電圧V2 は、V
2 =V1 +VF ・(1+α×100°C)=0.3V+
0.7V・(1−0.286)=0.8Vとなる。この
時の電流I1 を求めると、I1 =V2 /R1 =0.8V
/8kΩ=100μAとなり、室温と比べ変化せず、温
度補償されていることがわかる。
Considering the case where the temperature rises by 100 ° C., the value R 1 of the resistor 4 is R 1 = 10 kΩ (1 + ρ ×
100 ° C.) = 8 kΩ. The reference voltage V 2 is V
2 = V 1 + V F · (1 + α × 100 ° C) = 0.3V +
0.7V · (1−0.286) = 0.8V. When the current I 1 at this time is obtained, I 1 = V 2 / R 1 = 0.8V
/ 8 kΩ = 100 μA, which is the same as that at room temperature, and it can be seen that the temperature is compensated.

【0020】図2は本発明の他の実施例である。この実
施例は、図1の基準電圧源10に抵抗R2 ,R3 が追加
されている。これは、ダイオードの順方向電圧の温度係
数を抵抗比に応じて任意の温度係数とするためである。
FIG. 2 shows another embodiment of the present invention. In this embodiment, resistors R 2 and R 3 are added to the reference voltage source 10 shown in FIG. This is because the temperature coefficient of the forward voltage of the diode is an arbitrary temperature coefficient according to the resistance ratio.

【0021】理解を容易にするために具体的な数値例を
用いて説明する。抵抗の温度係数ρがρ=−1000p
pm/°Cと、図1の実施例の1/2になった場合を考
える。この場合、補償する基準電圧源1の温度係数も1
/2とすれば良い。このため抵抗R2 =R3 =10kΩ
とする。
In order to facilitate understanding, a specific numerical example will be used for description. The temperature coefficient ρ of resistance is ρ = −1000p
Consider the case of pm / ° C, which is half that of the embodiment of FIG. In this case, the temperature coefficient of the reference voltage source 1 to be compensated is also 1
You can set it to / 2. Therefore, the resistance R 2 = R 3 = 10 kΩ
And

【0022】図1の実施例と同様に、室温での抵抗4の
抵抗値をR1 =10kΩ,ダイオードの順方向電圧をV
F =0.7Vとし、定電流値I1 がI1 =100μAと
なるように基準電圧源10の電圧値をV2 =1Vとす
る。このとき、基準電圧源1の電圧値V2 は、
Similar to the embodiment of FIG. 1, the resistance value of the resistor 4 at room temperature is R 1 = 10 kΩ, and the forward voltage of the diode is V.
The voltage value of the reference voltage source 10 is set to V 2 = 1V so that F = 0.7V and the constant current value I 1 becomes I 1 = 100 μA. At this time, the voltage value V 2 of the reference voltage source 1 is

【0023】 V2 =〔(R3 ×VF )/(R2 +R3 )〕+V1 …(3) V 2 = [(R 3 × V F ) / (R 2 + R 3 )] + V 1 (3)

【0024】で与えられるから、電圧源V1 の電圧はV
1 =0.65Vとなる。
Since the voltage of the voltage source V 1 is V
It becomes 1 = 0.65V.

【0025】次に室温から100°C温度上昇した場合
を考えると、抵抗4の抵抗値R1 はR1 =10kΩ・
(1+ρ×100°C)=9kΩとなる。この時、基準
電圧源10の電圧値V2 は、
Next, considering the case where the temperature rises from room temperature to 100 ° C., the resistance value R 1 of the resistor 4 is R 1 = 10 kΩ.multidot.
(1 + ρ × 100 ° C.) = 9 kΩ. At this time, the voltage value V 2 of the reference voltage source 10 is

【0026】 V2 =〔(R3 ×VF (1+αT))/(R2 +R3 )〕+V1 …(4) V 2 = [(R 3 × V F (1 + αT)) / (R 2 + R 3 )] + V 1 (4)

【0027】より、V2 =〔(10kΩ×0.7V(1
+α×100°C))/(10kΩ+10kΩ)〕+
0.65V=〔0.7V・(1−0.286)/2〕+
0.65V=0.9Vとなる。
From the above, V 2 = [(10 kΩ × 0.7V (1
+ Α × 100 ° C)) / (10kΩ + 10kΩ)] +
0.65V = [0.7V ・ (1-0.286) / 2] +
It becomes 0.65V = 0.9V.

