JPH01292411A - Band gap reference voltage circuit - Google Patents

Band gap reference voltage circuit

Info

Publication number
JPH01292411A
JPH01292411A JP12231988A JP12231988A JPH01292411A JP H01292411 A JPH01292411 A JP H01292411A JP 12231988 A JP12231988 A JP 12231988A JP 12231988 A JP12231988 A JP 12231988A JP H01292411 A JPH01292411 A JP H01292411A
Authority
JP
Japan
Prior art keywords
voltage
circuit
bandgap
reference voltage
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12231988A
Other languages
Japanese (ja)
Inventor
Hiroyasu Kishi
岸 博泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP12231988A priority Critical patent/JPH01292411A/en
Publication of JPH01292411A publication Critical patent/JPH01292411A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To make the temperature characteristic of an output reference voltage from a band gap reference voltage circuit flat by connecting a resistor in parallel with a diode in a band gap current generating circuit. CONSTITUTION:The band gap reference voltage circuit is constituted so as to generate an output reference voltage to an output terminal 2 in accordance with a constant current obtained from a constant current source 1. The output voltage of the output terminal 2 is expressed by the sum of a voltage VBE3 between the base and emitter of a transistor (TR) 3 and a voltage between both the ends of a resistor R4 and V=VBE3+(R4/R3)(kT/q)ln(I1/I2) is formed, and when a current is selected so that the 2nd term is positive and I1>I2 is formed because the VBE3 has a negative temperature factor, the whole temperature coefficient can be made equal to zero. In this case, the prescribed resistor may be connected in parallel with the diode 13 in order to make the temperature characteristic of the output reference voltage flat.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はバンドギャップ基準電圧回路に関するもので、
特に任意の出力電圧を得ることが出来るバンドギャップ
基準電圧回路に関する。
[Detailed description of the invention] (a) Industrial application field The present invention relates to a bandgap reference voltage circuit,
In particular, the present invention relates to a bandgap reference voltage circuit that can obtain any output voltage.

(ワ)従来の技術 安定で精度の高い基準電圧を得るのに用いるバンドギャ
ップ基準電圧回路が知られている。前記回路は、例えば
昭和55年1月30日付で(株)コロナ社より発行され
た集積回路工学I第23頁に記載されている。前記バン
ドギャップ基準電圧回路は、第2図に示す如きものであ
り、定電流源(1〉からの定電流に応じて出力端子(2
)に出力基準電圧を発生させる構成となっている。前記
出力端子(2)の出力電圧Vは、第3トランジスタ(3
〉のV□、(ベース・エミッタ間電圧)と第2抵抗(4
)(ただし、抵抗値はR,)の両端電圧V、との和であ
る。そこで、前記両端電圧V、の値を求める。
(W) Conventional Technology A bandgap reference voltage circuit used to obtain a stable and highly accurate reference voltage is known. The circuit is described, for example, in Integrated Circuit Engineering I, page 23, published by Corona Co., Ltd. on January 30, 1980. The bandgap reference voltage circuit is as shown in FIG.
) is configured to generate an output reference voltage. The output voltage V of the output terminal (2) is output from the third transistor (3
>V□, (base-emitter voltage) and second resistor (4
) (however, the resistance value is the sum of the voltage V across both ends of R, ). Therefore, the value of the voltage V at both ends is determined.

