JPS58111305A - Superconducting electromagnet device - Google Patents

Superconducting electromagnet device

Info

Publication number
JPS58111305A
JPS58111305A JP21535681A JP21535681A JPS58111305A JP S58111305 A JPS58111305 A JP S58111305A JP 21535681 A JP21535681 A JP 21535681A JP 21535681 A JP21535681 A JP 21535681A JP S58111305 A JPS58111305 A JP S58111305A
Authority
JP
Japan
Prior art keywords
current
magnetic field
superconducting coil
demagnetization
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21535681A
Other languages
Japanese (ja)
Other versions
JPH0359565B2 (en
Inventor
Takehiko Iwahana
岩花 武彦
Kaoru Nemoto
薫 根本
Mikio Nameki
行木 幹雄
Susumu Mitsune
進 三根
Masaharu Matsuda
正治 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPANESE NATIONAL RAILWAYS<JNR>
Toshiba Corp
Japan National Railways
Nippon Kokuyu Tetsudo
Original Assignee
JAPANESE NATIONAL RAILWAYS<JNR>
Toshiba Corp
Japan National Railways
Nippon Kokuyu Tetsudo
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPANESE NATIONAL RAILWAYS<JNR>, Toshiba Corp, Japan National Railways, Nippon Kokuyu Tetsudo, Tokyo Shibaura Electric Co Ltd filed Critical JAPANESE NATIONAL RAILWAYS<JNR>
Priority to JP21535681A priority Critical patent/JPS58111305A/en
Publication of JPS58111305A publication Critical patent/JPS58111305A/en
Publication of JPH0359565B2 publication Critical patent/JPH0359565B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/006Supplying energising or de-energising current; Flux pumps

Abstract

PURPOSE:To shorten the time required for excitation and demagnetization, by detecting the magnetic field of a superconducting coil, and controlling the output current of a power unit so that the intensity of the magnetic field changes at a predetermined rate of change. CONSTITUTION:A magnetic field detecting element 21 for detecting the magnetic field generated in a superconducting coil 2 is provided in a cryostatic container 1. The output of the element 21 is supplied as a control signal Z for a DC power unit 23 through an amplifier 22 provided outside the container 1. When a signal P representative of the starting of excitation is introduced, the output current of the unit 23 is increased so that increase rate of the signal Z equals to the current increase rate determined by the characteristics of the coil 2. On the other hand, when a signal Q representative of the starting of demagnetization, is introduced, the output current is decreased so that the decrease rate of the signal Z equals to the current decrease rate determined by the characteristics of the coil 2.

Description

【発明の詳細な説明】 発明の技術分舒・ 本発明は、電磁石を構成する超電導コイルの両端間に励
減磁時に分流要素となり得るものが設けられている超電
導電磁石装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Distribution of the Invention The present invention relates to a superconducting electromagnet device in which a component that can serve as a current dividing element during excitation and demagnetization is provided between both ends of a superconducting coil constituting the electromagnet.

発明の技術的背景 近年、静止機器は勿論の仁と回転機器に至るまで超電導
電磁石装置が用いられている。超電導電磁石装置は、周
知のように、内部が極低温に保たれた低温容器と、この
低温容器内に収容された超電導コイルと、この超電導コ
イルを励磁する直流電源装置とを主体にして構成されて
いる。そして、永久電流モードに切換えて運転できるよ
うにしたものにあっては、低温容器内にあって前記超電
導コイルの両端を選択的に短絡する永久電流スイッチを
設けたものとなっている。また、一般的には、超電導コ
イルと低温容器外に位置する直流電源装置とを接続する
一対のリード線間に保護抵抗を接続するようにしている
Technical Background of the Invention In recent years, superconducting electromagnet devices have been used not only in stationary equipment but also in rotary equipment. As is well known, a superconducting electromagnet device mainly consists of a low-temperature container whose interior is kept at an extremely low temperature, a superconducting coil housed in the low-temperature container, and a DC power supply that excites the superconducting coil. ing. If the superconducting coil can be switched to the persistent current mode for operation, a persistent current switch is provided in the low-temperature container to selectively short-circuit both ends of the superconducting coil. Further, generally, a protective resistor is connected between a pair of lead wires that connect the superconducting coil and a DC power supply located outside the low temperature container.