【0028】したがって、I1 =V2 /R1 =0.9V
/9kΩ=100μAとなり、定電流値は室温と比べ変
化せず、温度補償されたことがわかる。
Therefore, I 1 = V 2 / R 1 = 0.9V
/ 9 kΩ = 100 μA, the constant current value did not change compared to room temperature, and it is understood that temperature compensation was performed.

【0029】以上の数値例から分かるように、抵抗の温
度係数に応じて抵抗R2 とR3 の分圧比を変えてやれば
任意の温度係数について補償可能である。
As can be seen from the above numerical examples, any temperature coefficient can be compensated by changing the voltage division ratio of the resistors R 2 and R 3 according to the temperature coefficient of resistance.

【0030】以上、抵抗の温度係数が負の場合について
述べたが、図1,図2の接続を、図3,図4のごとく変
えてやれば、抵抗の温度係数が正の場合にも同様に実現
できる。
Although the case where the temperature coefficient of resistance is negative has been described above, if the connection of FIGS. 1 and 2 is changed as shown in FIGS. 3 and 4, the same applies to the case where the temperature coefficient of resistance is positive. Can be realized.

【0031】また、抵抗の温度係数がかなり大きい場合
は、図5のごとくダイオードを接続し、補償温度係数も
大きくする様に改良してやれば良い。
When the temperature coefficient of resistance is considerably large, it is sufficient to improve the temperature coefficient of compensation by connecting a diode as shown in FIG.

【0032】さらに、上記実施例では、設定すべき電流
値I1 の設定を容易に決定するため、電圧源V1 を用い
たが、特定の条件(定電流値)では、図6のごとく電圧
源V1 を用いず接地としてもよく、上記実施例と同様の
効果が得られる。
Further, in the above embodiment, the voltage source V 1 is used in order to easily determine the setting of the current value I 1 to be set. However, under a specific condition (constant current value), the voltage is as shown in FIG. The source V 1 may be used instead of grounding, and the same effect as in the above embodiment can be obtained.

【0033】また、上記実施例では基準電圧源10に定
電流源I2 を使用したが、条件によっては抵抗に置き換
えてもよく、同様に実現できる。この実施例を図7に示
す。
Further, although the constant current source I 2 is used as the reference voltage source 10 in the above-mentioned embodiment, it may be replaced with a resistor depending on the conditions and the same can be realized. This embodiment is shown in FIG.

【0034】また、図8のごとく、演算増幅器2とトラ
ンジスタ3を、トランジスタQ1 と抵抗R4 からなる簡
易なボルテージフォロワ5に置きかえてやれば、少ない
構成素子で同様に実現できる。
Further, as shown in FIG. 8, if the operational amplifier 2 and the transistor 3 are replaced with a simple voltage follower 5 consisting of a transistor Q 1 and a resistor R 4 , it can be realized similarly with a small number of constituent elements.

【0035】また、図1ないし図8のダイオードD1
ダイオード接続されたトランジスタに置き換えてもよ
く、同様に実現できる。
Further, the diode D 1 shown in FIGS. 1 to 8 may be replaced with a diode-connected transistor, which can be similarly realized.

【0036】また、図9のごとく、トランジスタQ2
BEの温度係数を、基準電圧源10に追加した抵抗
2 ,R3 を用いてその抵抗比と同数倍した温度変化を
作り出すことにより、抵抗R1 の温度特性を任意に補償
できる。
As shown in FIG. 9, the temperature coefficient of V BE of the transistor Q 2 is multiplied by resistances R 2 and R 3 added to the reference voltage source 10 to produce a temperature change equal to its resistance ratio. Thereby, the temperature characteristic of the resistor R 1 can be arbitrarily compensated.

