JPS58112049A - Catalyst composition for hydrogenation treatment of light oil under reduced pressure - Google Patents

Catalyst composition for hydrogenation treatment of light oil under reduced pressure

Info

Publication number
JPS58112049A
JPS58112049A JP56211835A JP21183581A JPS58112049A JP S58112049 A JPS58112049 A JP S58112049A JP 56211835 A JP56211835 A JP 56211835A JP 21183581 A JP21183581 A JP 21183581A JP S58112049 A JPS58112049 A JP S58112049A
Authority
JP
Japan
Prior art keywords
pore
pores
catalyst
diameter
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56211835A
Other languages
Japanese (ja)
Inventor
Hidehiro Azuma
東 英博
Katsuji Himeno
姫野 勝次
Jun Fuchigami
淵上 循
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHOKUBAI KASEI KOGYO KK
JGC Catalysts and Chemicals Ltd
Original Assignee
SHOKUBAI KASEI KOGYO KK
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHOKUBAI KASEI KOGYO KK, Catalysts and Chemicals Industries Co Ltd filed Critical SHOKUBAI KASEI KOGYO KK
Priority to JP56211835A priority Critical patent/JPS58112049A/en
Publication of JPS58112049A publication Critical patent/JPS58112049A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a highly active catalyst for hydrogenating light oil under reduced pressure, by specifying the pore characteristics of a catalyst prepared by supporting a molybdenum component and a cobalt component by a carrier comparising alumina-baria. CONSTITUTION:The pore characteristics of a catalyst prepared by supporting a cobalt component and a molybdenum component by a carrier comprising alumina-boria are specified as stated hereinbelow. That is, an average pore size of pores within a range between 0-600Angstrom pore size is 70-100Angstrom , the sum of pore volume with of 70-100Angstrom pore size is 70% or more of that of the sum of the volume a pore with 0-600Angstrom pore sizes, the sum of the pore volume with 0-60Angstrom pore sizes, the average size of the pores with 62-600Angstrom pore size is 20% or less of that of the sum of the pore volume of 0-600Angstrom pore sizes measured by a mercury pressure method is 70-100Angstrom , the sum of the pore volumes of pores with an average pore size of + or -10Angstrom is 60% or more of that of the fine pore with a diameter of 62-600Angstrom and the volume of the fine pore with (an average pore size of + or -10Angstrom or more) is 15% or less of that of sum of the pore volume with 62-600Angstrom pore sizes. By this pore characteristics, a highly active hydrogenation catalyst is obtained.

Description

【発明の詳細な説明】 本発明は既存の減圧軽油水素化脱硫反応装置及び反応条
件を使用して8減圧軽油などの重質油を脱硫しながら、
ガス状成分及びナフサ留分の収率を増加させることなく
、灯軽油を効率よく得るのに適した水素化処理触媒に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses existing vacuum gas oil hydrodesulfurization reaction equipment and reaction conditions to desulfurize heavy oil such as 8 vacuum gas oil, while
The present invention relates to a hydroprocessing catalyst suitable for efficiently obtaining kerosene without increasing the yield of gaseous components and naphtha fraction.

世界的な原油の重質化及び需要の軽質化に伴い、所謂減
圧軽油、常圧残油などの重質油の余剰傾向が顕著になっ
てきた。また大気汚染などの点から製品油中の硫黄含量
は少ないことが必要とされてきている。このような事情
から脱硫能が高く、かつ重質油から軽質油Jとシわけナ
フサよシ水素消費量が少なくてすむ灯軽油分への分解能
が高い触媒の開発が望まれてきている。
BACKGROUND OF THE INVENTION As crude oil becomes heavier and demand for lighter oils worldwide, there is a noticeable tendency for heavy oils such as so-called vacuum gas oil and atmospheric residual oil to become surplus. Furthermore, from the viewpoint of air pollution, etc., it has become necessary to reduce the sulfur content in product oils. Under these circumstances, there has been a desire to develop a catalyst that has a high desulfurization ability and a high ability to separate heavy oil into light oil J and decompose naphtha into kerosene and gas oil, which requires less hydrogen consumption.

従来、減圧軽油等の重質油を水素化脱硫する場合、アル
ミナあるいは無定形シリカ菅アルミナなどから成る触媒
担体に第6A族、第8族の活性金属を担持せしめたもの
が一般に使用されているが、この種の触媒は分解活性を
最小限に押えて脱硫活性のみが最大に発揮できるように
調製されている関係で分解活性は低い。一方。
Conventionally, in the case of hydrodesulfurization of heavy oil such as vacuum gas oil, a catalyst carrier made of alumina or amorphous silica-alumina on which Group 6A and Group 8 active metals are supported is generally used. However, this type of catalyst has a low cracking activity because it is prepared to minimize cracking activity and maximize desulfurization activity. on the other hand.

従来の水素化分解触媒としては非晶質無機酸化物を担体
としたものや結晶質アルミノシリケートを含有したもの
などが提案されているが、前者は水素化分解能を主体と
しているために脱硫活性が不十分であるうえ、水素化分
解能その本のも十分満足のいくものではなかった。また
後者も同様に脱硫活性が十分でなく、シかも分解生成油
はナフサを主体としたものであったため水素消費量が多
く経済的にも多くの問題を含んでいた。これに加えて従
来の水素化分解触媒は過酷な反応条件下で使用されてい
るために経済的な不利益も免れない。例えばよシ高圧な
操作は高価な肉厚の容器を要求するばかシでなく。
Conventional hydrocracking catalysts have been proposed such as those using an amorphous inorganic oxide as a carrier and those containing crystalline aluminosilicate, but the former mainly has hydrogen cracking ability and therefore has low desulfurization activity. In addition to being insufficient, the hydrogenation resolution itself was not fully satisfactory. In addition, the latter also did not have sufficient desulfurization activity, and since the oil produced by decomposition was mainly naphtha, the amount of hydrogen consumed was large, causing many economical problems. In addition, since conventional hydrocracking catalysts are used under harsh reaction conditions, they are inevitably economically disadvantageous. For example, high-pressure operations do not require expensive thick-walled containers.

