JPH0240904A - Method of controlling pulse magnetizing current - Google Patents

Method of controlling pulse magnetizing current

Info

Publication number
JPH0240904A
JPH0240904A JP19092288A JP19092288A JPH0240904A JP H0240904 A JPH0240904 A JP H0240904A JP 19092288 A JP19092288 A JP 19092288A JP 19092288 A JP19092288 A JP 19092288A JP H0240904 A JPH0240904 A JP H0240904A
Authority
JP
Japan
Prior art keywords
current
point
coil
time
shunt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19092288A
Other languages
Japanese (ja)
Inventor
Yutaka Ueda
豊 植田
Tadao Fukuhara
福原 忠夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAIHOO KK
Original Assignee
DAIHOO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAIHOO KK filed Critical DAIHOO KK
Priority to JP19092288A priority Critical patent/JPH0240904A/en
Publication of JPH0240904A publication Critical patent/JPH0240904A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To extend the life of a yoke coil by a method wherein the three points, i.e., the starting point, the maximum value point of current and the generating point of inverse electromotive force are detected to set up specified time as the impressing time of gate pulse. CONSTITUTION:A gate pulse generation control substrate 12 detects the three points, i.e., the starting point, the maximum value point of current and the generating point of inverse electromotive force by voltage signals inputted through the intermediary of a shunt 11 and simultaneously measures respective elapsed times. Then the proper time out of the time width from the maximum value to the generating point of the inverse electromotive force is set up by a gate pulse voltage impressing time set up volume. Through these procedures, a shunt thyristor 9 is supplied with current for the set up time to supply a yoke coil 6 with cut current.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明はパルス着磁電流(以下電流と云う)の負荷の
発熱を押え、適正且つ安定し九着磁電流特(従来技術の
問題点) 従来のこの種の着磁器の出力回路は第5図に示す如きも
のであり、即ち電荷を蓄えるコンデンサー1、その電荷
を負荷のヨークコイル6に流す為のスイッチの役目をす
るサイリスター3.そのサイリスターの保護用コイル2
1回路に発生する逆起電力を順方向に還流させる還流ダ
イオード4、電流の出力端子5からなり、任意の電圧に
より菩電されたコンデンサー1の電荷をサイリスター3
のゲートにパルス電圧を印加することによりサイリスタ
ー3をターンオンさせ、電流をヨークコイルに流して磁
力を発生させる仕組である。その電流波形を第6図に示
す0本来コイルの起磁力による着磁に必要な電気エネル
ギーは概ね、第6図の電流の流れ始めtoから電流値の
ピーク経過点t+までであり(M密に云えばこの他に披
磁性体の磁壁移動に必要な最小限の時間は必要とされて
いる)これ以後の電流は主に熱に転化するロスエネルギ
−である。しかし従来の技術にあってはこの電流を制御
することが出来ず、’foからt45までの総ての電流
をヨークコイルに流すため、その温度は上昇し、この結
果がヨークコイルの劣化、焼損、断線等を招き、その寿
命を短くする最大の原因となり、且つ、この温度上昇に
よるコイルの抵抗の変化はそのまま着磁電流特性の変化
となり、これが着磁レベルの低下やバラツキとなって製
品に現われる為、空冷や水冷の強制冷却方法を用いるか
[Detailed Description of the Invention] (Industrial Application Field) This invention suppresses the heat generation of the load due to pulsed magnetizing current (hereinafter referred to as current), and produces an appropriate and stable magnetizing current characteristic (problems in the prior art). The output circuit of a conventional magnetizer of this type is as shown in FIG. 5, which includes a capacitor 1 that stores electric charge, a thyristor 3 that serves as a switch to flow the electric charge to the yoke coil 6 of the load. The thyristor's protective coil 2
Consisting of a freewheeling diode 4 that circulates the back electromotive force generated in one circuit in the forward direction, and a current output terminal 5, the charge of the capacitor 1 that is energized by an arbitrary voltage is transferred to the thyristor 3.
By applying a pulse voltage to the gate of the thyristor 3, the thyristor 3 is turned on, and current flows through the yoke coil to generate magnetic force. The current waveform is shown in Fig. 6. The electrical energy required for magnetization by the magnetomotive force of the coil is approximately from the start of current flow to in Fig. 6 to the peak passing point t+ of the current value (M densely In addition to this, a minimum amount of time is required for the magnetic domain walls of the magnetoparallelite to move.) The current after this is mainly loss energy that is converted into heat. However, with conventional technology, it is not possible to control this current, and as all the current from 'fo to t45 is passed through the yoke coil, its temperature rises, resulting in deterioration and burnout of the yoke coil. This is the biggest cause of wire breakage and shortening the life of the coil.Moreover, changes in coil resistance due to this temperature rise directly result in changes in the magnetizing current characteristics, which cause a decrease in the magnetization level and variations in the product quality. In order to avoid this problem, should we use forced cooling methods such as air cooling or water cooling?