【0037】理解を容易にするため、具体的な数値例を
用いて説明する。室温(25°C)にてR1 =10k
Ω,I1 =100μAに設定すると、V2 =1Vであ
る。R1の温度係数ρをρ=−3000ppm/°Cと
すると、トランジスタQ2 (VBE)の温度係数は−2m
V/°Cであることが理論上解っているため、トランジ
スタQ2 (VBE)の温度係数−2mV/°Cが抵抗R1
の温度係数−3000ppm/°Cに等しくなるように
その値を拡大するためには、抵抗比(R2 +R3 )/R
3 を(R2 +R3 )/R3 =(−3000ppm/°
C)/(−2mV/°C)=1.5に選べば良いから、
2 =5kΩ,R3 =10kΩとする。したがってV1
=−0.05Vとしてやれば、V2 =1Vとなり、I1
=100μAとなる(但し、VBE=0.7Vとする)。
室温から100°C温度上昇し、125°Cとなった場
合を考えて見ると、R1 =7kΩとなる。このときV2
=1.5VBE−0.05=0.7Vとなり、I1 =10
0μAと変化しないことが解る。なお、VBEは−2mV
/°Cの温度特性を持つため、125°CではVBE
0.5Vとなる。
In order to facilitate understanding, a specific numerical example will be used for explanation. R 1 = 10k at room temperature (25 ° C)
When setting Ω and I 1 = 100 μA, V 2 = 1V. If the temperature coefficient ρ of R 1 is ρ = −3000 ppm / ° C, the temperature coefficient of the transistor Q 2 (V BE ) is −2 m.
Since it is theoretically known that the voltage is V / ° C, the temperature coefficient of the transistor Q 2 (V BE ) is -2 mV / ° C and the resistance R 1
To increase the value so that it becomes equal to the temperature coefficient of −3000 ppm / ° C, the resistance ratio (R 2 + R 3 ) / R
3 to (R 2 + R 3 ) / R 3 = (-3000 ppm / °
C) / (-2 mV / ° C) = 1.5, so
It is assumed that R 2 = 5 kΩ and R 3 = 10 kΩ. Therefore V 1
= −0.05V, V 2 = 1V, and I 1
= 100 μA (provided that V BE = 0.7 V).
Considering a case where the temperature rises from room temperature by 100 ° C. to 125 ° C., R 1 = 7 kΩ. At this time V 2
= 1.5V BE −0.05 = 0.7V, and I 1 = 10
It can be seen that it does not change to 0 μA. In addition, V BE is -2 mV
Since it has a temperature characteristic of / ° C, V BE = 125 ° C
It becomes 0.5V.

【0038】次に、R1 の温度係数がρ=−4500p
pm/°Cである場合を考える。この場合は、(R2
3 )/R3 =(−4500ppm/°C)/(−2m
V/°C)=2.25とすれば良く、これはR2 =1
2.5KΩ,R3 =10KΩとすることにより実現でき
る。また電圧源V1 の電圧をV1 =−0.575Vとす
る。室温(25°c)では同様にR1 =10kΩ,VBE
=0.7Vであるから、V2 =1Vとなり、I1 =10
0μAと設定できる。
Next, the temperature coefficient of R 1 is ρ = -4500 p
Consider the case of pm / ° C. In this case, (R 2 +
R 3) / R 3 = ( - 4500ppm / ° C) / (- 2m
V / ° C) = 2.25, which is R 2 = 1
It can be realized by setting 2.5 KΩ and R 3 = 10 KΩ. Further, the voltage of the voltage source V 1 is V 1 = −0.575V. Similarly, at room temperature (25 ° C), R 1 = 10 kΩ, V BE
= 0.7V, V 2 = 1V and I 1 = 10
It can be set to 0 μA.

【0039】室温から100°c温度上昇したと仮定す
ると、R1 =5.5KΩ,V2 =2.25VBE(0.5
V)+V1 (−0.575V)=0.55Vとなり、I
1 =100μAとなり、やはり変化しない。
Assuming a temperature rise of 100 ° C. from room temperature, R 1 = 5.5 KΩ, V 2 = 2.25 V BE (0.5
V) + V 1 (−0.575V) = 0.55V, and I
1 = 100 μA, which remains unchanged.

【0040】以上述べた様に、この図9の構成によっ
て、トランジスタのVBEの温度係数を抵抗比と同数倍し
てやることによっても、抵抗の温度特性を任意に補償で
き、IC化に最適な温度補償された定電流源を得ること
ができる。
As described above, with the configuration of FIG. 9, the temperature coefficient of resistance can be arbitrarily compensated by multiplying the temperature coefficient of V BE of the transistor by the same number as the resistance ratio, which is ideal for IC implementation. It is possible to obtain a temperature-compensated constant current source.