まず、第3抵抗(5)R,の両端電圧V、は、Vg ”
” Vmm+ −vmgx=(xr/q) fl n(
It/L) −−−−−−(i)となる。その為、前記
両端電圧V、は Vt −(Rx/Ra )(KT/q> j2 、(L
/エバ・・・・・・・・・(2)となるので、前記出力
電圧Vは v−Vats + (Rx/Ra>(xT/q> 1 
、(It/Iり−(3)となる、第(3)式の第1項(
Vsas)は負の温度係数(約−2mV/”C)を有す
るので第2項が正となるように電流をII>IIと選べ
ば全体の温度係数を零にすることが出来る。つまり、第
2図の回路においては第2抵抗(4)の両端電圧の温度
特性と電圧Vlll!jの温度特性とをキャンセルする
ことによって温度変化の影響を受けない一定電圧を得て
いる。
First, the voltage V across the third resistor (5) R is Vg ”
” Vmm+ −vmgx=(xr/q) fl n(
It/L) -------(i). Therefore, the voltage V at both ends is Vt - (Rx/Ra) (KT/q> j2, (L
/ Eva (2), so the output voltage V is v-Vats + (Rx/Ra>(xT/q> 1
, (It/I - (3), the first term of equation (3) (
Vsas) has a negative temperature coefficient (approximately -2 mV/''C), so if the current is selected such that II > II so that the second term is positive, the overall temperature coefficient can be made zero. In the circuit shown in FIG. 2, a constant voltage that is not affected by temperature changes is obtained by canceling the temperature characteristics of the voltage across the second resistor (4) and the temperature characteristics of the voltage Vllll!j.

(ハ)発明が解決しようとする課題 さて、第(3〉式の条件は、出力電圧Vが約1.2Vに
なったときに満足される。前記出力電圧Vとしてもっと
高い値を得ようとする為には第2図の回路を第3図の如
くすれば良い、尚、第3図において第2図と同一の回路
素子については同一の符号を付している。この場合には
第2抵抗(4)及び抵抗(9)と第3トランジスタ(3
)及びダイオード(10)との間で温度特性のキャンセ
ルが行なわれ、出力端子(11)には2vキ2.4(V
)の電圧が得られる。この様にダイオードと抵抗の組み
合せを第2図の回路に追加すれば前記出力電圧Vの整数
倍の電圧が得られる。
(c) Problems to be Solved by the Invention Now, the condition of equation (3) is satisfied when the output voltage V becomes approximately 1.2V.In order to obtain a higher value as the output voltage V, In order to do this, the circuit in FIG. 2 can be changed to the one shown in FIG. Resistor (4) and resistor (9) and third transistor (3
) and the diode (10), the temperature characteristics are canceled between the output terminal (11) and the output terminal (11).
) voltage is obtained. By adding a combination of a diode and a resistor to the circuit shown in FIG. 2 in this way, a voltage that is an integral multiple of the output voltage V can be obtained.

しかしながら、その方法では1・2vの整数倍の電圧以
外の電圧を得ることが出来ず問題であった。
However, this method was problematic because it was not possible to obtain voltages other than voltages that were integral multiples of 1.2V.

(ニ)課題を解決するための手段 本発明は、上述の点に鑑み成きれたもので、電流発生回
路と、該電流発生回路からの電流に応じてバンドギャッ
プ電流を発生する電流ミラー型のバンドギャップ電流発
生回路と、該バンドギャップ電流発生回路の出力電流に
応じてバンドギャップ電圧を発生するバンドギャップ電
圧発生回路とから成り、前記バンドギャップ電圧発生回
路内の抵抗の値を変えることにより任意の出力電圧が得
られるバンドギャップ基準電圧回路において、前記バン
ドギャップ電流発生回路内のダイオードに並列に抵抗を
接続したことを特徴とする。
(d) Means for Solving the Problems The present invention has been achieved in view of the above points, and includes a current generation circuit and a current mirror type that generates a bandgap current according to the current from the current generation circuit. It consists of a bandgap current generation circuit and a bandgap voltage generation circuit that generates a bandgap voltage according to the output current of the bandgap current generation circuit. In the bandgap reference voltage circuit which can obtain an output voltage of , the bandgap reference voltage circuit is characterized in that a resistor is connected in parallel to the diode in the bandgap current generating circuit.

(*)作用 本発明に依れば、所望の基準電圧を発生するとともに負
の温度特性を有するバンドギャップ基準電圧回路を作成
し、該回路内のバンドギャップ電流発生回路のダイオー
ドに対して並列に抵抗を接続しているので、前記バンド
ギャップ基準電圧回路の出力基準電圧の温度特性をフラ
ットにすることが出来る。
(*) Effect According to the present invention, a bandgap reference voltage circuit that generates a desired reference voltage and has negative temperature characteristics is created, and is connected in parallel to the diode of the bandgap current generating circuit in the circuit. Since the resistor is connected, the temperature characteristics of the output reference voltage of the bandgap reference voltage circuit can be made flat.