或は通電間隔をおくか、この何れかをその対策としてい
るのが現状である。然しこれはあくまでも間接的手段で
あって根本的対策と゛は云えず、大電流をコイルに流す
ことにより発生するコイル自体の線膨張や発熱を防止す
る方法としては効果的ではなかった。加えて、最近希土
類マグネットを始め、より強力な素材が開発され形状も
ますます小型化し、よって着磁により大きな電流が必要
となり、この問題は着磁工程の大きな障害となっている
At present, the current countermeasure is to set intervals between energizations. However, this is only an indirect measure and cannot be called a fundamental measure, and was not effective as a method for preventing the linear expansion and heat generation of the coil itself caused by passing a large current through the coil. In addition, stronger materials such as rare earth magnets have recently been developed, and their shapes have become smaller and smaller, requiring larger currents for magnetization, and this problem has become a major obstacle in the magnetization process.

(実施例1)パルス着磁電流制御装置 この装置は前記不都合を解決する為になされたものであ
り、従来の着磁器の出力端子に接続して使用するもので
、その構成は下記(第1図)の通りである。
(Example 1) Pulse magnetizing current control device This device was developed to solve the above-mentioned problems, and is used by connecting to the output terminal of a conventional magnetizer. Figure).

7、入力端子(+・−) 着磁器の電流を入力する端子である。7. Input terminal (+/-) This is a terminal to input the current of the magnetizer.

8、分流サイリスター保護用コイル 分流サイリスターの持つd i / d を特性を保護
する為のコイル(L)である。
8. Shunt thyristor protection coil This is a coil (L) for protecting the di/d characteristic of the shunt thyristor.

9、分流サイリスター 設定された時間に着磁器の電流を分流するためのもので
ある。
9. Shunt thyristor This is for shunting the current of the magnetizer at a set time.

(G)ゲートである。(G) It is a gate.

10、出力端子(+・−) 制御された電流を出力する端子である。10, Output terminal (+/-) This is a terminal that outputs a controlled current.

11、分流器、又はカーレントトランス(以下分流器と
云う) 着磁器の電流より電圧信号を取り出す為のものである。
11. Current transformer or current transformer (hereinafter referred to as a current transformer) This is for extracting a voltage signal from the current of the magnetizer.

12、ゲートパルス発生制御基板 分流器11を介して入力した着磁器の電圧信号を分析測
定する一方、ゲートパルス電圧を発生し、これを設定さ
れた時間に分流サイリスター9のゲート(G)に印加す
る機能を持つ基板である。
12. Gate pulse generation control board While analyzing and measuring the voltage signal of the magnetizer input through the shunt 11, generates a gate pulse voltage and applies it to the gate (G) of the shunt thyristor 9 at a set time. This board has the function of

(in) 分流器11より着磁器の電圧信号を入力する端子である
(in) This is a terminal for inputting the voltage signal of the magnetizer from the shunt 11.

(o u t) ゲートパルス電圧を出力する端子である。(o u t) This is a terminal that outputs gate pulse voltage.

(VR) 分流サイリスターをターンオンさせる為のゲートパルス
電圧の印加時間(t+から℃2に於ける)を設定するボ
リュームである。
(VR) This is a volume for setting the application time (from t+ to ℃2) of the gate pulse voltage to turn on the shunt thyristor.

13、ゲートパルス発生制御基板の電源ゲートパルス発
生制御基板に電力を供給するものである。
13. Power supply of gate pulse generation control board This is for supplying power to the gate pulse generation control board.