ガス圧縮のために経費が増大し、更に製品液体中への水
素の溶解損失などがある。
There is increased expense due to gas compression, as well as losses due to dissolution of hydrogen into the product liquid.

上述した点を踏まえて本発明者は鋭意研究の結果、既存
の減圧軽油水素化脱硫装置及びその条件の範囲内で減圧
軽油の脱硫を実施する際。
Based on the above-mentioned points, the inventors of the present invention have conducted intensive research and found that when desulfurizing vacuum gas oil is carried out within the range of existing vacuum gas oil hydrodesulfurization equipment and its conditions.

水素化脱硫活性を低下させることなく分解活性を高め得
る担体はアルミナ−ぎリヤが固体酸担体としては最も優
れてお#)、これに触媒細孔特性をコントロールしてや
ると低価値のガス分及びナフサ留分の生成を少なくして
灯軽油等の中間留分収率を増加しりろ水素化処理触媒が
得られることを寛出したのである。
The carrier that can increase the decomposition activity without reducing the hydrodesulfurization activity is alumina-Girija, which is the best solid acid carrier (#), and if the pore characteristics of the catalyst are controlled, low-value gas and naphtha can be removed. They discovered that it is possible to obtain a hydroprocessing catalyst that reduces the production of fractions and increases the yield of middle distillates such as kerosene and gas oil.

固体酸担体中でもアルミナ−ぜリヤが特に優れている理
由については未だ不明の点が多いが。
There are still many unknowns as to why alumina-Zeria is particularly superior among solid acid carriers.

プレンスデット酸(B酸)t−多量に保有しているアル
ミナーゼリャの固体酸性質及びアルミナーゼリャと和持
活性金属成分と必相互作用による水素化活性の増大など
が減圧軽油の分解及び脱硫に極めて有効に働いていると
推察される。
Prensedt's acid (B acid) t - The solid acid properties of alumina Zelya, which has a large amount, and the increase in hydrogenation activity due to the necessary interaction between alumina Zelya and the active metal component, are effective for decomposition and desulfurization of vacuum gas oil. It is presumed that it is working extremely effectively.

そして触媒の細孔特性について言えば1本発明“では細
孔分布が適正にコントロールされているため、原料油の
過分解が抑制され、その結果として灯軽油などの中間留
分の生成量が増大するものと推定される。
Regarding the pore characteristics of the catalyst, in the present invention, the pore distribution is appropriately controlled, so over-decomposition of feedstock oil is suppressed, and as a result, the production amount of middle distillates such as kerosene and diesel oil increases. It is estimated that

而して本発明はアルミナーボリャから成る担体にモリブ
デン成分及びコバルト成分を担持させてなる触媒組成物
であって、当該組成物が1記の々)、Φ)両条件を満足
する水素化処理触媒を提供するものである。
Accordingly, the present invention provides a catalyst composition comprising a molybdenum component and a cobalt component supported on a carrier made of alumina borya, the composition comprising a hydrotreating catalyst that satisfies both conditions 1) and Φ). This is what we provide.

体)窒素ガス吸着法で測定した場合、直径が0〜600
Xの範囲にある細孔の平均直径が70〜100Xであり
、直径70〜1o。
Body) Diameter of 0 to 600 when measured by nitrogen gas adsorption method
The average diameter of the pores in the range of X is 70 to 100X, and the diameter is 70 to 1o.

裏の細孔が占める容積が直径0〜600Xの細孔が占め
る容積の少なくとも70%であシ、直径θ〜60Xの細
孔が占める容積カ直径θ〜600Xの細孔が占める容積
の20%以下であること。
The volume occupied by the pores on the back is at least 70% of the volume occupied by pores with a diameter of 0 to 600X, and the volume occupied by pores with a diameter of θ to 60X is 20% of the volume occupied by pores with a diameter of θ to 600X. Must be below.

Φ) 水銀圧入法で測定した場合、直径が62〜600
Xの範囲にある細孔の平均直径が70〜100 @r:
hF)、 平均直径=f=t o @の細孔が占める容
積が直径62〜600にの細孔が占める容積の少なくと
460%を占め、平均直径+IOA以上の細孔が占める
容積が直径62〜600Xの細孔が占める容積の15%
以下であること。
Φ) When measured by mercury intrusion method, the diameter is 62 to 600.
The average diameter of pores in the range of X is 70 to 100 @r:
hF), the volume occupied by pores with average diameter = f = t o @ occupies at least 460% of the volume occupied by pores with diameter 62-600, and the volume occupied by pores with average diameter + IOA or more is at least 460% of the volume occupied by pores with diameter 62-600 ~15% of the volume occupied by 600X pores
Must be below.

本発明の触媒は下記の(a)、 (b)両条件を満足す
るアルミ九に硼素化合物を混合しこの混合物にモリブデ
ン成分とコバルト成分を担持させることによって調製さ
れる。
The catalyst of the present invention is prepared by mixing a boron compound with aluminum 9 that satisfies both conditions (a) and (b) below, and allowing this mixture to support a molybdenum component and a cobalt component.

(a)  窒素ガス吸着法で測定した場合、直径が0〜
600Xの範囲にある細孔の平均直径力x lc> 〜
140 Xテあシ、直径1oo〜150Xの細孔が占め
る容積の少なくとも70%であり、直径θ〜600Xの
細孔が占める容積が直径0〜600Xの細孔が占める容
積の10%以下であること。
(a) When measured by nitrogen gas adsorption method, the diameter is 0~
The average diameter force of the pores in the range of 600X x lc> ~
140X diameter, at least 70% of the volume occupied by pores with a diameter of 10 to 150X, and the volume occupied by pores with a diameter of θ to 600X is 10% or less of the volume occupied by pores with a diameter of 0 to 600X thing.

(b)  水釧圧入法で測定した場合、直径が62〜6
00Xの範囲にある細孔の平均直径が100〜140X
であシ、平均直径±10Xの細孔が占める容積が山径6
2〜600又の細孔が占める容積の少なくとも60%で
あり、平均直径+IOX以上の細孔が占める容積が直径
62〜600Xの細孔が占める容積の10%以下である
こと。
(b) The diameter is 62 to 6 when measured by the Suizhou press-in method.
The average diameter of pores in the range of 00X is 100-140X
Ashi, the volume occupied by pores with an average diameter of ±10X is a mountain diameter of 6
The volume occupied by pores with a diameter of 2 to 600 times is at least 60%, and the volume occupied by pores with an average diameter of +IOX or more is 10% or less of the volume occupied by pores with a diameter of 62 to 600X.

上記のごとく本発明に使用されるアルミナは平均細孔が
ほぼ100〜140Xであって、しかも細孔分布が極め
て狭い範囲にある。このアルミ′すと硼素化合物1例え
ば硼酸とを混合することにより1本発明の特徴的な細孔
分布を持ったアルミナーゼリャ担体が得られ、さらにこ
の担体はアルミナ−/ IJヤ固有の固体酸性質を示す
ものである。従ってアルミナが上記(a)Φ)の両条件
を満足しない場合には当然のことながら水素化活性の低
下は免れない。又担体がアルミナーゼリャ組成でなけれ
ば、当然のことながら水素化活性の低下は免れない。
As mentioned above, the alumina used in the present invention has an average pore size of approximately 100 to 140X, and the pore distribution is in an extremely narrow range. By mixing this aluminum with a boron compound such as boric acid, an alumina carrier having the characteristic pore distribution of the present invention can be obtained. It indicates the nature. Therefore, if the alumina does not satisfy both conditions (a) and Φ), the hydrogenation activity will naturally decrease. Moreover, if the carrier does not have an aluminase composition, naturally the hydrogenation activity will inevitably decrease.

上記(1)の)両条件を満足するアルミナは結晶子径が
40〜80Xの擬ベーマイトを誉有する非晶質アルミナ
水和物を粒状などに成型し念後乾燥し、500〜600
℃の温度で焼成することによシ製造することができる。
Alumina that satisfies both conditions (1) above is obtained by molding amorphous alumina hydrate, which resembles pseudo-boehmite, with a crystallite size of 40 to 80X, into granules, and thoroughly drying it.
It can be produced by firing at a temperature of °C.

擬ベーマイトはアルミン酸塩又は、アルミニウム塩を酸
又はアルカリで中和することによって得られる非晶質ア
ルミナ水和物中に存在するが、一般にその結晶径は小さ
く通常30X程度である。そこで擬ベーマイトの結晶子
径を40〜80Kに成長させるためには、アルミナとし
て5wt%以上好ましくは9 wt%以上の濃度を有す
る非晶質アルミナ水和物をp)18〜12好ましく #
ipH9〜11の弱アルカリ性条件″下で攪拌しながら
50℃以上好ましくは80℃以上に加温すればよい。
Pseudo-boehmite exists in an aluminate or an amorphous alumina hydrate obtained by neutralizing an aluminum salt with an acid or an alkali, but its crystal size is generally small, usually about 30X. Therefore, in order to grow the crystallite diameter of pseudoboehmite to 40 to 80K, an amorphous alumina hydrate having a concentration of 5 wt% or more, preferably 9 wt% or more as alumina is preferably used (p) 18 to 12.
What is necessary is just to heat it to 50 degreeC or more, preferably 80 degreeC or more, while stirring under weak alkaline conditions of ipH9-11.

本発明に用いられる担体は、アルミナ□−ゼリヤとして
5〜30wt%の酸化硼素を含有する様に硼素化合物を
添加したものである。
The carrier used in the present invention is alumina □-Zelya to which a boron compound is added so as to contain 5 to 30 wt% of boron oxide.

さらに好ましくは10〜20 wt%の酸化硼素を含有
する様に硼素化合物を添加したものである。上記アルミ
、ナー/ リヤ担体は金属水酸化物と硼素化合物を機械
的に混合し、乾燥焼成する公知の方法で製造することが
できる。
More preferably, a boron compound is added to contain 10 to 20 wt% of boron oxide. The above-mentioned aluminum and neutral carriers can be manufactured by a known method of mechanically mixing a metal hydroxide and a boron compound, followed by drying and firing.

こうして得られた担体には水素化金属としてモリブデン
とコノ々ルトがそれぞれ金属水化物又−は金属硫化物の
形で担持される。この場合、含浸法などの公知の方法で
担持可能で、ある。モλノブデン成分の担持量は金属換
算で最終触媒組成物の5〜24 vt%好ましくは7〜
16wt%、 :1ノ々ルト成分の担持11は金属換算
で最終触媒組成物の0.5〜8wL%好ましくは1.5
〜5wt%である。本発明の触媒は全体として比表面積
200〜400 m”7g、細孔容積0.3〜0.8 
ml/gという物性を示す。
On the carrier thus obtained, molybdenum and conolte are supported as metal hydrides in the form of metal hydrates or metal sulfides, respectively. In this case, it can be supported by a known method such as an impregnation method. The supported amount of the mono-λ nobdenum component is 5 to 24 vt% of the final catalyst composition in terms of metal, preferably 7 to 24 vt%.
16 wt%, :1 Nord component support 11 is 0.5 to 8 wL% of the final catalyst composition in terms of metal, preferably 1.5
~5wt%. The catalyst of the present invention as a whole has a specific surface area of 200 to 400 m"7g and a pore volume of 0.3 to 0.8
It shows the physical property of ml/g.

本発明の触媒は沸点が450’F(232”C)〜11
00″it’(593℃〕の範囲にある減圧−軽油を水
素化処理してこれを分解し、脱硫する際の触媒として極
めて有効であって1本発明の触媒によれば、既存の減圧
軽油水素化脱硫装置及びその反応条件を採用して、具体
的には反応温度約320〜430℃、好ましく#i38
0〜420℃1反応圧力約10〜200 K17cm”
 、好ましくは50〜80 K17cm”、液空間速度
0.1〜5.0.好ましくは0,5〜2,0.水素対炭
化水素比100〜1000 Nm”/K1.好ましくは
400〜600 Nm”/Kl (D温和な水素化処理
条件を採用して、減圧軽油から低価値のガス分及びナフ
サ留分の生成を抑えて灯軽油などの中間留分を高収率で
得ることができる。
The catalyst of the present invention has a boiling point of 450'F (232"C) to 11
The catalyst of the present invention is extremely effective as a catalyst for hydrotreating vacuum gas oil in the range of 00"it' (593°C) to crack it and desulfurize it. According to the catalyst of the present invention, existing vacuum gas oil Adopting the hydrodesulfurization equipment and its reaction conditions, specifically, the reaction temperature is about 320-430°C, preferably #i38
0~420℃ 1 reaction pressure approx. 10~200K17cm"
, preferably 50-80 K17cm", liquid hourly space velocity 0.1-5.0, preferably 0.5-2.0. Hydrogen to hydrocarbon ratio 100-1000 Nm"/K1. Preferably 400 to 600 Nm"/Kl (D) By adopting mild hydrotreating conditions, the generation of low-value gas components and naphtha fractions from vacuum gas oil can be suppressed, and middle distillates such as kerosene and gas oil can be produced in high yield. You can get it at

以下実施例及び比較例を示す。Examples and comparative examples are shown below.

実施例 (1)アルミナの製造 アルミナとしての@度5.0重Illのアルミン酸ソー
ダ溶液に50%グルコン酸水溶−液を加え1次いでアル
ミナとしての濃度2,5重量%の硫酸アルミニウム溶液
を添加して調合スラリ−のpH’i 7.0にした。こ
のアルミナスラリーをテーブルフィルターにて濾別後0
.2重量−のアンモニア水で洗浄して擬ベーマイトを含
量するアルミナ水和物をつくった。このアルミナ水和物
に少量のアンモニア水を加えてアルミナ水和物のスラリ
ーf)H’e10.60に゛調整し、アルミナ濃度を8
.8重t%に調整した後、95℃で20時間還流攪拌し
て擬ベーマイトの結晶子径を65オングストロームまで
成長させた。このアルミナ水和物をニーダ−で加熱濃縮
して捏和物外)を得た。この捏和物を)を押出し成型機
で直径Q、 9 mmの粒体に成型し空気中で110°
C,16時間乾燥後550°Cで3時間焼成した。得ら
れたアルミナの窒素吸着法によシ求めたθ〜600オン
グストローム範囲の細孔の平均直径は134オングスト
ロームであfi、100〜150オングストローム範囲
の直径を・もつ細孔が0〜600オングストローム範囲
の細孔の84.0チであり、0〜60オングストローム
範囲の細孔が0〜600オングストローム範囲の細孔の
1.2%であった。又水銀圧入法で求めた62〜600
X範囲の細孔の平均直径は128Xであり、直径128
if:10i範囲の細孔が62〜600X範囲の細孔の
90.4−であり、138X以上の細孔が62〜600
裏範囲の細孔の6.4チであった。
Example (1) Production of alumina A 50% gluconic acid aqueous solution was added to a sodium aluminate solution with a concentration of 5.0% by weight as alumina, and then an aluminum sulfate solution with a concentration of 2.5% by weight as alumina was added. The pH'i of the prepared slurry was adjusted to 7.0. After filtering this alumina slurry with a table filter, it becomes 0.
.. The alumina hydrate containing pseudo-boehmite was prepared by washing with 2 parts by weight of ammonia water. A small amount of ammonia water was added to this alumina hydrate to adjust the alumina hydrate slurry f) H'e to 10.60, and the alumina concentration was adjusted to 8.
.. After adjusting the concentration to 8% by weight, the mixture was stirred under reflux at 95° C. for 20 hours to grow pseudo-boehmite crystallites to a diameter of 65 angstroms. This alumina hydrate was heated and concentrated in a kneader to obtain a kneaded product. This kneaded product) was molded into granules with a diameter Q of 9 mm using an extruder and heated at 110° in air.
C. After drying for 16 hours, it was fired at 550°C for 3 hours. The average diameter of the pores in the range of θ to 600 angstroms determined by the nitrogen adsorption method of the obtained alumina is 134 angstroms, fi, and the pores with diameters in the range of 100 to 150 angstroms are in the range of 0 to 600 angstroms. The number of pores was 84.0, and the pores in the 0-60 angstrom range were 1.2% of the pores in the 0-600 angstrom range. Also, 62 to 600 determined by mercury intrusion method
The average diameter of the pores in the X range is 128X;
if: The pores in the 10i range are 90.4- of the pores in the 62-600X range, and the pores in the 138X or more range are 62-600
The number of pores in the back area was 6.4.

(2)触媒Aの製造 水1.531K61111酸534gを加えて加温溶解
した水溶液と上記捏和物外)5Kgとを混合しニーダ−
で捏和した後1名目上1725インチの押し出し品とし
、空気中110℃で16時間乾燥後550℃で3時間焼
成して酸化硼素含量15wt%の触媒担体を得た。この
担体I Kgに酸化モリブデン170g、炭酸コパル)
75gを含む水溶液650+/l−加えて含浸させた後
、250°C迄徐々に昇温しながら乾燥し1次いで55
0℃で1時間焼成して触媒At−得へ。この触媒のモリ
ブデン及びコノマルト担持量はそれぞれ金属酸化物とじ
て14.0w1%、3.7wt%であった。
(2) Production of Catalyst A 1.531K An aqueous solution prepared by adding 534 g of 61111 acid and dissolving it under heating was mixed with 5 kg of the above kneaded product, and then mixed in a kneader.
After kneading the product, it was made into an extruded product with a nominal size of 1,725 inches, dried in air at 110° C. for 16 hours, and then calcined at 550° C. for 3 hours to obtain a catalyst carrier having a boron oxide content of 15 wt%. (1 kg of this carrier, 170 g of molybdenum oxide, copal carbonate)
After adding 650+/l- of an aqueous solution containing 75g and impregnating it, the temperature was gradually raised to 250°C and dried.
Calcinate at 0° C. for 1 hour to obtain the catalyst At. The supported amounts of molybdenum and conomalt in this catalyst were 14.0 w1% and 3.7 wt%, respectively, including metal oxides.

(3)触媒Bの製造 捏和物(イ)を用いて活性金践担持葉が異なる以外は触
媒Aと全く同様の手順で触媒Bを調製した。この触媒の
モリブデン及びコバルトの和持景は各々金属酸化物とし
て最終触媒の19.0w1%、 5.Owt%でめった
(3) Preparation of Catalyst B Catalyst B was prepared in exactly the same manner as Catalyst A except that the active metal carrier was different using the mixture (a). The total content of molybdenum and cobalt in this catalyst was 19.0w1% of the final catalyst as metal oxides.5. Owt% was rare.

比較例 (1)触媒Cの製造 5%塩化希±(主成分: CeCl3. LaCl3゜
NdC1,)溶液中にY型ゼオライトヲ入れてアンモニ
ア水でpH5に調整し、80℃で30分間攪拌してから
脱水、洗浄を行なって希土類金属交換ゼオライト(以下
これf ReYゼオライトと略記)を得た。次にこのR
eYゼオライ) 60 wt%と上記のアルミナ捏和物
(X) 40wt%を混合し、ニーダ−″t′捏和した
後1名目上l/25インチの押し出し品とし、空気中で
110℃、16時間乾燥後550“Cで3肋間焼成した
。こうして得られた担体に最終触媒としてWO317,
Owtチ、 Ni04.25wt%を含有させる量の、
eラタングステン酸アンモンと硝酸ニッケルとを含む水
溶液を加えて含浸させ。
Comparative Example (1) Production of Catalyst C Y-type zeolite was placed in a 5% chloride dilute solution (main components: CeCl3.LaCl3°NdC1,), the pH was adjusted to 5 with aqueous ammonia, and the mixture was stirred at 80°C for 30 minutes. This was dehydrated and washed to obtain a rare earth metal-exchanged zeolite (hereinafter abbreviated as fReY zeolite). Next, this R
eY zeolite) 60 wt% and the above alumina blend (X) 40 wt% were mixed and kneaded in a kneader "t" to form an extruded product with a nominal size of 1/25 inch, and heated in air at 110°C for 16 After drying for an hour, it was fired at 550"C for 3 intercostals. WO317 as the final catalyst on the carrier obtained in this way,
Owtchi, the amount to contain Ni04.25wt%,
e. Add an aqueous solution containing ammonium latungstate and nickel nitrate to impregnate.

乾燥後焼成して触媒Cを得た。After drying, it was calcined to obtain catalyst C.

(2)触媒りの製造 ReYゼオライトとアルミナ捏和物に)との混合物中の
&Yゼオライ) t t 40 wt%に減少させた以
外は触媒Cと全く同様の手順で触媒Ct−製造した。
(2) Production of Catalyst Catalyst Ct was produced in exactly the same manner as Catalyst C except that the content of ReY zeolite and alumina admixture was reduced to 40 wt%.

(3)触媒Eの製造(市販触媒) アルミナ−シリカ押体(Sin、含有量2.5wt%)
に酸化モリブデンと炭酸コノ々ルトを含む水溶液を加え
て含浸させ、以後触媒Aと全く同じ手順でコノマルト及
びモリブデンの担持量が各々金属酸化物として3.7w
t%、14.0w1%の触媒゛Bを得た。
(3) Production of catalyst E (commercially available catalyst) Alumina-silica press (Sin, content 2.5 wt%)
was impregnated with an aqueous solution containing molybdenum oxide and conomalt carbonate, and the same procedure as for catalyst A was followed until the amount of conomalt and molybdenum supported was 3.7 w as metal oxides.
A catalyst B with a concentration of t% and 14.0w1% was obtained.

(4)触媒Fの製造 AI、03としての濃U 2. Owt%のアルミン酸
ソーダ溶液に、AI、0.としての濃度1.Q wt 
%の硫酸アルミニウム溶液を添加してpIl 7.0の
スラリーを得た。このスラリーをテーブルフィルターで
濾別後、フィルターケーキをアンモニア水で洗浄して擬
ベーマイト含有アルミナ水和物f、1111B製した。
(4) Production of catalyst F Concentrated U as AI, 03 2. Owt% sodium aluminate solution was added with AI, 0. Concentration as 1. Qwt
% aluminum sulfate solution was added to obtain a slurry with a pIl of 7.0. This slurry was filtered through a table filter, and the filter cake was washed with aqueous ammonia to produce pseudo-boehmite-containing alumina hydrate f, 1111B.

このアルミナ水和物を2分し、その一方に少量のアンモ
ニア水を加えてAI、 0.濃度8.5 wt%、pH
10,5のスラリーとして、これを攪拌しなから95“
Cで2時間還流後、先に2分したアルミナ水和物の残余
を加えて噴霧乾燥した。次いで得られた粉末にアンモニ
ア水を加えてニーダ−にかけ成型可能な捏和物σ)を得
た。なお、この捏和物σ)を押出し成型機で直径0.9
 mmの粒体に成型し、空気中110℃で16時間乾燥
した後、550℃で3時間焼成して得たアルミナの細孔
特性は次の通シである。
This alumina hydrate was divided into two parts, and a small amount of ammonia water was added to one part to give an AI of 0. Concentration 8.5 wt%, pH
95" without stirring as a slurry of 10.5"
After refluxing at C for 2 hours, the remainder of the alumina hydrate that had been separated into 2 parts was added and spray-dried. Next, aqueous ammonia was added to the obtained powder and the mixture was kneaded to obtain a kneaded product σ) which could be molded. In addition, this kneaded material σ) was molded into a diameter of 0.9 with an extrusion molding machine.
The pore characteristics of the alumina obtained by molding the alumina into granules of 1.0 mm in diameter, drying in air at 110° C. for 16 hours, and then calcining at 550° C. for 3 hours are as follows.

音素吸着法より求めた0〜600オングストローム範囲
の細孔の平均直径は156オングストロームであり10
0N150オングストローム範囲の直径をもつ細孔が0
〜600オングストローム範囲の細孔の29.8 %で
あり、0〜60オングストローム範囲の細孔が0〜60
0オングストローム範囲の細孔の0チであった。又水銀
圧入法で求めた62〜600オングストローム範囲の細
孔の平均直径は151オングストロームであシ直径15
1オングストローム±10オングストロームの細孔が6
2〜600オングストローム範囲の細孔の591チであ
り、161オングストロ一ム以上の細孔が62〜600
オングストローム範囲の細孔の22.0%であった。
The average diameter of pores in the range of 0 to 600 angstroms, determined by the phoneme adsorption method, is 156 angstroms, which is 10
0 N pores with diameters in the 150 angstrom range
29.8% of the pores in the ~600 angstrom range;
The pores were in the 0 angstrom range. Also, the average diameter of pores in the range of 62 to 600 angstroms, determined by mercury intrusion method, is 151 angstroms.
6 pores of 1 angstrom ± 10 angstrom
There are 591 pores in the range of 2 to 600 angstroms, and 62 to 600 pores in the range of 161 angstroms or more.
It was 22.0% of the pores in the angstrom range.

実施例の捏春物四に代えて上記捏和物代)を用いた以外
は触媒Aと全く同様の手順で[ダm*xixモリブデン
及びコノマルトの担持量が各々触媒人と同一の触媒Fを
調製した。
Catalyst F was prepared in exactly the same manner as catalyst A, except that the above-mentioned kneaded product was used in place of the above-mentioned kneaded product in place of the above-mentioned kneaded product. did.

第1表に触媒A、B、E及びFの細孔特性を示す。Table 1 shows the pore characteristics of catalysts A, B, E and F.

第1表 触媒使用例 本発明の効果を確認するために、上記の触媒A、Fl用
いて次の条件下で減圧軽油の水素化処理を行なった。反
応装置には触媒100gを充填した内径1g、4mm、
長さ1.8mの固定床反応器を使用した。
Table 1 Examples of Catalyst Usage In order to confirm the effects of the present invention, vacuum gas oil was hydrogenated under the following conditions using the above catalysts A and Fl. The reactor had an inner diameter of 1 g, 4 mm, and was filled with 100 g of catalyst.
A fixed bed reactor with a length of 1.8 m was used.

反応条件 圧力  58 K17cm”G H,/HC50G Nm”/KI L H8V   1.5 hr−’ 温度  415℃ 水素濃度  90molチ 原料油性状 比重(15/4℃)    0.912C,〜204℃
留分   0.9  vo1%204〜343℃留分 
   11.5 、vo1%動粘度@50℃ 29.4
 cat 硫黄     1.7 wtチ 残留炭素         Q、5wt%ノ々ナジウム
         0.6ppmニッケル      
    0.3ppm触媒AI使用した場合の脱硫率と
、カス状成分(01〜C4)、ナフサ留分(Cs−20
4℃)及び中間留分(204〜343℃)の各生成tt
それぞれ100・とじ、各触媒の脱硫率及び分解生成物
の収率を相対値で求めたところ、第2表に示す結果を得
た。
Reaction conditions Pressure 58 K17cm"G H, / HC50G Nm" / KI L H8V 1.5 hr-' Temperature 415°C Hydrogen concentration 90 mol Raw material oil specific gravity (15/4°C) 0.912C, ~204°C
Distillation 0.9 vo1% 204-343℃ distillation
11.5, vo1% kinematic viscosity @50℃ 29.4
cat Sulfur 1.7 wt Chi Residual carbon Q, 5 wt% Nadium 0.6 ppm Nickel
Desulfurization rate when using 0.3 ppm catalyst AI, dregs components (01 to C4), naphtha fraction (Cs-20
4°C) and middle distillate (204-343°C) tt
When the desulfurization rate and the yield of decomposition products of each catalyst were determined in relative values, the results shown in Table 2 were obtained.

第  2  表 触 媒  脱硫’$   Ct〜C3ナフサ留分 中間
留分A    100.0   100    100
    100B    101.0    98  
  95    97CB8.9   500    
670    75D     96.2   200
    300    85B    100.2  
  92    71    80F     94.
8   170    280    83また1反応
温度を変化させて上記したガス状成亦、ナフサ留分及び
中間留分の各生akt、の変化を、触媒A及び触媒Eに
ついて追跡したところ、第1〜第3図に示す結果を得た
Table 2 Catalyst Desulfurization'$ Ct~C3 naphtha fraction Middle distillate A 100.0 100 100
100B 101.0 98
95 97CB8.9 500
670 75D 96.2 200
300 85B 100.2
92 71 80F 94.
8 170 280 83 In addition, when the reaction temperature was changed and the changes in the above-mentioned gaseous components, naphtha fraction, and middle distillate akt were tracked for catalyst A and catalyst E, it was found that the first to third The results shown in the figure were obtained.

第2表から明らかな通り、本発明の触媒A。As is clear from Table 2, Catalyst A of the present invention.

Bは典型的な水素化分解触媒に相当する触媒C,Dに比
較して、ガス状成分及びナフサ留分の生成量を少なくシ
、中間留分の生H,tを増大させる。また、典型的嫌水
素化脱硫触媒に相当する触媒Eと比較すると1本発明の
触媒A、 Bは触媒Eに優るとも劣らない脱硫活性を有
し。
Compared to catalysts C and D, which correspond to typical hydrocracking catalysts, B produces less gaseous components and naphtha fractions, and increases the raw H,t of the middle distillate. Furthermore, when compared with Catalyst E, which corresponds to a typical hydrophobic desulfurization catalyst, Catalysts A and B of the present invention have a desulfurization activity that is as good as, if not superior to, Catalyst E.

しか屯触媒)4Fi到底期待、できない選択性ある分解
活性を発揮する(第1〜第3図参照)。
(See Figures 1 to 3)

触媒Fは細孔特性の点でのみ本発明の触媒と相異するが
、触媒Fについて第2表が示す結果は触媒の細孔特性が
優れた脱硫活性と分解活性を触媒に付与するうえで極め
て重要であることを物語っている。
Although Catalyst F differs from the catalyst of the present invention only in terms of pore characteristics, the results shown in Table 2 for Catalyst F indicate that the pore characteristics of the catalyst are effective in imparting excellent desulfurization and cracking activity to the catalyst. It shows that it is extremely important.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜第3図はガス状成分、ナフサ留分及び中間留分の
各生成量と反応温度との関係を示すグラフである。
FIGS. 1 to 3 are graphs showing the relationship between the reaction temperature and the amount of gaseous components, naphtha fraction, and middle distillate produced.

Claims (1)

【特許請求の範囲】 1、 アルミナ−2リヤからなる用体にコノモルト成分
とモリブデン成分を担持させてなる触媒であって、該触
媒の細孔特性が下記の(5)、0)両条件を満足するこ
とを特徴とする減圧軽油水素化処理触媒組成物。 四 9素ガス吸着法で測定した場合、直径がθ〜600
Hの範囲にある細孔の平均直径が70〜100″にであ
り、直径70〜100Xの細孔が占める容積が直径0〜
600Xの細孔が占める容積の少なくとも70%でめシ
、直径0、〜60Xの細孔が占める容積が直径θ〜60
0 Kの細孔が占める容積の20%以下であること。 ■) 水銀圧入法で測定した場合、的径が62〜600
Hの範囲にある細孔の平均直径が70〜100Xであり
、平均直径±101の細孔が占める容積が直径62〜6
00裏の細一孔が占める容積の少なくとも60tlb?
:占め、平均直径+10^以上の細孔が占める容積が直
径62〜600Xの細孔が占める容積の15%以下であ
ること。 2、アルミナーゼリャ中の〆リャが* BTO8として
5〜30 wtチである特許請求の範囲第1項記載の触
媒組成物。 3、 モリブデン成分の担持量が金属として触媒組成物
の5〜24 wt%であり、コdルト成分の担持量が金
属として触媒組成物の0.5〜8 wtチである特許請
求の範囲第1項記載の触媒組成物。
[Claims] 1. A catalyst in which a conomalt component and a molybdenum component are supported on a body made of alumina-2, wherein the pore characteristics of the catalyst satisfy both of the following conditions (5) and 0). A vacuum gas oil hydrotreating catalyst composition characterized in that it satisfies the requirements of the present invention. 4 When measured by the 9-element gas adsorption method, the diameter is θ ~ 600
The average diameter of pores in the range of
At least 70% of the volume occupied by 600X pores is 0, and the volume occupied by 60X pores is θ~60
The volume occupied by 0 K pores should be 20% or less. ■) When measured by mercury porosimetry, the target diameter is 62 to 600.
The average diameter of pores in the range of H is 70 to 100X, and the volume occupied by pores with an average diameter of ±101 is 62 to 6
00 At least 60 tlb of volume occupied by the slot on the back?
: The volume occupied by pores with an average diameter of +10^ or more is 15% or less of the volume occupied by pores with a diameter of 62 to 600X. 2. The catalyst composition according to claim 1, wherein the aluminase contains 5 to 30 wt of *BTO8. 3. The amount of the molybdenum component supported as a metal is 5 to 24 wt% of the catalyst composition, and the amount of the codol component supported as a metal is 0.5 to 8 wt% of the catalyst composition. Catalyst composition according to item 1.
JP56211835A 1981-12-24 1981-12-24 Catalyst composition for hydrogenation treatment of light oil under reduced pressure Pending JPS58112049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56211835A JPS58112049A (en) 1981-12-24 1981-12-24 Catalyst composition for hydrogenation treatment of light oil under reduced pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56211835A JPS58112049A (en) 1981-12-24 1981-12-24 Catalyst composition for hydrogenation treatment of light oil under reduced pressure

Publications (1)

Publication Number Publication Date
JPS58112049A true JPS58112049A (en) 1983-07-04

Family

ID=16612371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56211835A Pending JPS58112049A (en) 1981-12-24 1981-12-24 Catalyst composition for hydrogenation treatment of light oil under reduced pressure

Country Status (1)

Country Link
JP (1) JPS58112049A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993017082A1 (en) * 1992-02-21 1993-09-02 Idemitsu Kosan Co., Ltd. Process for hydrotreating heavy hydrocarbon oil
CN108067256A (en) * 2016-11-15 2018-05-25 中国石油化工股份有限公司 A kind of preparation method of sulfurized hydrogenation catalyst

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5496489A (en) * 1978-01-18 1979-07-30 Chiyoda Chem Eng & Constr Co Ltd Production of heavy oil hydrogenation refining catalyst
JPS5527036A (en) * 1978-08-16 1980-02-26 Shokubai Kasei Kogyo Kk Hydrogenation and desulfurization catalyst for heavy hydrocabron oil
JPS56133035A (en) * 1980-03-25 1981-10-17 Shokubai Kasei Kogyo Kk Catalyst composition for hydrogenolysis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5496489A (en) * 1978-01-18 1979-07-30 Chiyoda Chem Eng & Constr Co Ltd Production of heavy oil hydrogenation refining catalyst
JPS5527036A (en) * 1978-08-16 1980-02-26 Shokubai Kasei Kogyo Kk Hydrogenation and desulfurization catalyst for heavy hydrocabron oil
JPS56133035A (en) * 1980-03-25 1981-10-17 Shokubai Kasei Kogyo Kk Catalyst composition for hydrogenolysis

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993017082A1 (en) * 1992-02-21 1993-09-02 Idemitsu Kosan Co., Ltd. Process for hydrotreating heavy hydrocarbon oil
US5376258A (en) * 1992-02-21 1994-12-27 Idemitsu Kosan Co., Ltd. Process for hydrogenating treatment of heavy hydrocarbon oil
AU655897B2 (en) * 1992-02-21 1995-01-12 Idemitsu Kosan Co. Ltd Process for hydrotreating heavy hydrocarbon oil
CN108067256A (en) * 2016-11-15 2018-05-25 中国石油化工股份有限公司 A kind of preparation method of sulfurized hydrogenation catalyst

Similar Documents

Publication Publication Date Title
EP0449144B2 (en) Catalyst composition for hydrotreating of hydrocarbons and hydrotreating process using the same
US4439312A (en) Catalyst for hydrotreating heavy hydrocarbon oils, method of preparing same and process for hydrotreating heavy hydrocarbon oils
JP6134334B2 (en) Silica-containing alumina support, catalyst produced therefrom and method of use thereof
US4517073A (en) Hydrocracking process and catalyst therefor
EP0620841B1 (en) A process for upgrading hydrocarbonaceous feedstocks with a combined hydrotreating and hydrocracking catalyst system
US4576711A (en) Hydrocracking process and catalyst therefor
US4500645A (en) Hydrocracking catalyst composition and method of making same
KR20070084402A (en) Iron-containing crystalline aluminosilicate, hydrocracking catalyst comprising the aluminosilicate, and method 0f hydrocracking with the catalyst
US3779903A (en) Hydroconversion process with a catalyst having a hydrogenation component composited with a high density alumina
US4563434A (en) Hydrocracking catalyst
JPH0536099B1 (en)
US3673112A (en) Hydroconversion catalyst preparation
PL202770B1 (en) Hydro processing of hydrocarbon using a mixture of catalysts
CN109201072B (en) Catalytic cracking gasoline pre-hydrogenation catalyst and preparation method thereof
US4326947A (en) Hydrocracking over alumina-aluminum fluorophosphate-containing catalysts
US4447556A (en) Hydrocarbon conversion catalyst and use thereof
US6132594A (en) Hydrocracking catalyst and hydrocracking method for hydrocarbon oils
EP1027156A1 (en) Hydrocracking catalyst, producing method thereof, and hydrocracking method
US4900711A (en) Hydrotreating catalyst
US4554263A (en) Catalysts for hydrotreating heavy oils
JP2711871B2 (en) Method for producing hydrotreating catalyst from hydrogel
JPH06205990A (en) Highly active oil residue catalyst
JPS58112049A (en) Catalyst composition for hydrogenation treatment of light oil under reduced pressure
US4716140A (en) Hydrotreating catalysts prepared from hydrogels
US5035793A (en) Hydrotreating catalyst and process