(へ)実施例 第1図は、本発明の一実施例を示す回路図で、(20)
は一端が定電流源(1)に接続された第4抵抗、(12
)は一端が定電流源(1)に接続された第5抵抗、(1
3)は前記第5抵抗(12)に一端が接続きれたダイオ
ード、(14>は前記ダイオード(13)に並列接続さ
れた温度補償用抵抗である。尚、第1図において第2図
と同一の回路素子については同一の符号を付している。
(f) Embodiment FIG. 1 is a circuit diagram showing an embodiment of the present invention, (20)
is a fourth resistor (12) whose one end is connected to the constant current source (1);
) is the fifth resistor whose one end is connected to the constant current source (1), (1
3) is a diode whose one end is connected to the fifth resistor (12), and (14> is a temperature compensation resistor connected in parallel to the diode (13). In Fig. 1, the same as Fig. 2) The same reference numerals are given to the circuit elements.

まず、第1図の温度係数を求める。第1図のダイオード
(13)に流れる電流Illはとなる。ここで、温度変
化により電圧VDが変化した場合の前記電流Illの変
化分ΔI□はRh+R* となる、一方、第2図の第1トランジスタ(6)に流れ
る電流11は I* = (V−V□x )/Rt       ・・
・・・・・・・(6)〔ただし、R4は第1抵抗(8)
の抵抗値〕となり、その変化分Δ■、は となる。第1図の出力電圧V′を第2図の出力型FEV
と等しくさせる為にはダイオード(13)と第1トラン
ジスタ(6)に流す電流を等しく(1,l=1.)する
必要がある。又、そうする為には第(4)式の分子(R
e/(Ri+R−))は1より小であるので、第(4)
式及び第(6)式より Rx>Rs・R* / (Rs +R* )     
・・・・・・・・・(8)という関係にすれば良い、す
ると第(8)式からΔIIIの方がΔ!、に比べ温度変
化が大となることが解かる。尚、ΔVeとΔV□の変化
は等しいとする。又、ΔvI)は負の温度係数をもつの
でΔIIIは正の温度変化となる。その為、第4抵抗(
20)の両端電圧の変化はR4・Δ■□となる。一方、
第2図の場合の第2抵抗(4)の両端電圧の変化はR8
・Δ■□となる。ここで、Δ■、1〉Δ11であるので
抵抗R4の値を抵抗R1の値に比べ小さい値に適当に設
定すれば、電圧R4・Δ!、1と電圧R1・Δ■1とを
等しくすることが出来る。そうすれば、第1図の出力端
子(2)に第2図の場合と同様に温度係数零の出力電圧
(1,2V)を得ることが出来る。
First, the temperature coefficient shown in FIG. 1 is determined. The current Ill flowing through the diode (13) in FIG. 1 is as follows. Here, the change ΔI□ in the current Ill when the voltage VD changes due to a temperature change becomes Rh + R*. On the other hand, the current 11 flowing through the first transistor (6) in FIG. 2 is I* = (V- V□x)/Rt...
・・・・・・・・・(6) [However, R4 is the first resistor (8)
resistance value], and the change Δ■ becomes. The output voltage V' in Fig. 1 is converted to the output type FEV in Fig. 2.
In order to make them equal, it is necessary to make the currents flowing through the diode (13) and the first transistor (6) equal (1, l=1.). In addition, in order to do so, the molecule (R
Since e/(Ri+R-)) is smaller than 1, the (4th)
From formula and formula (6), Rx>Rs・R* / (Rs +R*)
・・・・・・・・・The relationship shown in (8) should be established. Then, from equation (8), ΔIII is Δ! It can be seen that the temperature change is large compared to . It is assumed that the changes in ΔVe and ΔV□ are equal. Further, since ΔvI) has a negative temperature coefficient, ΔIII becomes a positive temperature change. Therefore, the fourth resistor (
The change in the voltage across 20) is R4·Δ■□. on the other hand,
In the case of Figure 2, the change in voltage across the second resistor (4) is R8
・Δ■□. Here, since Δ■,1>Δ11, if the value of the resistor R4 is appropriately set to a value smaller than the value of the resistor R1, the voltage R4·Δ! , 1 and the voltage R1·Δ■1 can be made equal. In this way, an output voltage (1, 2 V) with a temperature coefficient of zero can be obtained at the output terminal (2) in FIG. 1, as in the case of FIG. 2.