【0041】なお、V1 は設定すべき電流値I1 を任意
に設定するためのものであるが、特定の条件(定電流
値)ではV1 を用いず接地しても同様の効果が得られ
る。
Although V 1 is for arbitrarily setting the current value I 1 to be set, the same effect can be obtained by grounding without using V 1 under a specific condition (constant current value). Be done.

【0042】また、図9は抵抗の温度係数が負の場合に
ついて述べたが、図10の様に抵抗の温度係数が正の場
合も同様に実現できる。
Although FIG. 9 describes the case where the temperature coefficient of resistance is negative, the same can be realized when the temperature coefficient of resistance is positive as in FIG.

【0043】また、トランジスタQ2 はNPNで説明し
たが、PNPトランジスタにても同様に実現可能であ
る。
Although the transistor Q 2 has been described as an NPN, it can be similarly realized by a PNP transistor.

【0044】[0044]

【発明の効果】以上述べたように、この発明に係る定電
流源回路によれば、ダイオードもしくはダイオード接続
されたトランジスタの順方向電圧温度特性を用いて抵抗
の温度特性を補償するような温度補償特性を持たせるよ
うにしたので、抵抗の温度特性の影響を受けず、温度変
化のない定電流源回路が得られ、IC化が容易になるも
のが得られる効果がある。
As described above, according to the constant current source circuit of the present invention, the temperature compensation of the temperature characteristic of the resistor is performed by using the forward voltage temperature characteristic of the diode or the diode-connected transistor. Since the characteristics are provided, there is an effect that a constant current source circuit that is not affected by the temperature characteristics of the resistance and does not change in temperature can be obtained, and an IC can be easily formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の第1の実施例を示す回路図である。FIG. 1 is a circuit diagram showing a first embodiment of the present invention.

【図2】この発明の第2の実施例を示す回路図である。FIG. 2 is a circuit diagram showing a second embodiment of the present invention.

【図3】この発明の第3の実施例を示す回路図である。FIG. 3 is a circuit diagram showing a third embodiment of the present invention.

【図4】この発明の第4の実施例を示す回路図である。FIG. 4 is a circuit diagram showing a fourth embodiment of the present invention.

【図5】この発明の第5の実施例を示す回路図である。FIG. 5 is a circuit diagram showing a fifth embodiment of the present invention.

【図6】この発明の第6の実施例を示す回路図である。FIG. 6 is a circuit diagram showing a sixth embodiment of the present invention.

【図7】この発明の第7の実施例を示す回路図である。FIG. 7 is a circuit diagram showing a seventh embodiment of the present invention.

【図8】この発明の第8の実施例を示す回路図である。FIG. 8 is a circuit diagram showing an eighth embodiment of the present invention.

【図9】この発明の第9の実施例を示す回路図である。FIG. 9 is a circuit diagram showing a ninth embodiment of the present invention.

【図10】この発明の第10の実施例を示す回路図であ
る。
FIG. 10 is a circuit diagram showing a tenth embodiment of the present invention.

【図11】従来の定電流源回路を示す回路図である。FIG. 11 is a circuit diagram showing a conventional constant current source circuit.

【符号の説明】[Explanation of symbols]

2 演算増幅器 3 トランジスタ 4,R2 ,R3 抵抗 D1 ダイオード Q2 ダイオード接続されたトランジスタ 10 基準電圧源2 operational amplifier 3 transistor 4, R 2 , R 3 resistance D 1 diode Q 2 diode connected transistor 10 reference voltage source

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年7月8日[Submission date] July 8, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図5[Name of item to be corrected] Figure 5