以上がその構成であり、この入力端子7を着磁器の出力
端子5に接続し、出力端子10に負荷であるヨークコイ
ル6を接続する0着磁器より電流が流れるとヨークコイ
ル6に制御された電流が流れる。この装置に係る原理動
作及び、その結果を第1図、第2図にて説明する。第1
図に於いて入力端子7(+)は出力端子10(+)に直
結されている。出力端子10(−)は分流器11を経て
入力端子7(−)に接続されている。一方分流回路は、
分流サイリスター保護コイル8と分流サイリスター9を
直列に接続し、分流サイリスター9のカソード側を出力
端子10の(−)に接続し、分流サイリスター保護コイ
ル側を出力端子10の(+)に接続する0分流器11に
接続される12はゲートパルス発生制御基板であり、分
流器11を介して入力した電圧信号より電流の流れ始め
to、その最大値t+、逆起電力(キックバック)の生
ずる点j=の3点を検出し、それぞれの経過時間を測定
する。そして’f+を起点とするtxまでの時間巾のう
ち適正な時間(必要発生磁界が得られ、且つヨークコイ
ルの温度上昇の少ない時間)をゲートパルス電圧印加時
間設定ボリュームによリセットする。これにより電流は
設定された時間に分流サイリスターに流れ、結果第2図
に示す様にカットされた電流がヨークコイルに流れるこ
とになる。A(■■■)とB(■■)は異なった負荷(
ヨークコイル)で、それぞれの波形はそれぞれ異なった
時間に分流させたものである。
The above is the configuration. This input terminal 7 is connected to the output terminal 5 of the magnetizer, and the yoke coil 6, which is a load, is connected to the output terminal 10. When current flows from the magnetizer, the yoke coil 6 controls it. Current flows. The principle operation and results of this device will be explained with reference to FIGS. 1 and 2. 1st
In the figure, input terminal 7(+) is directly connected to output terminal 10(+). The output terminal 10(-) is connected to the input terminal 7(-) via a shunt 11. On the other hand, the shunt circuit is
Connect the shunt thyristor protection coil 8 and the shunt thyristor 9 in series, connect the cathode side of the shunt thyristor 9 to the (-) of the output terminal 10, and connect the shunt thyristor protection coil side to the (+) of the output terminal 10. Reference numeral 12 connected to the shunt 11 is a gate pulse generation control board, which uses the voltage signal input through the shunt 11 to determine the start of current flow to, its maximum value t+, and the point j at which back electromotive force (kickback) occurs. Detect the three points of = and measure the elapsed time at each point. Then, an appropriate time (a time during which the necessary generated magnetic field is obtained and the temperature of the yoke coil is small) out of the time range from 'f+ to tx is reset by the gate pulse voltage application time setting volume. As a result, the current flows to the shunt thyristor at the set time, and as a result, the cut current flows to the yoke coil as shown in FIG. A (■■■) and B (■■) have different loads (
yoke coil), each waveform is divided at different times.

(実施例2)パルス電流制御機能付着磁器第4図は本発
明のパルス電流制御方法を着磁器の出力回路に組入れた
パルス電流制御機能付着磁器の出力ブロック回路図であ
る。これは着磁器と本発明の原理機端が同一の筐体に納
まることの利点の他、その目的動作、効果は実施例1の
パルス着磁電流制御装置と同一である。
(Embodiment 2) Pulse current control function adhered porcelain Figure 4 is an output block circuit diagram of a pulse current control function adhered porcelain in which the pulse current control method of the present invention is incorporated into the output circuit of a magnetizer. This has the advantage that the magnetizer and the principle device of the present invention are housed in the same housing, and its purpose and effect are the same as the pulse magnetizing current control device of the first embodiment.

ルの寿命を著しく向上させるものである。又温度上昇に
よるヨークコイルの抵抗値の変化も少くなるため極めて
安定した着磁電流特性が得られ均一な着磁が可能になる
。この実用的価値は大電流を必要とする希土類マグネッ
ト用のヨークコイルや多極ヨークコイル、また細い巻線
を使用したヨークコイルに顕著な効果を発揮するもので
ある。従って、この種のヨークコイルに従来用いられて
いる水冷や空冷による面倒な冷却方法の必要はなくなり
大部分のヨークコイルがこの装置を用いることにより冷
却不要となる。また通電間隔をおくことによる作業のロ
スタイムがなくなり、作業効率の向上にもつながる。第
3図は同一ヨークコイル。
This significantly improves the lifespan of the module. Further, since the change in resistance value of the yoke coil due to temperature rise is reduced, extremely stable magnetizing current characteristics can be obtained and uniform magnetization can be achieved. This practical value has a remarkable effect on yoke coils for rare earth magnets that require large currents, multipolar yoke coils, and yoke coils that use thin windings. Therefore, there is no need for complicated cooling methods such as water cooling or air cooling conventionally used for this type of yoke coil, and most yoke coils do not require cooling by using this device. In addition, there is no time lost in work due to intervals between energization, which leads to improved work efficiency. Figure 3 shows the same yoke coil.

による温度上昇試験データ比較グラフである。This is a comparison graph of temperature rise test data.