次に出力電圧として1.2vより低い値のものを取り出
す場合について説明する。この場合には第1図の第4抵
抗(20)の値を所望の電圧に応じて小さくする。する
と、前記第4抵抗(20)の両端電圧の温度係数が低下
し、出力電圧V−の温度特性が負となる。そこで、温度
補償用抵抗(14)を調整し、第4抵抗(20)に流す
電流を増加させれば、前記第4抵抗(20)の両端電圧
の温度係数を増加きせることが出来、出力電圧V゛の温
度係数を零にすることが出来る。
Next, a case will be described in which an output voltage having a value lower than 1.2V is extracted. In this case, the value of the fourth resistor (20) in FIG. 1 is reduced depending on the desired voltage. Then, the temperature coefficient of the voltage across the fourth resistor (20) decreases, and the temperature characteristic of the output voltage V- becomes negative. Therefore, by adjusting the temperature compensation resistor (14) and increasing the current flowing through the fourth resistor (20), the temperature coefficient of the voltage across the fourth resistor (20) can be increased, and the output voltage The temperature coefficient of V can be made zero.

次に出力電圧として1.2V以上の任意の値を得る場合
について説明する。この場合には2つの方法がある。第
1の方法は第1図の第2トランジスタ(7)のフレフタ
と定電流源(1)との間に両端電圧の和が1.2vとな
る抵抗とダイオードとの直列回路を接続すれば良い0例
えば、今出力電圧として5.6vが得たいとすると、前
記ダイオードと抵抗の直列回路を4つ用意し、4.8v
を作る。
Next, a case will be described in which an arbitrary value of 1.2 V or more is obtained as the output voltage. There are two methods in this case. The first method is to connect a series circuit of a resistor and a diode so that the sum of the voltages at both ends is 1.2 V between the flipter of the second transistor (7) in Figure 1 and the constant current source (1). 0For example, if we want to obtain an output voltage of 5.6V, we will prepare four series circuits of the diodes and resistors, and obtain a voltage of 4.8V.
make.

そして、残りの0.8vを第1図の第4抵抗(20)と
第3トランジスタ(3)とで作るようにすれば良い、こ
の際、温度補償用抵抗の値は前述の0.8Vの電圧の温
度特性がフラットになるようにする。
Then, the remaining 0.8V can be generated by the fourth resistor (20) and the third transistor (3) in Fig. Make sure that the temperature characteristics of the voltage are flat.

第2の方法は、第1図の出力電圧V′が1.12V(−
5,615V)となるように第4抵抗(20)の値を調
整し、調整した前記第4抵抗(20)と等しい抵抗4つ
とダイオード4つとを前述の場合と同様の箇所に接続す
ればよい、この際には温度補償用抵抗の値は、5.6v
の電圧の温度特性がフラットになるように調整する。
In the second method, the output voltage V' in Fig. 1 is 1.12V (-
5,615V), and connect four resistors equal to the adjusted fourth resistor (20) and four diodes to the same locations as in the above case. , in this case, the value of the temperature compensation resistor is 5.6V.
Adjust so that the temperature characteristics of the voltage are flat.

第4図及び第5図は前述の5.6vの出力電圧を得る場
合の具体回路例と抵抗の具体数値例を示すものである。
FIGS. 4 and 5 show a specific circuit example and a specific numerical value example of the resistor when obtaining the above-mentioned output voltage of 5.6V.

第5図の場合には電流源の替わりに電圧源を用いている
が、出力電圧の値に比べ電源電圧の値が低い場合に用い
ると良い。
In the case of FIG. 5, a voltage source is used instead of a current source, but it is preferable to use it when the value of the power supply voltage is lower than the value of the output voltage.