第1図は、永久電流モードに切換えできるようにした超
電導電磁石装置の一例を示すもので、低温容器1内に収
容された超電導コイル1の両端をリード線jm、3bを
介して出力可変の直流電源装置4の出力端に接続すると
ともに低電容器1内に上記超電導コイル2の両端を選択
的に短絡する熱式の永久電流スイッチ5を設け、さらに
リード線34.3b間に保護抵抗6を設けている。上記
永久電流スイッチ5は、i電導纏で構成されたスイッチ
本体11と、このスイッチ本体11を外部から入力を得
て選択的に加熱して常電導モード(オフ)および超電導
モード(オン)に切換えるヒータ12とから構成されて
いる。なお、図中13は常電導モードにおける等価抵抗
を示している。
Figure 1 shows an example of a superconducting electromagnet device that can be switched to persistent current mode, in which both ends of a superconducting coil 1 housed in a low-temperature container 1 are connected to a variable output direct current via lead wires jm and 3b. A thermal persistent current switch 5 connected to the output end of the power supply device 4 and selectively shorting both ends of the superconducting coil 2 is provided in the low current container 1, and a protective resistor 6 is provided between the lead wires 34.3b. ing. The persistent current switch 5 includes a switch body 11 made of an i-conducting wire, and a switch body 11 that is selectively heated by input from the outside and switched to a normal conduction mode (off) and a superconductivity mode (on). It is composed of a heater 12. Note that 13 in the figure indicates the equivalent resistance in the normal conduction mode.

しかして、上記のように構成された装置は、次のよう番
こして、永久電流モードへの切換え(励磁)および永久
電流モードの解消(減磁)を行なうようにしている。す
なわち、励磁時には、ヒータ12に通電して永久電流ス
イッチ5のスイッチ本体11をオフさせておき、この状
態で直流電源装置4の出力電流を予め定められた電流増
加率で直線的に増加させ、所定値に設定する。次に、ヒ
ータ12への通電を停止することによって永久電流スイ
ッチ5のスイッチ本体11をオン状態に切換える。続い
て、直流電源装置4の出力電流を低下させ零とする。こ
のような制御によって、超電導コイル2と永久電流スイ
ッチ5のスイッチ本体11とからなる閉回路に永−大電
流が流れる、いわゆる永久電流モードに切換えるように
している。また、減磁時には、まず、直流電源装置4の
一出力電流を超電導コイル2に流れている永久電流と等
しい値まで増加させ、続いてヒータ1zに通電して永久
電流スイッチ5のスイッチ本体11をオフに切換える。
Therefore, the device configured as described above is configured to switch to the persistent current mode (excitation) and cancel the persistent current mode (demagnetize) in the following manner. That is, during excitation, the heater 12 is energized to turn off the switch body 11 of the persistent current switch 5, and in this state, the output current of the DC power supply 4 is linearly increased at a predetermined current increase rate, Set to a predetermined value. Next, the switch body 11 of the persistent current switch 5 is turned on by stopping the power supply to the heater 12. Subsequently, the output current of the DC power supply device 4 is lowered to zero. Through such control, a switch is made to a so-called persistent current mode in which a large current flows permanently in a closed circuit consisting of the superconducting coil 2 and the switch body 11 of the persistent current switch 5. In addition, during demagnetization, first, one output current of the DC power supply device 4 is increased to a value equal to the persistent current flowing through the superconducting coil 2, and then the heater 1z is energized to switch the switch body 11 of the persistent current switch 5. Switch off.

この状態で直流電源装置4の出力電流を予め定められた
電流減少率で減少させ、最終的に零にする。そして、次
にヒータ12への通電を停止して減磁制御を終了するよ
うにしている。
In this state, the output current of the DC power supply device 4 is decreased at a predetermined current reduction rate, and finally becomes zero. Then, the power supply to the heater 12 is stopped to complete the demagnetization control.

背景技術の問題点 上述の制御によって、確かに永久電流モードへの切換え
および永久電流モードの解消を行なうことができる。し
かし、従来装置にあっては、励減磁時に直流電源装置の
出力電流を、励磁時には零から、減磁時には永久電流値
からそれぞれ連続的に定められた電流−加重(減少率)
で変化させるように制御しているので、励磁に要する時
間および減磁に要する時間が必然的に長くなると云う問
題があった。すなわち、励磁時に、たとえば第2図中左
半分に実線!。で示すように直流電源装置4の出力電流
を増加させた場合、この出力電流が時点t、において設
定値に達しても超電導コイル2に実際に流れている電流
は、自己のインダクタンスと保護抵抗6および永久電流
スイッチ5の常電導モードに伴なう抵抗、つまり分流要
素との存在によって第2図中破纏IL  で示すように
なり、超電導コイル2に流れる電流が設定値と一致する
時点t、は時点t、より相当遅れる。このため、励磁に
長時間を要するばかりか、それだけの期間、永久電流ス
イッチ5のヒータ12に通電する必要があるので冷媒の
損失も多いと云う問題があった。
Problems with the Background Art The above-described control certainly makes it possible to switch to persistent current mode and eliminate persistent current mode. However, in conventional devices, the output current of the DC power supply during excitation and demagnetization is continuously determined from zero during excitation, and from the persistent current value during demagnetization.
Therefore, there is a problem in that the time required for excitation and the time required for demagnetization inevitably become longer. That is, during excitation, for example, the solid line in the left half of Figure 2! . When the output current of the DC power supply device 4 is increased as shown in , even if this output current reaches the set value at time t, the current actually flowing through the superconducting coil 2 depends on its own inductance and the protective resistance 6. And, due to the presence of the resistance associated with the normal conduction mode of the persistent current switch 5, that is, the presence of the shunt element, the current flowing through the superconducting coil 2 coincides with the set value, as shown in FIG. is considerably later than time t. Therefore, not only does excitation take a long time, but it is also necessary to energize the heater 12 of the persistent current switch 5 for that length of time, resulting in a large loss of refrigerant.

このことは、励磁時に限らず、第2図中左半分に示すよ
うに減磁時においても全く同じことが云えた。励減磁時
において、超電導コイル2に流れる電流の増加率(減少
率)は、そのコイルの特性によって抑えられる。したが
って、従来装置は、上記特性によって決まる増加率(減
少率)で直流電源装置4の出力電流を零(設定値)から
変化させているので上述した不具合を免れ得ないことに
なる。なお、第2図中Hは超電導】イル2で発生した磁
界の強さを示している。
This was true not only during excitation but also during demagnetization as shown in the left half of FIG. During excitation and demagnetization, the rate of increase (rate of decrease) of the current flowing through the superconducting coil 2 is suppressed by the characteristics of the coil. Therefore, since the conventional device changes the output current of the DC power supply device 4 from zero (set value) at an increase rate (decrease rate) determined by the above-mentioned characteristics, the above-mentioned problems cannot be avoided. Note that H in FIG. 2 indicates the strength of the magnetic field generated in the superconducting coil 2.

発明の目的 本発明は、このような事情に鑑みてなされたもので、そ
の目的とするところは、励減磁に要れ する時間の短縮化を囚人る超電導電磁石装置を提供する
ことにある。       。
OBJECTS OF THE INVENTION The present invention has been made in view of the above circumstances, and its purpose is to provide a superconducting electromagnet device that can shorten the time required for excitation and demagnetization. .

磯明の概要 本発明に係る超電導電磁石装置は、超電導コイルで発生
した磁界の強さを検出する磁界検出ゝ\、−・ノ 素子を設けるとともに励減磁時に上記磁界検出素子で検
出された磁界の強さが定められ変化率で変化するよろに
出力電流を送出する直流電源装置を設けたことを%徴と
している。
Overview of Isomei The superconducting electromagnet device according to the present invention is provided with magnetic field detection elements for detecting the strength of the magnetic field generated in the superconducting coil, and detects the magnetic field detected by the magnetic field detection element during excitation and demagnetization. The % characteristic is that a DC power supply device is provided that sends out an output current whose strength is determined and changes at a rate of change.

発明の効果 上述した磁界検出素子で検出された磁界の強さをHとし
、そのときに超電導コイルに流れている電流をIL  
とし、定数をKとすると、常に、1l−=KH−一−−
−(11 なる関係が成立する。したがって、直流電源装置で、磁
界の強さHの変化率が超電導コイルの特性によって決ま
る電流増加(減少)率と等しくなるように出力電流を変
化させれば、超電導コイルには、その特性によって決ま
る変化率の電流!Lが流れることになる。本発明装置は
上述した関係を利用したものである。したがって、分流
要素とは無関係に、超電導コイルの特性によって決まる
許容最短時間で励減磁を行なうことができる。また、常
に目標通りのコイル電流および磁界の強さに合わせるこ
とができる。さらに、永久電流モードに切換えできるよ
うにしたものにあっては、励減磁時における冷媒の損失
を減少させることができる。
Effects of the Invention Let H be the strength of the magnetic field detected by the magnetic field detection element described above, and let IL be the current flowing through the superconducting coil at that time.
and the constant is K, then 1l-=KH-1--
-(11) Therefore, if the DC power supply device changes the output current so that the rate of change in the magnetic field strength H becomes equal to the current increase (decrease) rate determined by the characteristics of the superconducting coil, then A current !L with a rate of change determined by the characteristics of the superconducting coil flows through the superconducting coil.The device of the present invention utilizes the above-mentioned relationship.Therefore, the current !L is determined by the characteristics of the superconducting coil, regardless of the shunt element. Excitation and demagnetization can be performed in the shortest allowable time.Also, it is possible to always match the coil current and magnetic field strength to the target.Furthermore, with models that can be switched to persistent current mode, excitation and demagnetization can be performed in the shortest allowable time. Coolant loss during demagnetization can be reduced.

発明の実施例 第3図は本発明の一実施例に係る超電導電磁石装置の回
路構成を示すもので、第1図と同一部分は同一符号で示
しである。したがって、重複する部分の説明は省略する
Embodiment of the Invention FIG. 3 shows a circuit configuration of a superconducting electromagnet device according to an embodiment of the present invention, and the same parts as in FIG. 1 are designated by the same reference numerals. Therefore, the explanation of the overlapping parts will be omitted.

8 この実施例にあっては、低温容器1内に超電導コイ
ルlで発生した磁界の強さを検出するポール素子等の磁
界検出素子21を設け、この磁界検出素子21の出力信
号を低温容器1外に設けられた増幅器2zを介して直流
電源装置23の制御信号2として導入している。
8 In this embodiment, a magnetic field detection element 21 such as a pole element that detects the strength of the magnetic field generated by the superconducting coil l is provided in the low temperature vessel 1, and the output signal of this magnetic field detection element 21 is transmitted to the low temperature vessel 1. The signal is introduced as the control signal 2 of the DC power supply 23 via an externally provided amplifier 2z.

直流電源装置23は、負の出力電流も送出できるもので
、励磁開始を表わす信号Pが導入されると、制御信号2
の増加率が超電導コイルlの特性によって決まる電流増
加率と等しくなるように出力電流!。を増加させ、制御
信号2の大きさが所定値に達するまで増加させる。また
、減磁開始を表わす信号qが導入されると、制御信号2
の減少率が超電導コイル1の特性によって決まる電流減
少率点等しくなるように出力電流■・ を減少させ、制
御信号2の大きさが零になるまで減少させるように構成
されている。
The DC power supply device 23 can also send out a negative output current, and when the signal P indicating the start of excitation is introduced, the control signal 2
Output current so that the rate of increase in is equal to the rate of increase in current determined by the characteristics of the superconducting coil l! . is increased until the magnitude of control signal 2 reaches a predetermined value. Furthermore, when the signal q indicating the start of demagnetization is introduced, the control signal 2
The output current 2 is reduced so that the rate of decrease in the current decrease rate is equal to the current decrease rate point determined by the characteristics of the superconducting coil 1, and the magnitude of the control signal 2 is decreased until the magnitude of the control signal 2 becomes zero.

したがって、この装置によると、励磁時には第4図の左
半分に示されるように、直流電源装置J3の出力電流!
。、超電導コイル2に流れる電流!L および磁界の強
さHが直線的に変化し、超電導コイル2には、このコイ
ルの特性によって決定される増加率の電流IIl が零
から流れることになるへ。同様に減磁時においても第4
図の右半分に示されるように、超電導コイル2に  ・
流れる電流は、このコイルの特性番こよって決定される
減少率で減少することになる。このため、超電導コイル
2の特性によって決まる許容最短゛時間丁。で励減磁を
行なうことができ、従来装置に較べて励減磁に要する時
間を大幅に短縮させることができる。また、磁界の強さ
を検出してコイル電流を制御するようにしているので、
常にコイル電流および磁界の強さを目標値−こ合わせる
ことができる。
Therefore, according to this device, during excitation, as shown in the left half of FIG. 4, the output current of the DC power supply J3!
. , the current flowing through superconducting coil 2! L and the magnetic field strength H change linearly, and a current IIl flows from zero through the superconducting coil 2 at an increasing rate determined by the characteristics of this coil. Similarly, during demagnetization, the fourth
As shown in the right half of the figure, in the superconducting coil 2
The flowing current will decrease at a rate determined by the characteristic number of this coil. For this reason, the allowable shortest time is determined by the characteristics of the superconducting coil 2. The time required for excitation and demagnetization can be significantly shortened compared to conventional devices. Also, since the coil current is controlled by detecting the strength of the magnetic field,
The coil current and magnetic field strength can always be adjusted to the target value.

なお、上述した実施例においては負の出力電流を送出で
きる直流電源装置を用いているか、正の出力電流だけ出
力できるものを用いてもよい。この場合には減磁時の最
終段階においてコイル電流の変化率がゆるやかになるが
、それ程影響を与えない。また、本発明は、鉄心に巻か
れた超電導コイルの場合や、超電導コイルを複数直列に
した場合や、永久電流スイッチの存在しない場合(但し
保睡抵抗は存在している。)などにも適用できる。
In the embodiments described above, a DC power supply device capable of outputting a negative output current is used, or a DC power supply device capable of outputting only a positive output current may be used. In this case, the rate of change of the coil current becomes gradual in the final stage of demagnetization, but it does not have much of an effect. The present invention is also applicable to cases where a superconducting coil is wound around an iron core, where multiple superconducting coils are connected in series, where a persistent current switch is not present (however, a retaining resistor is present), etc. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の超電導電磁石装置の回路構成図、第2図
は同装置の励減磁時における各部波形を説明するための
図、第3図は本発明の一実施例に係る超電導電磁石装置
の回路構成図、第4図は同実施例装置の励減磁時におけ
る各部波形を説明するための図である。 1・・・低温容器、2・・・超電導コイル、11・・・
磁界検出素子、13・・・直流電源装置。
Fig. 1 is a circuit configuration diagram of a conventional superconducting electromagnet device, Fig. 2 is a diagram for explaining waveforms of various parts during excitation and demagnetization of the same device, and Fig. 3 is a superconducting electromagnet device according to an embodiment of the present invention. FIG. 4 is a diagram for explaining waveforms of various parts during excitation and demagnetization of the same embodiment device. 1... Low temperature container, 2... Superconducting coil, 11...
Magnetic field detection element, 13... DC power supply device.

Claims (1)

【特許請求の範囲】[Claims] 電磁石を構成する超電導コイルの両端に、励減磁時に分
流要素になり得るものを接続′してなる超電導電磁石装
置において、前記超電導コイルで発生した磁界の強さを
検出する磁界検出素子と、前記超電導コイルの両端にそ
の出方端が接続され励減磁時に上記磁界検出素子で得ら
れた磁界の強さが定められた変化率で変化するように出
力電流を制御する直流電源装置とを具備してなることを
特徴とする超電導電磁石装置。
A superconducting electromagnet device comprising: a superconducting coil constituting an electromagnet; The superconducting coil is equipped with a direct current power supply device whose output ends are connected to both ends of the superconducting coil and which controls an output current so that the strength of the magnetic field obtained by the magnetic field detection element changes at a predetermined rate of change during excitation and demagnetization. A superconducting electromagnet device characterized by:
JP21535681A 1981-12-24 1981-12-24 Superconducting electromagnet device Granted JPS58111305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21535681A JPS58111305A (en) 1981-12-24 1981-12-24 Superconducting electromagnet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21535681A JPS58111305A (en) 1981-12-24 1981-12-24 Superconducting electromagnet device

Publications (2)

Publication Number Publication Date
JPS58111305A true JPS58111305A (en) 1983-07-02
JPH0359565B2 JPH0359565B2 (en) 1991-09-11

Family

ID=16670933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21535681A Granted JPS58111305A (en) 1981-12-24 1981-12-24 Superconducting electromagnet device

Country Status (1)

Country Link
JP (1) JPS58111305A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2985769A1 (en) * 2014-07-28 2016-02-17 Bruker BioSpin AG Method for charging a superconducting magnet assembly with power
CN113628828A (en) * 2021-08-23 2021-11-09 上海交通大学 High-temperature superconducting flux pump and iron core winding current waveform control method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4957791A (en) * 1972-10-03 1974-06-05

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4957791A (en) * 1972-10-03 1974-06-05

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2985769A1 (en) * 2014-07-28 2016-02-17 Bruker BioSpin AG Method for charging a superconducting magnet assembly with power
US9715958B2 (en) 2014-07-28 2017-07-25 Bruker Biospin Ag Method for energizing a superconducting magnet arrangement
CN113628828A (en) * 2021-08-23 2021-11-09 上海交通大学 High-temperature superconducting flux pump and iron core winding current waveform control method thereof
CN113628828B (en) * 2021-08-23 2022-07-22 上海交通大学 High-temperature superconducting flux pump and iron core winding current waveform control method thereof

Also Published As

Publication number Publication date
JPH0359565B2 (en) 1991-09-11

Similar Documents

Publication Publication Date Title
JP2659363B2 (en) Superconducting magnet device with emergency demagnetization device
GB2195054A (en) Superconducting magnet apparatus with emergency demagnetizing unit
JPH0236504A (en) Superconducting magnet device
US4994935A (en) Superconducting magnet apparatus with an emergency run-down system
JPS58111305A (en) Superconducting electromagnet device
US4879477A (en) Procedure and circuit arrangement for switching on an inductance subject to remanence
JP3150507B2 (en) Superconducting magnet device
JPH0324047B2 (en)
JP2978637B2 (en) Quench detection device for superconducting winding
JPS5815924B2 (en) Superconducting coil excitation device
JPH06120573A (en) Exciting device for superconductive coil
US3474295A (en) Superconductive magnet employing one power supply for sequential energization of separate winding sections
SU1077466A1 (en) Device for measuring relationship between critical current of technical superconductor specimens and external magnetic field
JPS6159650B2 (en)
JPH033362B2 (en)
JPS6348406B2 (en)
JP2951459B2 (en) Power supply for superconducting magnet
JPS6120303A (en) Superconductive coil apparatus
JPS6236367B2 (en)
JPH01184910A (en) Transformer winding temperature simulated measuring device
JP2003068519A (en) Superconductive magnet device, and method of stabilizing magnetic field therewith
SU1285386A1 (en) Device for reproducing values of high d.c.currents
JPH03165295A (en) Controller for helical system
JPH08330640A (en) Magnetic persistent current switch
JP3151164B2 (en) Power saving device