JPH0359565B2 - - Google Patents

Info

Publication number
JPH0359565B2
JPH0359565B2 JP56215356A JP21535681A JPH0359565B2 JP H0359565 B2 JPH0359565 B2 JP H0359565B2 JP 56215356 A JP56215356 A JP 56215356A JP 21535681 A JP21535681 A JP 21535681A JP H0359565 B2 JPH0359565 B2 JP H0359565B2
Authority
JP
Japan
Prior art keywords
superconducting coil
magnetic field
demagnetization
current
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56215356A
Other languages
Japanese (ja)
Other versions
JPS58111305A (en
Inventor
Takehiko Iwahana
Kaoru Nemoto
Mikio Nameki
Susumu Mitsune
Masaharu Matsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Railway Technical Research Institute
Original Assignee
Toshiba Corp
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Railway Technical Research Institute filed Critical Toshiba Corp
Priority to JP21535681A priority Critical patent/JPS58111305A/en
Publication of JPS58111305A publication Critical patent/JPS58111305A/en
Publication of JPH0359565B2 publication Critical patent/JPH0359565B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/006Supplying energising or de-energising current; Flux pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

【発明の詳細な説明】 発明の技術分野 本発明は、電磁石を構成する超電導コイルの両
端間に励減磁時に分流要素となり得るものが設け
られている超電導電磁石装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a superconducting electromagnet device in which a component that can serve as a current shunting element during excitation and demagnetization is provided between both ends of a superconducting coil constituting the electromagnet.

発明の技術的背景 近年、静止機器は勿論のこと回転機器に至るま
で超電導電磁石装置が用いられている。超電導電
磁石装置は、周知のように、内部が極低温に保た
れた低温容器と、この低温容器内に収容された超
電導コイルと、この超電導コイルを励磁する直流
電源装置とを主体にして構成されている。そし
て、永久電流モードに切換えて運転できるように
したものにあつては、低温容器内にあつて前記超
電導コイルの両端を選択的に短絡する永久電流ス
イツチを設けたものとなつている。また、一般的
には、超電導コイルと低温容器外に位置する直流
電源装置とを接続する一対のリード線間に保護抵
抗を接続するようにしている。
Technical Background of the Invention In recent years, superconducting electromagnet devices have been used not only in stationary equipment but also in rotating equipment. As is well known, a superconducting electromagnet device mainly consists of a low-temperature container whose interior is kept at an extremely low temperature, a superconducting coil housed in the low-temperature container, and a DC power supply that excites the superconducting coil. ing. If the superconducting coil can be operated in persistent current mode, a persistent current switch is provided in the low temperature container to selectively short-circuit both ends of the superconducting coil. Further, generally, a protective resistor is connected between a pair of lead wires that connect the superconducting coil and a DC power supply located outside the low temperature container.

第1図は、永久電流モードに切換えできるよう
にした超電導電磁石装置の一例を示すもので、低
温容器1内に収容された超電導コイル2の両端を
リード線3a,3bを介して出力可変の直流電源
装置4の出力端に接続するとともに低温容器1内
に上記超電導コイル2の両端を選択的に短絡する
熱式の永久電流スイツチ5を設け、さらにリード
線3a,3b間に保護抵抗6を設けている。上記
永久電流スイツチ5は、超電導線で構成されたス
イツチ本体11と、このスイツチ本体11を外部
から入力を得て選択的に加熱して常電導モード
(オフ)および超電導モード(オン)に切換える
ヒータ12とから構成されている。なお、図中1
3は常導電モードにおける等価抵抗を示してい
る。
FIG. 1 shows an example of a superconducting electromagnet device that can be switched to persistent current mode, in which a variable output DC current is connected to both ends of a superconducting coil 2 housed in a cryogenic container 1 via lead wires 3a and 3b. A thermal persistent current switch 5 connected to the output end of the power supply device 4 and selectively short-circuiting both ends of the superconducting coil 2 is provided in the low temperature container 1, and a protective resistor 6 is provided between the lead wires 3a and 3b. ing. The persistent current switch 5 includes a switch body 11 made of superconducting wire, and a heater that selectively heats the switch body 11 by receiving input from the outside and switches it between a normal conduction mode (off) and a superconductivity mode (on). It consists of 12. In addition, 1 in the figure
3 indicates the equivalent resistance in normal conduction mode.

しかして、上記のように構成された装置は、次
のようにして、永久電流モードへの切換え(励
磁)および永久電磁モードの解消(減磁)を行な
うようにしている。すなわち、励磁時には、ヒー
タ12に通電して永久電流スイツチ5のスイツチ
本体11をオフさせておき、この状態で直流電源
装置4の出力電流を予め定められた電流増加率で
直線的に増加させ、所定値に設定する。次に、ヒ
ータ12への通電を停止することによつて永久電
流スイツチ5のスイツチ本体11をオン状態に切
換える。続いて、直流電源装置4の出力電流を低
下させ零とする。このような制御によつて、超電
導コイル2と永久電流スイツチ5のスイツチ本体
11とからなる閉回路に永久電流が流れる、いわ
ゆる永久電流モードに切換えるようにしている。
また、減磁時には、まず、直流電源装置4の出力
電流を超電導コイル2に流れている永久電流と等
しい値まで増加させ、続いてヒータ12に通電し
て永久電流スイツチ5のスイツチ本体11をオフ
に切換える。この状態で直流電源装置4の出力電
流を予め定められた電流減少率で減少させ、最終
的に零にする。そして、次にヒータ12への通電
を停止して減磁制御を終了するようにしている。
Therefore, the device configured as described above switches to the persistent current mode (excitation) and eliminates the permanent electromagnetic mode (demagnetization) in the following manner. That is, during excitation, the heater 12 is energized to turn off the switch body 11 of the persistent current switch 5, and in this state, the output current of the DC power supply device 4 is linearly increased at a predetermined current increase rate, Set to a predetermined value. Next, by stopping the power supply to the heater 12, the switch body 11 of the persistent current switch 5 is turned on. Subsequently, the output current of the DC power supply device 4 is lowered to zero. Through such control, the system is switched to a so-called persistent current mode in which a persistent current flows in a closed circuit consisting of the superconducting coil 2 and the switch body 11 of the persistent current switch 5.
Furthermore, during demagnetization, the output current of the DC power supply device 4 is first increased to a value equal to the persistent current flowing through the superconducting coil 2, and then the heater 12 is energized to turn off the switch body 11 of the persistent current switch 5. Switch to In this state, the output current of the DC power supply device 4 is decreased at a predetermined current reduction rate, and finally becomes zero. Then, the power supply to the heater 12 is stopped to complete the demagnetization control.

背景技術の問題点 上述の制御によつて、確かに永久電流モードへ
の切換えおよび永久電流モードの解消を行なうこ
とができる。しかし、従来装置にあつては、励減
磁時に直流電源装置の出力電流を、励磁時には零
から、減磁時には永久電流値からそれぞれ連続的
に定められた電流増加率(減少率)で変化させる
ように制御しているので、励磁に要する時間およ
び減磁に要する時間が必然的に長くなると云う問
題があつた。すなわち、励磁時に、たとえば第2
図中左半分に実線I0で示すように直流電源装置4
の出力電流を増加させた場合、この出力電流が時
点t1において設定値に達しても超電導コイル2に
実際に流れている電流は、自己のインダクタンス
と保護抵抗6および永久電流スイツチ5の常電導
モードに伴なう抵抗、つまり分流要素との存在に
よつて第2図中破線ILで示すようになり、超電導
コイル2に流れる電流が設定値と一致する時点t2
は時点t1より相当遅れる。このため、励磁に長時
間を要するばかりか、それだけの期間、永久電流
スイツチ5のヒータ12に通電する必要があるの
で冷媒の損失も多いと云う問題があつた。また、
超電導コイル2、永久電流スイツチ5あるいは保
護抵抗6の何れかを新しいものに交換した場合に
は、自己インダクタンス値や抵抗値が前のものと
全く同じと言うことはほとんどない。前述した時
点t1から時点t2までの期間および時点t4から時点
t5までの期間は自己インダクタンス値や抵抗値に
よつて左右される。したがつて、構成要素の一部
を交換したような場合には、安全をみて永久電流
スイツチ5のヒータ12への通電時間も長めに設
定する必要がある。このため、ヒータ12への通
電時間を短縮するには限界があり、冷媒の損失を
抑えることは困難であつた。このことは、励磁時
に限らず、第2図中右半分に示すように減磁時に
おいても全く同じことが云えた。励減磁時におい
て、超電導コイル2に流れる電流の増加率(減少
率)は、そのコイルの特性によつて抑えられる。
したがつて、従来装置は、上記特性によつて決ま
る増加率(減少率)で直流電源装置4の出力電流
を零(設定値)から変化させているので上述した
不具合を免れ得ないことになる。なお、第2図中
Hは超電導コイル2で発生した磁界の強さを示し
ている。
Problems of the Background Art The above-described control certainly makes it possible to switch to persistent current mode and eliminate persistent current mode. However, in the case of conventional devices, the output current of the DC power supply is continuously changed at a predetermined current increase rate (decrease rate) from zero during excitation and from the persistent current value during demagnetization. Therefore, there was a problem in that the time required for excitation and the time required for demagnetization inevitably became longer. That is, during excitation, for example, the second
As shown by the solid line I0 in the left half of the figure, the DC power supply 4
When the output current of the superconducting coil 2 is increased, even if this output current reaches the set value at time t1 , the current actually flowing through the superconducting coil 2 is the result of its own inductance, the protective resistor 6, and the normal conduction of the persistent current switch 5. Due to the resistance associated with the mode, that is, the presence of the shunt element, the current flowing through the superconducting coil 2 coincides with the set value, as shown by the broken line I L in FIG. 2, at a time t 2
lags considerably behind time t 1 . For this reason, not only does excitation take a long time, but it is also necessary to energize the heater 12 of the persistent current switch 5 for that long period of time, resulting in a large loss of refrigerant. Also,
When any of the superconducting coil 2, persistent current switch 5, or protective resistor 6 is replaced with a new one, the self-inductance value and resistance value are almost never exactly the same as the previous one. The period from time t1 to time t2 and from time t4 to time described above
The period up to t5 depends on the self-inductance value and resistance value. Therefore, when some of the components have been replaced, it is necessary to set the duration for which the persistent current switch 5 is energized to the heater 12 for a longer period of time for safety reasons. For this reason, there is a limit to shortening the energization time to the heater 12, and it has been difficult to suppress loss of refrigerant. This was true not only during excitation, but also during demagnetization, as shown in the right half of FIG. During excitation and demagnetization, the rate of increase (rate of decrease) of the current flowing through the superconducting coil 2 is suppressed by the characteristics of the coil.
Therefore, since the conventional device changes the output current of the DC power supply 4 from zero (set value) at an increase rate (decrease rate) determined by the above characteristics, the above-mentioned problems cannot be avoided. . Note that H in FIG. 2 indicates the strength of the magnetic field generated in the superconducting coil 2.

発明の目的 本発明は、このような事情に鑑みてなされたも
ので、その目的とするところは、励減磁時に無駄
な時間を要することなく、超電導コイルの特性に
よつて決まる最短時間で励減磁を行うことができ
る。超電導電磁石装置を提供することにある。
Purpose of the Invention The present invention was made in view of the above circumstances, and its purpose is to excite the superconducting coil in the shortest time determined by the characteristics of the superconducting coil, without wasting time during excitation and demagnetization. Demagnetization can be performed. An object of the present invention is to provide a superconducting electromagnet device.

発明と概要 本発明に係る超電導電磁石装置は、超電導コイ
ルで発生した磁界の強さを検出する磁界検出素子
を設けるとともに励減磁時に上記磁界検出素子で
検出された磁界の強さの変化率を上記超電導コイ
ルの特性によつて決まる許容最大変化率に一致さ
せるべく出力電流を変化させて送出する直流電源
装置を設けたことを特徴としている。
Invention and Summary A superconducting electromagnet device according to the present invention is provided with a magnetic field detection element that detects the strength of the magnetic field generated in a superconducting coil, and detects the rate of change in the strength of the magnetic field detected by the magnetic field detection element during excitation and demagnetization. The present invention is characterized by being provided with a DC power supply device that changes the output current so as to match the permissible maximum rate of change determined by the characteristics of the superconducting coil.

発明の効果 上述した磁界検出素子で検出された磁界の強さ
をHとし、そのときに超電導コイルに流れている
電流をILとし、定数をKとすると、常に、 IL=KH ……(1) なる関係が成立する。つまり、磁界の強さHは超
電導コイルに流れる電流に比例する。本発明装置
では磁界検出素子を設けているので、磁界の強さ
Hを知ることができる。したがつて、磁界の強さ
Hをフイードバツクして直流電源装置の出力電源
を制御すれば、分流要素の存在とは無関係に所望
とする磁界強さ変化パターンを得ることができ
る。本発明はこの関係を利用している。したがつ
て、本発明によれば、励減磁時に無駄時間の存在
しない状態で、超電導コイルの特性によつて決ま
る最短時間で励減磁を行わせることができる。こ
のため、永久電流モードに切換えできるようにし
たものに適用した場合には、励減磁時における冷
媒の損失を最少限度に抑えることが可能となる。
また、構成要素の一部を交換した場合であつて
も、無駄時間の存在しない励減磁を実現できる。
Effects of the Invention If the strength of the magnetic field detected by the magnetic field detection element described above is H, the current flowing through the superconducting coil at that time is I L , and the constant is K, then I L = KH ……( 1) The following relationship is established. In other words, the strength H of the magnetic field is proportional to the current flowing through the superconducting coil. Since the device of the present invention is provided with a magnetic field detection element, it is possible to know the strength H of the magnetic field. Therefore, by controlling the output power of the DC power supply by feeding back the magnetic field strength H, a desired magnetic field strength variation pattern can be obtained regardless of the presence of the shunt element. The present invention takes advantage of this relationship. Therefore, according to the present invention, excitation and demagnetization can be performed in the shortest time determined by the characteristics of the superconducting coil without any wasted time during excitation and demagnetization. Therefore, when applied to a device that can be switched to persistent current mode, it is possible to minimize loss of refrigerant during excitation and demagnetization.
Furthermore, even if some of the components are replaced, excitation and demagnetization without wasted time can be achieved.

発明の実施例 第3図は本発明の一実施例に係る超電導電磁石
装置の回路構成を示すもので、第1図と同一部分
は同一符号で示してある。したがつて、重複する
部分の説明は省略する。
Embodiment of the Invention FIG. 3 shows a circuit configuration of a superconducting electromagnet device according to an embodiment of the present invention, and the same parts as in FIG. 1 are designated by the same symbols. Therefore, the explanation of the overlapping parts will be omitted.

この実施例にあつては、低温容器1内に超電導
コイル2で発生した磁界の強さを検出するホール
素子等の磁界検出素子21を設け、この磁界検出
素子21の出力信号を低温容器1外に設けられた
増幅器22を介して直流電源装置23の制御信号
Zとして導入している。
In this embodiment, a magnetic field detection element 21 such as a Hall element for detecting the strength of the magnetic field generated by the superconducting coil 2 is provided inside the cryogenic vessel 1, and the output signal of this magnetic field detecting element 21 is transmitted outside the cryogenic vessel 1. The signal is introduced as a control signal Z to the DC power supply 23 via an amplifier 22 provided in the DC power supply 23.

直流電源装置23は、負の出力電流も送出でき
るもので、励磁開始を表わす信号Pが導入される
と、制御信号Zの増加率が超電導コイル2の特性
によつて決まる許容最大磁界増加率と等しくなる
ように出力電流I0を増加させる。この制御を制御
信号Zの大きさが予め定められた値に達するまで
行うようにしている。また、減磁開始を表わす信
号Qが導入されると、制御信号Zの減少率が超電
導コイル2の特性によつて決まる許容最大磁界減
少率と等しくなるように出力電流I0を減少させ
る。そして、この制御を制御信号Zの大きさが零
になるまで行うようにしている。
The DC power supply device 23 can also send out a negative output current, and when the signal P indicating the start of excitation is introduced, the increase rate of the control signal Z becomes the maximum permissible magnetic field increase rate determined by the characteristics of the superconducting coil 2. Increase the output current I 0 so that it is equal. This control is performed until the magnitude of the control signal Z reaches a predetermined value. Further, when a signal Q indicating the start of demagnetization is introduced, the output current I 0 is decreased so that the rate of decrease of the control signal Z becomes equal to the maximum permissible magnetic field decrease rate determined by the characteristics of the superconducting coil 2. This control is continued until the magnitude of the control signal Z becomes zero.

したがつて、この装置によると、たとえば超電
導コイル2の線材特性によつて決まる最大の磁界
増加率(減少率)が得られるように直流電源装置
23に直線的に変化する目標値を設定したとする
と、励磁時には第4図の左半分に示されるよう
に、直流電源装置23の出力電流I0、超電導コイ
ル2に流れる電流ILおよび磁界の強さHが直線的
に変化し、超電導コイル2には、このコイルの特
性によつて決定される増加率の電流ILが零から流
れることになる。同様に減磁時においても第4図
の右半分に示されるように、超電導コイル2に流
れる電流は、このコイルの特性によつて決定され
る減少率で減少することになる。このため、超電
導コイル2の特性によつて決まる許容最短時間
T0で励減磁を行うことができ、従来装置に較べ
て励減磁に要する時間を大幅に短縮させることが
できる。また、磁界の強さを検出してコイル電流
を制御するようにしているので、常にコイル電流
および磁界の強さを目標値に合わせることができ
る。
Therefore, according to this device, if a target value that changes linearly is set in the DC power supply 23 so as to obtain the maximum magnetic field increase rate (decrease rate) determined by the wire characteristics of the superconducting coil 2, for example. Then, during excitation, as shown in the left half of FIG . , a current I L flows from zero at an increasing rate determined by the characteristics of this coil. Similarly, during demagnetization, as shown in the right half of FIG. 4, the current flowing through the superconducting coil 2 decreases at a rate determined by the characteristics of this coil. For this reason, the allowable minimum time determined by the characteristics of superconducting coil 2
Excitation and demagnetization can be performed at T 0 , and the time required for excitation and demagnetization can be significantly shortened compared to conventional devices. Furthermore, since the coil current is controlled by detecting the strength of the magnetic field, the coil current and the strength of the magnetic field can always be adjusted to the target value.

なお、上述した実施例においては負の出力電流
を送出できる直流電源装置を用いているが、正の
出力電流だけ出力できるものを用いてもよい。こ
の場合には減磁時な最終段階においてコイル電流
の変化率がゆるやかになるが、それ程影響を与え
ない。また、本発明は、鉄心に巻かれた超電導コ
イルの場合や、超電導コイルを複数直列にした場
合や、永久電流スイツチの存在しない場合(但し
保護抵抗は存在している。)などにも適用できる。
In the above-described embodiment, a DC power supply device capable of outputting a negative output current is used, but a DC power supply device capable of outputting only a positive output current may be used. In this case, the rate of change of the coil current becomes gradual in the final stage of demagnetization, but it does not have much of an effect. Furthermore, the present invention can be applied to cases where a superconducting coil is wound around an iron core, where multiple superconducting coils are connected in series, where a persistent current switch is not present (however, a protective resistor is present), etc. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の超電導電磁石装置の回路構成
図、第2図は同装置の励減磁時における各部波形
を説明するための図、第3図は本発明の一実施例
に係る超電導電磁石装置の回路構成図、第4図は
同実施例装置の励減磁時における各部波形を説明
するための図である。 1……低温容器、2……超電導コイル、21…
…磁界検出素子、23……直流電源装置。
Fig. 1 is a circuit configuration diagram of a conventional superconducting electromagnet device, Fig. 2 is a diagram for explaining waveforms of various parts during excitation and demagnetization of the same device, and Fig. 3 is a superconducting electromagnet device according to an embodiment of the present invention. FIG. 4 is a diagram for explaining waveforms of various parts during excitation and demagnetization of the same embodiment device. 1... Low temperature container, 2... Superconducting coil, 21...
...Magnetic field detection element, 23...DC power supply device.

Claims (1)

【特許請求の範囲】[Claims] 1 電磁石を構成する超電導コイルと、この超電
導コイルの両端間に接続され、上記超電導コイル
の励減磁時に電流が流れる分流要素と、前記超電
導コイルで発生した磁界の強さを検出する磁界検
出素子と、前記超電導コイルの両端にその出力端
が接続され、励減磁時に前記磁界検出素子で検出
された磁界の強さの変化率を上記超電導コイルの
特性によつて決まる許容最大変化率に一致させる
べく出力電流を変化させて送出する励減磁用の直
流電源装置とを具備してなることを特徴とする超
電導磁石装置。
1 A superconducting coil constituting an electromagnet, a shunt element connected between both ends of this superconducting coil through which current flows when the superconducting coil is excited and demagnetized, and a magnetic field detection element that detects the strength of the magnetic field generated in the superconducting coil. and its output terminals are connected to both ends of the superconducting coil, and the rate of change in the strength of the magnetic field detected by the magnetic field detection element during excitation and demagnetization matches the allowable maximum rate of change determined by the characteristics of the superconducting coil. 1. A superconducting magnet device comprising: a DC power supply device for excitation/demagnetization that sends out an output current while changing the output current.
JP21535681A 1981-12-24 1981-12-24 Superconducting electromagnet device Granted JPS58111305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21535681A JPS58111305A (en) 1981-12-24 1981-12-24 Superconducting electromagnet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21535681A JPS58111305A (en) 1981-12-24 1981-12-24 Superconducting electromagnet device

Publications (2)

Publication Number Publication Date
JPS58111305A JPS58111305A (en) 1983-07-02
JPH0359565B2 true JPH0359565B2 (en) 1991-09-11

Family

ID=16670933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21535681A Granted JPS58111305A (en) 1981-12-24 1981-12-24 Superconducting electromagnet device

Country Status (1)

Country Link
JP (1) JPS58111305A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014214796A1 (en) * 2014-07-28 2016-01-28 Bruker Biospin Ag A method of charging a superconductive magnet assembly with power
CN113628828B (en) * 2021-08-23 2022-07-22 上海交通大学 High-temperature superconducting flux pump and iron core winding current waveform control method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4957791A (en) * 1972-10-03 1974-06-05

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4957791A (en) * 1972-10-03 1974-06-05

Also Published As

Publication number Publication date
JPS58111305A (en) 1983-07-02

Similar Documents

Publication Publication Date Title
CA1124320A (en) D.c. motors
JPH09180615A (en) Electromagnetic switch
JP2659363B2 (en) Superconducting magnet device with emergency demagnetization device
JPH0236504A (en) Superconducting magnet device
JPH0359565B2 (en)
US4879477A (en) Procedure and circuit arrangement for switching on an inductance subject to remanence
JPH0324047B2 (en)
JPS6331091B2 (en)
JPS5815924B2 (en) Superconducting coil excitation device
US2792564A (en) Flip-flop circuit elements for control circuits
JP3030612B2 (en) Power saving device
JPS6348406B2 (en)
JPS5822705B2 (en) Kadenriyuseigiyosouchi
JP2951459B2 (en) Power supply for superconducting magnet
JPS6159650B2 (en)
JPH0240904A (en) Method of controlling pulse magnetizing current
JP2597592B2 (en) Superconducting transformer monitoring device
JPS5949556B2 (en) How to excite a large capacity coil
JPS625000Y2 (en)
JPH0738333B2 (en) Magnetic field generator
JPS6348405B2 (en)
JP3114890B2 (en) Electric curtain drive
JPS6195502A (en) Superconducting magnet
US2589279A (en) Speed responsive plugging for electric motors
JPS6236367B2 (en)