尚、前述の説明においては抵抗自身の温度係数を無視し
ていたが、集積回路の場合には抵抗は正の温度係数を持
つ、しかしながら集積回路の場合にも同様の方法で温度
係数を零にすることが出来る。
In the above explanation, the temperature coefficient of the resistor itself was ignored, but in the case of integrated circuits, the resistor has a positive temperature coefficient.However, in the case of integrated circuits, the temperature coefficient can be reduced to zero using the same method. You can.

(ト)発明の効果 以上述べた如く本発明に依れば、所望の出力電圧(即ち
1.2vの整数倍以外の電圧)を得る為にまず、負の温
度特性を有するバンドギャップ基準電圧回路を作成し、
該回路に正の温度特性を与える温度補償用抵抗を接続し
ているので、全体として出力電圧の温度係数を零にする
ことが出来る。その為、任意の出力電圧を自由に発生す
ることが出来るバンドギャップ基準電圧回路を提供する
ことが出来る。
(G) Effects of the Invention As described above, according to the present invention, in order to obtain a desired output voltage (that is, a voltage other than an integral multiple of 1.2V), first, a bandgap reference voltage circuit having negative temperature characteristics is used. create and
Since a temperature compensation resistor that provides positive temperature characteristics is connected to the circuit, the temperature coefficient of the output voltage can be made zero as a whole. Therefore, it is possible to provide a bandgap reference voltage circuit that can freely generate any output voltage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す回路図、第2図及び第
3図は従来のバンドギャップ基準電圧回路を示す回路図
、第4図及び第5図は本発明の別の実施例を示す回路図
である。 (1)・・・定電流源、 (2)・・・出力端子、 (
3)・・・第3トランジスタ、 (4)・・・第2抵抗
、 (5)・・・第3抵抗、 (12)・・・第5抵抗
、 (13〉・・・ダイオード、(14)・・・温度補
償用抵抗。
FIG. 1 is a circuit diagram showing one embodiment of the present invention, FIGS. 2 and 3 are circuit diagrams showing a conventional bandgap reference voltage circuit, and FIGS. 4 and 5 are another embodiment of the present invention. FIG. (1)...constant current source, (2)...output terminal, (
3)...Third transistor, (4)...Second resistor, (5)...Third resistor, (12)...Fifth resistor, (13>...Diode, (14) ...Resistance for temperature compensation.

Claims (4)

【特許請求の範囲】[Claims] (1)電流発生回路と、該電流発生回路からの電流に応
じてバンドギャップ電流を発生する電流ミラー型のバン
ドギャップ電流発生回路と、該バンドギャップ電流発生
回路の出力電流に応じてバンドギャップ電圧を発生する
バンドギャップ電圧発生回路とから成り、前記バンドギ
ャップ電圧発生回路内の抵抗の値を変えることにより任
意の出力電圧が得られるバンドギャップ基準電圧回路に
おいて、前記バンドギャップ電流発生回路内のダイオー
ドに並列に抵抗を接続したことを特徴とするバンドギャ
ップ基準電圧回路。
(1) A current generation circuit, a current mirror type bandgap current generation circuit that generates a bandgap current according to the current from the current generation circuit, and a bandgap voltage generated according to the output current of the bandgap current generation circuit. a bandgap reference voltage circuit that generates a bandgap voltage generating circuit, and in which an arbitrary output voltage can be obtained by changing the value of a resistor in the bandgap voltage generating circuit, a diode in the bandgap current generating circuit; A bandgap reference voltage circuit characterized by connecting a resistor in parallel to the bandgap reference voltage circuit.
(2)バンドギャップ電流発生回路は2つの半導体素子
と、該2つの半導体素子の順方向電圧の変化に応じた電
流を流す負荷とから成ることを特徴とする請求項第1項
記載のバンドギャップ基準電圧回路。
(2) The band gap according to claim 1, wherein the band gap current generating circuit comprises two semiconductor elements and a load that flows a current according to a change in the forward voltage of the two semiconductor elements. Reference voltage circuit.
(3)バンドギャップ電圧発生回路は電流発生回路に一
端が接続された負荷と、該負荷の他端にベースが接続さ
れたトランジスタとから成ることを特徴とする請求項第
1項記載のバンドギャップ基準電圧回路。
(3) The bandgap according to claim 1, wherein the bandgap voltage generating circuit comprises a load having one end connected to the current generating circuit, and a transistor having a base connected to the other end of the load. Reference voltage circuit.
(4)バンドギャップ電圧発生回路内の負荷の両端に発
生する電圧の温度特性が、トランジスタの順方向電圧の
温度特性に比べ大となる様にしたことを特徴とする請求
項第3項記載のバンドギャップ基準電圧回路。
(4) The temperature characteristic of the voltage generated across the load in the bandgap voltage generating circuit is larger than the temperature characteristic of the forward voltage of the transistor. Bandgap reference voltage circuit.
JP12231988A 1988-05-19 1988-05-19 Band gap reference voltage circuit Pending JPH01292411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12231988A JPH01292411A (en) 1988-05-19 1988-05-19 Band gap reference voltage circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12231988A JPH01292411A (en) 1988-05-19 1988-05-19 Band gap reference voltage circuit