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図5】 [Figure 5]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基準電圧源の電圧を抵抗により変換して
定電流を得る定電流源回路において、 上記基準電圧源内に、その順方向電圧温度変化により上
記抵抗の温度変化を補償する、ダイオードもしくはダイ
オード接続されたトランジスタを設けてなることを特徴
とする定電流源回路。
1. A constant current source circuit for converting a voltage of a reference voltage source by a resistor to obtain a constant current, wherein a diode or a diode or a diode, which compensates the temperature change of the resistor by the temperature change of the forward voltage in the reference voltage source. A constant current source circuit comprising a diode-connected transistor.
JP4075309A 1992-02-24 1992-02-24 Constant current source circuit Expired - Fee Related JP2809927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4075309A JP2809927B2 (en) 1992-02-24 1992-02-24 Constant current source circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4075309A JP2809927B2 (en) 1992-02-24 1992-02-24 Constant current source circuit

Publications (2)

Publication Number Publication Date
JPH05235661A true JPH05235661A (en) 1993-09-10
JP2809927B2 JP2809927B2 (en) 1998-10-15

Family

ID=13572528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4075309A Expired - Fee Related JP2809927B2 (en) 1992-02-24 1992-02-24 Constant current source circuit

Country Status (1)

Country Link
JP (1) JP2809927B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011091758A (en) * 2009-10-26 2011-05-06 Seiko Epson Corp Constant current generating circuit, resistance circuit, integrated circuit device and electronic apparatus
JP2013062757A (en) * 2011-09-15 2013-04-04 Seiko Npc Corp Lvds output circuit
JP2014099926A (en) * 2014-02-20 2014-05-29 Seiko Epson Corp Constant current generating circuit, resistance circuit, integrated circuit device, and electronic apparatus
US11329648B2 (en) 2020-03-24 2022-05-10 Mitsumi Electric Co., Ltd. Current source circuit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7847534B2 (en) 2007-03-26 2010-12-07 Panasonic Corporation Reference current circuit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017316A (en) * 1983-07-08 1985-01-29 Canon Inc Compensating circuit of temperature
JPH03144812A (en) * 1989-10-31 1991-06-20 Matsushita Electric Ind Co Ltd Constant current circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017316A (en) * 1983-07-08 1985-01-29 Canon Inc Compensating circuit of temperature
JPH03144812A (en) * 1989-10-31 1991-06-20 Matsushita Electric Ind Co Ltd Constant current circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011091758A (en) * 2009-10-26 2011-05-06 Seiko Epson Corp Constant current generating circuit, resistance circuit, integrated circuit device and electronic apparatus
JP2013062757A (en) * 2011-09-15 2013-04-04 Seiko Npc Corp Lvds output circuit
JP2014099926A (en) * 2014-02-20 2014-05-29 Seiko Epson Corp Constant current generating circuit, resistance circuit, integrated circuit device, and electronic apparatus
US11329648B2 (en) 2020-03-24 2022-05-10 Mitsumi Electric Co., Ltd. Current source circuit

Also Published As

Publication number Publication date
JP2809927B2 (en) 1998-10-15

Similar Documents

Publication Publication Date Title
US4350904A (en) Current source with modified temperature coefficient
US5229711A (en) Reference voltage generating circuit
US4507573A (en) Current source circuit for producing a small value output current proportional to an input current
JPH04266110A (en) Band-gap reference circuit
JPH0618015B2 (en) Current stabilization circuit
JPH0227806A (en) Mutual conductance circuit
JPS6148168B2 (en)
JP2809927B2 (en) Constant current source circuit
JPH0770935B2 (en) Differential current amplifier circuit
JPS60229125A (en) Voltage output circuit
JP3461276B2 (en) Current supply circuit and bias voltage circuit
JPH0526208B2 (en)
JPS6154286B2 (en)
JP2721286B2 (en) Temperature compensation type reference voltage generation circuit for semiconductor device
JP2002108467A (en) Constant voltage output circuit
JP3655989B2 (en) Reference voltage generation circuit
JPH07230332A (en) Band gap type constant voltage generating circuit
JP2000134045A (en) Voltage-to-current conversion circuit
JP3088336B2 (en) Frequency conversion circuit
JP2729071B2 (en) Constant current circuit
JP2599304B2 (en) Constant current circuit
JP2609749B2 (en) Current supply circuit
JP5925362B1 (en) Temperature compensation circuit
JPS61160121A (en) Constant current circuit
JPH05127766A (en) Band gap constant voltage circuit

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080731

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080731

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090731

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100731

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110731

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110731

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110731

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees