JPS58111324A - Preparation of semiconductor device - Google Patents

Preparation of semiconductor device

Info

Publication number
JPS58111324A
JPS58111324A JP20921981A JP20921981A JPS58111324A JP S58111324 A JPS58111324 A JP S58111324A JP 20921981 A JP20921981 A JP 20921981A JP 20921981 A JP20921981 A JP 20921981A JP S58111324 A JPS58111324 A JP S58111324A
Authority
JP
Japan
Prior art keywords
substrate
ion
annealing
ion implantation
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20921981A
Other languages
Japanese (ja)
Other versions
JPH0451971B2 (en
Inventor
Nobuyoshi Kashu
夏秋 信義
Katsumi Tokikuchi
克己 登木口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20921981A priority Critical patent/JPS58111324A/en
Publication of JPS58111324A publication Critical patent/JPS58111324A/en
Publication of JPH0451971B2 publication Critical patent/JPH0451971B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation

Abstract

PURPOSE:To reduce the p-n junction forming process cost by annealing immediately after ion implantation using the same apparatus. CONSTITUTION:A silicon substrate 41 is placed in plasma 42 including phosphorus ion in the density of 10<10>-10<11> pcs/cm<2> generated by microwave discharge, and then phosphorus ion is implanted to the substrate 41 by applying a negative voltage of 5-10kV for several seconds to the substrate 41 for the plasma. Thereafter, a discharge gas is changed to a gas not including the phosphorus ion and the same apllied voltage condition of 10kV is maintained for 10sec. At this time, since the positive ion of about 50mA is applied to the substrate 41 with an energy in accordance with an applied voltage, the substrate 41 is heated up to a high temperature near the melting point within several seconds. As a result, the ion-implanted layer at the surface of substrate 41 is perfectly annealed. The ion implantation and annealing can be realized continuously by the same apparatus and therefore cost reduction and increase of processing speed can also be attained.

Description

【発明の詳細な説明】 本発明は、半導体装置の製造方法に係ジ、特にプラズマ
発生源を有する装置を用い、イオン打込み後、直ちにア
ニールすることによる半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of manufacturing a semiconductor device by using an apparatus having a plasma generation source and performing annealing immediately after ion implantation.

従来のイオン打込みとアニールを同時るるいは連dして
行う方法は、第1図に示すごとく、イオン打込み部Iと
アニール部人が独立した。単K。
In the conventional method of performing ion implantation and annealing simultaneously or sequentially, as shown in FIG. 1, the ion implantation section I and the annealing section are independent. Single K.

両者を同一真空中める−は連続ツインで継いだ装置を使
用するものでめった。したがって、装置の簡略化には限
界がめシ、また1%に電子ビームアニール併用の場合に
は、真空中での基板1の搬送が不可決であるため、装置
上の複雑さは避けられないという欠点がめった。このこ
とは1例えばpn接合形成プロセスコストの低減に限界
かわることを示していた。第1図でIBはイオン上2ム
Putting both in the same vacuum was difficult because a device connected by continuous twins was used. Therefore, there is a limit to the simplification of the equipment, and if electron beam annealing is used in conjunction with 1%, it is impossible to transport the substrate 1 in a vacuum, so complexity in the equipment is unavoidable. There were many shortcomings. This indicates that there is a limit to the reduction in the cost of the pn junction formation process, for example. In Figure 1, IB is 2 mm above the ion.

ABはレーザあるいは電子ビームである。AB is a laser or an electron beam.

本発明の目的は、同一装置を用いイオン打込み後直ちに
アニールすることKよシ、たとえばpn接合形成プロセ
スコストを低減せしめることに6る。
An object of the present invention is to reduce the cost of the pn junction formation process, for example, by not performing annealing immediately after ion implantation using the same device.

慴オン打込み法は、今日では半導体工業において重要な
要素技術となっているが、半導体プロセス用打込み装置
は、第2図に示す質量分離を行う方式のため、導入不純
物純度が高いという長所を有する反面、質量分離器を具
備するため装置コストとランニングコストが高いという
欠点を有する。
The chip-on implantation method has become an important elemental technology in the semiconductor industry today, but the implantation equipment for semiconductor processing has the advantage of high purity of introduced impurities due to the mass separation method shown in Figure 2. On the other hand, since it is equipped with a mass separator, it has the disadvantage that the equipment cost and running cost are high.

他方、pn接合形成用として、上記の欠点を除い九第3
図に示す質量分離をしない方式(非質量分離万式)が考
えられている。この方式によれば。
On the other hand, for forming p-n junctions, the ninth third
A method that does not involve mass separation (non-mass separation method) is being considered, as shown in the figure. According to this method.

装置コストとランニングコストが低減するだけでなく、
イオンビームの行路が短くなるため装置内壁等との衝突
散乱による損失分が減9打込み電流が増大し、したがっ
て、打込み処理速度が増すという特徴を有する。
In addition to reducing equipment costs and running costs,
Since the path of the ion beam is shortened, the loss due to collision and scattering with the inner wall of the device, etc. is reduced, and the implantation current is increased, so that the implantation processing speed is increased.

しかしながら、従来、イオン打込み処JIlを施したウ
ェーハのアニール法としては、イオン打込み後大気中に
出して電気炉で7エールを行うか、おるいはイオン打込
み装置とレーザーめるiは電子ビーム7二−ル装置を連
結しイオン打込みとアニールを連続して行う方法がとら
れていた。前者の砺合、バッチ処理になるしアニール前
には洗浄処理を行う必要がめ〕1例えばpn接合形成プ
ロセスコスト低減に限界がある。後者の場合、イオン打
込み用ビームとアニール用ビーム発生源が別になるため
1両者を並べておき真空中でウェーハを移動する必要が
Toシ装置の簡略化に限界がある。
However, conventional methods of annealing wafers subjected to ion implantation process JIl include exposing the wafer to the atmosphere after ion implantation and performing annealing in an electric furnace, or alternatively, using an ion implantation device and a laser beam, A method has been used in which ion implantation and annealing are performed continuously by connecting annealing devices. The former method involves batch processing and requires cleaning before annealing.]1 For example, there is a limit to the cost reduction of the pn junction formation process. In the latter case, since the ion implantation beam and the annealing beam generation source are separate, it is necessary to arrange them side by side and move the wafer in a vacuum, which limits the simplification of the Toshiba device.

したがって1本発明は、イオン発生源を有する簡単な装
置において、イオン打込み後直ちにアニールを行うこと
を特徴とする。
Therefore, one feature of the present invention is that in a simple device having an ion generation source, annealing is performed immediately after ion implantation.

以下1本発明の実施例を第4図によシ説明する。An embodiment of the present invention will be explained below with reference to FIG.

シリコン基板41を、マイクロ波放電によって生成した
密度1010〜1011個/cm”の燐イオンを含むプ
ラズマ42の中に置き、プラズマに対し基板41に5〜
10kVの負の電圧を数秒間印加し燐イオンを基板に打
込む。引き続き、放電ガスを燐イオンを含まないガス、
例えば水素に切りかえ。
A silicon substrate 41 is placed in a plasma 42 containing phosphorus ions with a density of 1010 to 1011 ions/cm" generated by microwave discharge, and
A negative voltage of 10 kV is applied for several seconds to implant phosphorus ions into the substrate. Continue to change the discharge gas to a gas that does not contain phosphorus ions,
For example, switch to hydrogen.

10kVで同じ印加電位状態を10秒間保持する。The same applied potential state at 10 kV is maintained for 10 seconds.

この時、50mAl11度の正イオンが印加電圧に応じ
たエネルギーをもって基板41に入射するので。
At this time, 50mAl11 degree positive ions enter the substrate 41 with energy corresponding to the applied voltage.

基板41は数秒以内に融点近くの高温にまで加熱される
。この結果、基板410表面のイオン打込み層は完全に
アニールされる。
The substrate 41 is heated to a high temperature close to its melting point within a few seconds. As a result, the ion implantation layer on the surface of the substrate 410 is completely annealed.

この方法によって得九不純物導入層は、基板面内の均一
性に優れ、燐原子の再分布はαO1#m以下と少なく、
また、接合特性も良好であ夛、残留結晶欠陥が水素によ
シ有効に不活性化さnているものであった。
The impurity-introduced layer obtained by this method has excellent uniformity within the substrate plane, and the redistribution of phosphorus atoms is as small as αO1#m or less.
In addition, the bonding properties were good, and residual crystal defects were effectively inactivated by hydrogen.

このアニール用のイオン照射は、イオン打込み面に限ら
ず、裏ff1K対して行うことも可能である。
This ion irradiation for annealing can be performed not only on the ion implantation surface but also on the back ff1K.

この時、イオン打込み後、ウェーハを回転させ。At this time, after ion implantation, the wafer was rotated.

裏面がプラズマ発圭源の方に対する橡にすれば良い、 また、アニール時に、基板41に0.1〜10kVの正
の電圧を印加し、0.1〜5人の電子を入射させること
によっても同様のアニール効果を得ることができる。こ
の場合、プラズマ42と基板41の間に有効に電圧を印
加するため基板に入射する電子とほぼ等量の電子を補給
することが必要であるが、このために、電子源43を具
備しても良い。
It is sufficient to make the back surface facing the plasma source.Alternatively, during annealing, a positive voltage of 0.1 to 10 kV is applied to the substrate 41, and 0.1 to 5 electrons are incident on the substrate 41. A similar annealing effect can be obtained. In this case, in order to effectively apply a voltage between the plasma 42 and the substrate 41, it is necessary to supply approximately the same amount of electrons as the electrons incident on the substrate. For this purpose, an electron source 43 is provided. Also good.

勿論、電子源を別個に設けずとも、プラズマ容器44の
内面の導体で蔽われている面積を基板1の表面積の約1
00倍以上とすることにより、基板入射電子の損失が、
プラズマ全体の特性に影響を与えることが少なくなシ、
有効に基板に電圧印加することが可能である。
Of course, even without providing a separate electron source, the area covered by the conductor on the inner surface of the plasma container 44 can be reduced to about 1 of the surface area of the substrate 1.
By setting the ratio to 00 times or more, the loss of electrons incident on the substrate becomes
A type that has little effect on the characteristics of the entire plasma,
It is possible to effectively apply voltage to the substrate.

また、100■φウエー八にイオン打込みおよびアニー
ル処理を施すに要する時間は15秒以内。
Furthermore, the time required to perform ion implantation and annealing treatment on a 100 sq. diameter wafer is within 15 seconds.

すなわち、処理速度で240枚/時以上でめった。That is, it failed when the processing speed was 240 sheets/hour or more.

従来法では、イオン打込み処理速度が、200枚/時前
*、電気炉アニールが100〜200枚/時であるから
1本法によれば、簡単な装置を使用するに吃かかわらず
、従来のイオン打込み装置と電気炉を合わせ丸板上のウ
ェーハ処理速度が得られるためtP”接合形成プロ七ス
コストの低#Rを意味してiる。
In the conventional method, the ion implantation processing speed is 200 wafers/hour*, and the electric furnace annealing is 100 to 200 wafers/hour. By combining an ion implantation device and an electric furnace, a round plate wafer processing speed can be obtained, so tP'' means a low cost for the junction formation process.

本発明において、プラズマの生成方法はマイクロ波放電
に限る必要はな−が、広い面積に亘って密度の均一なプ
ラズマを容易に生成できること。
In the present invention, the plasma generation method is not necessarily limited to microwave discharge, but plasma with uniform density can be easily generated over a wide area.

kV程度の電圧印加によル絶縁破壊が容易に生じないt
o−”paiiizの低ガス圧力範囲でのプラズマ生成
が容易であること、無極放電であるので汚染の少ない構
造にできること1等の理由によシ、この実−施例ではマ
イクロ波放電を用いている。
Dielectric breakdown does not occur easily when voltage of about kV is applied.
In this example, microwave discharge was used for the following reasons: plasma generation is easy in the low gas pressure range of o-"paiiiz, and since it is a non-polar discharge, a structure with less pollution can be created. There is.

さらに、プラズマを単にイオン源、;7bるいは。Furthermore, the plasma can be used simply as an ion source;

電子源とみなし、第5図に示し丸ような、ビーム引き出
し電極45を有する構造とすることもできる。
It can also be regarded as an electron source, and may have a structure having a beam extraction electrode 45 as shown in a circle as shown in FIG.

本発明によれば、簡単な一台の製電を使用しイオン打込
みとアニールの連続処理が可能であシ。
According to the present invention, continuous processing of ion implantation and annealing can be performed using a single simple electric manufacturing unit.

かつ、処理速度は240枚/時以上でるるため。Moreover, the processing speed is over 240 sheets/hour.

装置コストの低減と処理速度の増大、し九がって経済性
の点で効果がある。
This is effective in terms of reducing equipment costs and increasing processing speed, which in turn is economical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の接合形成装置を示す図、第2図は質量分
離方式イオン打込み装置を示す図、第3図は非質量分離
式イオン打込み装置を示す図、第4図は本発明で使用し
た接合形成装置を示す図。 第5図ri第4図に引き出し電極を具備した接合形成装
置を示す図である。 1.41・・・半導体基板、2・・・イオン源、3・・
・質量外111r1.4・・・打込み室、42・・・プ
ラズマ、43・・・電子源、44・・・プラズマ容器、
45・・・引き出し電第5図
Fig. 1 shows a conventional junction forming device, Fig. 2 shows a mass separation type ion implantation device, Fig. 3 shows a non-mass separation type ion implantation device, and Fig. 4 shows a diagram used in the present invention. FIG. FIG. 5 is a diagram showing a bond forming apparatus equipped with an extraction electrode in FIG. 4. 1.41...Semiconductor substrate, 2...Ion source, 3...
- Mass outside 111r1.4... Implanting chamber, 42... Plasma, 43... Electron source, 44... Plasma container,
45...Output power Figure 5

Claims (1)

【特許請求の範囲】 1、 プラズマ発生源を有する装置において、まず。 放電ガスとしてドーどくントイオンを含むガスを用い半
導体基板等に導電性不純物を導入し、しかる後、該基板
にイオンまたは電子のシャワーを浴びせることによシ基
板に直接エネルギー照射を行いアニールすることを特徴
とする半導体装置の製造方法。
[Claims] 1. In an apparatus having a plasma generation source, first. Conductive impurities are introduced into a semiconductor substrate, etc. using a gas containing dont ions as a discharge gas, and then the substrate is directly irradiated with energy by showering the substrate with ions or electrons to anneal it. A method for manufacturing a featured semiconductor device.
JP20921981A 1981-12-25 1981-12-25 Preparation of semiconductor device Granted JPS58111324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20921981A JPS58111324A (en) 1981-12-25 1981-12-25 Preparation of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20921981A JPS58111324A (en) 1981-12-25 1981-12-25 Preparation of semiconductor device

Publications (2)

Publication Number Publication Date
JPS58111324A true JPS58111324A (en) 1983-07-02
JPH0451971B2 JPH0451971B2 (en) 1992-08-20

Family

ID=16569312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20921981A Granted JPS58111324A (en) 1981-12-25 1981-12-25 Preparation of semiconductor device

Country Status (1)

Country Link
JP (1) JPS58111324A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60138973A (en) * 1983-12-27 1985-07-23 Fuji Electric Corp Res & Dev Ltd Manufacture of insulated gate type field effect transistor
US4684319A (en) * 1985-01-29 1987-08-04 Toyota Jidosha Kabushiki Kaisha Turbocharger with variable nozzle mechanism
JPS6362227A (en) * 1986-08-28 1988-03-18 フエアチヤイルド セミコンダクタ コ−ポレ−シヨン Correction of characteristics of p-type dopant by other p-type dopant
JPH01111320A (en) * 1987-10-26 1989-04-28 Matsushita Electric Ind Co Ltd Diffusing method for impurity
JP2005277220A (en) * 2004-03-25 2005-10-06 Matsushita Electric Ind Co Ltd Method for leading impurity, impurity leading apparatus and semiconductor device formed by using the method
JP2006510196A (en) * 2002-12-12 2006-03-23 エピオン コーポレーション Recrystallization of semiconductor surface film by high energy cluster irradiation and semiconductor doping method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56138921A (en) * 1980-03-31 1981-10-29 Fujitsu Ltd Method of formation for impurity introduction layer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56138921A (en) * 1980-03-31 1981-10-29 Fujitsu Ltd Method of formation for impurity introduction layer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60138973A (en) * 1983-12-27 1985-07-23 Fuji Electric Corp Res & Dev Ltd Manufacture of insulated gate type field effect transistor
US4684319A (en) * 1985-01-29 1987-08-04 Toyota Jidosha Kabushiki Kaisha Turbocharger with variable nozzle mechanism
JPS6362227A (en) * 1986-08-28 1988-03-18 フエアチヤイルド セミコンダクタ コ−ポレ−シヨン Correction of characteristics of p-type dopant by other p-type dopant
JPH01111320A (en) * 1987-10-26 1989-04-28 Matsushita Electric Ind Co Ltd Diffusing method for impurity
JP2006510196A (en) * 2002-12-12 2006-03-23 エピオン コーポレーション Recrystallization of semiconductor surface film by high energy cluster irradiation and semiconductor doping method
JP2005277220A (en) * 2004-03-25 2005-10-06 Matsushita Electric Ind Co Ltd Method for leading impurity, impurity leading apparatus and semiconductor device formed by using the method

Also Published As

Publication number Publication date
JPH0451971B2 (en) 1992-08-20

Similar Documents

Publication Publication Date Title
US4465529A (en) Method of producing semiconductor device
US5661043A (en) Forming a buried insulator layer using plasma source ion implantation
US6979630B2 (en) Method and apparatus for transferring a thin layer of semiconductor material
JP3119693B2 (en) Semiconductor substrate manufacturing method and apparatus
US7135423B2 (en) Methods for forming low resistivity, ultrashallow junctions with low damage
CN101802992A (en) Wafer bonding activated by ion implantation
KR100439558B1 (en) Method for introducing impurities and method for manufacturing the semiconductor device
JPH05211128A (en) Manufacture of thin film of semiconductor material
US6506662B2 (en) Method for forming an SOI substrate by use of a plasma ion irradiation
US7858155B2 (en) Plasma processing method and plasma processing apparatus
JPS58164134A (en) Manufacturing method of semiconductor unit
JPS58111324A (en) Preparation of semiconductor device
JP3414380B2 (en) Ion beam irradiation method and related method and apparatus
JPH0335825B2 (en)
JPS58180028A (en) Treating method for semiconductor wafer
JPS5885538A (en) Manufacture of semiconductor device
JPH10208651A (en) Ion source device and ion implanting method using the device
JP3508424B2 (en) Ion implantation apparatus and semiconductor manufacturing method using the same
JPS59196600A (en) Neutral particle implanting method and its device
JPS58131731A (en) Irradiation of energy rays
JPS61163635A (en) Semiconductor impurity doping device
JPH11150080A (en) Manufacture of semiconductor substrate and manufacturing equipment of the semiconductor substrate
JPH07249590A (en) Method for manufacturing semiconductor
JP2003188110A (en) Doping method and ion implantation apparatus
JPH11307039A (en) Device and method for introducing impurity