Publications (1)

Publication Number Publication Date
JPH01292411A true JPH01292411A (en) 1989-11-24

Family

ID=14833018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12231988A Pending JPH01292411A (en) 1988-05-19 1988-05-19 Band gap reference voltage circuit

Country Status (1)

Country Link
JP (1) JPH01292411A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7224210B2 (en) 2004-06-25 2007-05-29 Silicon Laboratories Inc. Voltage reference generator circuit subtracting CTAT current from PTAT current
US7321225B2 (en) 2004-03-31 2008-01-22 Silicon Laboratories Inc. Voltage reference generator circuit using low-beta effect of a CMOS bipolar transistor
KR20190068952A (en) * 2017-12-11 2019-06-19 단국대학교 산학협력단 Band-Gap Reference Circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58112112A (en) * 1981-12-25 1983-07-04 Nec Corp Reference voltage circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58112112A (en) * 1981-12-25 1983-07-04 Nec Corp Reference voltage circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7321225B2 (en) 2004-03-31 2008-01-22 Silicon Laboratories Inc. Voltage reference generator circuit using low-beta effect of a CMOS bipolar transistor
US7224210B2 (en) 2004-06-25 2007-05-29 Silicon Laboratories Inc. Voltage reference generator circuit subtracting CTAT current from PTAT current
KR20190068952A (en) * 2017-12-11 2019-06-19 단국대학교 산학협력단 Band-Gap Reference Circuit

Similar Documents

Publication Publication Date Title
JP4809340B2 (en) Voltage circuit proportional to absolute temperature
KR100233761B1 (en) Band-gap reference circuit
US7511567B2 (en) Bandgap reference voltage circuit
JPH0648449B2 (en) High precision bandgear voltage reference circuit
JPS61187020A (en) Voltage reference circuit
JPH0561558A (en) Reference voltage generating circuit
US7161340B2 (en) Method and apparatus for generating N-order compensated temperature independent reference voltage
JPS5995621A (en) Reference voltage circuit
US9811106B2 (en) Reference circuit arrangement and method for generating a reference voltage
US5528128A (en) Reference voltage source for biassing a plurality of current source transistors with temperature-compensated current supply
JP4328391B2 (en) Voltage and current reference circuit
US20070069709A1 (en) Band gap reference voltage generator for low power
JPH0236964B2 (en)
JPH01292411A (en) Band gap reference voltage circuit
TW202046041A (en) Voltage generator
JP4031043B2 (en) Reference voltage source with temperature compensation
EP0658835B1 (en) Low supply voltage, band-gap voltage reference
JPH0527139B2 (en)
JP7283106B2 (en) Reference voltage generator
JPS60117312A (en) Constant voltage circuit
JP2591906Y2 (en) Reference voltage circuit
JPH067379Y2 (en) Reference voltage source circuit
JP2629234B2 (en) Low voltage reference power supply circuit
JP3671519B2 (en) Current supply circuit
JP2722637B2 (en) Bandgap reference voltage circuit