(発明の効果) 上記のような作用によりヨークコイルに流れる不必要な
電流を分流回路に導くこによりヨークコイルの発熱を直
接押さえることができ、結果ヨークコイルの劣化、焼損
、断線を防止し、ヨークコイ
(Effects of the invention) Due to the above-mentioned action, the unnecessary current flowing through the yoke coil is guided to the shunt circuit, thereby directly suppressing the heat generation of the yoke coil.As a result, deterioration, burnout, and disconnection of the yoke coil are prevented. York carp

【図面の簡単な説明】[Brief explanation of the drawing]

(第1図) 実施例1のブロック回路図である。 (第2図) 実施例1を使用した時の出力電流波形である。分流開始
の時間を変えることにより。 tlからt2までの着磁電流を自由にコントロール出来
る。 (第3図) 実施例1を使用した時としない時の同一条件下に於ける
同一ヨークコイルの温度上昇試験データ比較グラフであ
る。 (茅4図) 実施例2(パルス電流制御機能付着磁器)の出力ブロッ
ク回路図である。 (第5図) 従来の着磁器の着磁電流出力回路図である。 (第6図) 従来の着磁器の出力電流波形である。 特許出顕人 株式会社 ダイホー 第1図(実施例1のブロック回路図) 5 ・・・・・・・・・ RI磁器の出力端子(+・−
)6 ・・・・・・・・・ 負荷(ヨークコイル)7 
・・・・・・・・・ 入力端子(+・−)8 ・・・・
・・・・・ 分流サイリスター保護コイル9 ・・・・
・・・・・ 分流サイリスター(G)・・・・・・・・
・ ゲート 10 ・・・・・・・・・ 出力端子(+・−)11 
・・・・・・・・・ 分流器 12 ・・・・・・・・・ ゲートパルス発生制v4基
板(i n)・・・・・・ 11からの電圧信号を入力
する端子(o u t)・・・ ゲートパルス電圧を出
力する端子(V R)  ・・・・・・ ゲートパルス
電圧の印加時間設定ボリューム13 ・・・・・・・・
・ ゲートパルス発生例m基盤の電源第21i!l(実
施例1による出力電流波形)■ ■ 第4IA(実施例2の出力ブロック回路図)1 ・・・
・・・・−・ コンデンサー2 ・・・・・・・・・ 
サイリスター保護コイル3 ・・・・・・・・・ サイ
リスター(G)・・・・・・・・・ ゲート ゲートパルス発生制御基板の電源 第3図(m度上昇試駿データ比較グラフ)■実施例1を
使用しない場合 第5図(従来の着磁器の出力回路図) コンデンサー サイリスター保護コイル 4° ・・・・・・・・・ すくリスター 還流ダイオード 出力端子(+・−) 負荷(着磁ヨークコイル)
(FIG. 1) It is a block circuit diagram of Example 1. (FIG. 2) This is an output current waveform when Example 1 is used. By varying the time of the start of the diversion. The magnetizing current from tl to t2 can be freely controlled. (FIG. 3) A comparison graph of temperature rise test data of the same yoke coil under the same conditions when Example 1 is used and when it is not used. (Figure 4) It is an output block circuit diagram of Example 2 (pulse current control function attached porcelain). (FIG. 5) It is a magnetizing current output circuit diagram of a conventional magnetizer. (Fig. 6) This is the output current waveform of a conventional magnetizer. Daiho Co., Ltd. Figure 1 (Block circuit diagram of Example 1) 5 ...... Output terminals of RI porcelain (+/-
)6 ...... Load (yoke coil) 7
...... Input terminal (+/-) 8 ...
... Shunt thyristor protection coil 9 ...
... Diversion thyristor (G) ...
・ Gate 10 ...... Output terminal (+/-) 11
...... Current shunt 12 ...... Gate pulse generation control v4 board (in) ...... Terminal for inputting the voltage signal from 11 (out )... Terminal that outputs gate pulse voltage (V R)... Gate pulse voltage application time setting volume 13...
・Example of gate pulse generation m-based power supply No. 21i! l (Output current waveform according to Example 1) ■ ■ 4th IA (Output block circuit diagram according to Example 2) 1...
・・・・・・-・ Capacitor 2 ・・・・・・・・・
Thyristor protection coil 3 Thyristor (G)... Gate gate pulse generation control board power supply Figure 3 (m degree rise test data comparison graph) ■Example Figure 5 (Output circuit diagram of conventional magnetizer) When 1 is not used Capacitor thyristor protection coil 4° ...... Sukuristor freewheeling diode output terminal (+/-) Load (magnetizing yoke coil)

Claims (1)

【特許請求の範囲】[Claims]  パルス着磁電流の出力回路に於いて、サイリスター及
びその保護用コイルより成る分流回路を負荷の着磁用ヨ
ークコイル(以下ヨークコイルと云う)に並列に接続し
電流の最大値(ピーク値)経過点より逆起電力(キック
バック)の生ずる点までの電流を制御して負荷に適正な
電流を流し不必要な電流(主に熱に転化する電流)を分
流回路に導くことにより負荷の発熱を押え安定した着磁
電流特性を維持する方法。
In the pulsed magnetizing current output circuit, a shunt circuit consisting of a thyristor and its protective coil is connected in parallel to the load's magnetizing yoke coil (hereinafter referred to as yoke coil), and the maximum value (peak value) of the current is measured. Heat generation in the load is reduced by controlling the current from the point to the point where back electromotive force (kickback) occurs to send an appropriate current to the load and direct unnecessary current (mainly current that converts into heat) to the shunt circuit. How to maintain stable magnetizing current characteristics of the presser foot.
JP19092288A 1988-08-01 1988-08-01 Method of controlling pulse magnetizing current Pending JPH0240904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19092288A JPH0240904A (en) 1988-08-01 1988-08-01 Method of controlling pulse magnetizing current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19092288A JPH0240904A (en) 1988-08-01 1988-08-01 Method of controlling pulse magnetizing current

Publications (1)

Publication Number Publication Date
JPH0240904A true JPH0240904A (en) 1990-02-09

Family

ID=16265929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19092288A Pending JPH0240904A (en) 1988-08-01 1988-08-01 Method of controlling pulse magnetizing current

Country Status (1)

Country Link
JP (1) JPH0240904A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5163390A (en) * 1989-11-29 1992-11-17 Yamaha Hatsudoki Kabushiki Kaisha Rocker arm arrangement for single cam multi-valve engine
US5398649A (en) * 1991-11-08 1995-03-21 Yamaha Hatsudoki Kabushiki Kaisha S.O.H.C. five valve engine
EP1106894A1 (en) 1999-12-09 2001-06-13 Honda Giken Kogyo Kabushiki Kaisha Flow passage structure for flange members with press-fitted shaft
JP2001332423A (en) * 2000-05-18 2001-11-30 Mitsubishi Electric Corp Magnetizing apparatus
US6428417B2 (en) 1999-12-24 2002-08-06 Honda Giken Kogyo Kabushiki Kaisha Flow passage structure for shaft-press-fitted flange members

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5163390A (en) * 1989-11-29 1992-11-17 Yamaha Hatsudoki Kabushiki Kaisha Rocker arm arrangement for single cam multi-valve engine
US5398649A (en) * 1991-11-08 1995-03-21 Yamaha Hatsudoki Kabushiki Kaisha S.O.H.C. five valve engine
EP1106894A1 (en) 1999-12-09 2001-06-13 Honda Giken Kogyo Kabushiki Kaisha Flow passage structure for flange members with press-fitted shaft
US6491586B1 (en) 1999-12-09 2002-12-10 Honda Giken Kogyo Kabushiki Kaisha Flow passage structure for shaft-press-fitted flange members
US6428417B2 (en) 1999-12-24 2002-08-06 Honda Giken Kogyo Kabushiki Kaisha Flow passage structure for shaft-press-fitted flange members
JP2001332423A (en) * 2000-05-18 2001-11-30 Mitsubishi Electric Corp Magnetizing apparatus

Similar Documents

Publication Publication Date Title
US6522517B1 (en) Method and apparatus for controlling the magnetization of current transformers and other magnetic bodies
GB1571562A (en) Control circuit for an inductive load
US5083001A (en) Waveform control device for electrical discharge machining apparatus
US4152637A (en) Saturable reactor limiter for current
CA2374283A1 (en) Magnetic flux detector
JPH0240904A (en) Method of controlling pulse magnetizing current
US3362900A (en) System for cathodically protecting a structure
US2866944A (en) Unidirectional voltage control network for generator systems
JPS592569A (en) Switching regulator
JPH02177306A (en) Pulse magnetizing current controller
US4347469A (en) Electronic-magnetic current isolator circuit
US4039866A (en) Thyristor control apparatus
SU1255965A1 (en) Device for checking turn-to-turn insulation of windings of electric machines
US2792564A (en) Flip-flop circuit elements for control circuits
US4063145A (en) Circuit arrangement for firing controlled, parallel-connected electric valves
JPS5925405B2 (en) semiconductor switch device
JP3328728B2 (en) Motor power detection device and overload protection device
JP2000074951A (en) Method for detecting current of switching element
SU1723620A1 (en) Device for protection of three-phase electric installations
SU1336069A1 (en) Device for transmitting signals to rotating object
JP3181568B2 (en) Power supply device for sorting conveyor equipped with switching device of electromagnetic coil type
SU486305A1 (en) Multipoint measuring device
GB919943A (en) Electrical control apparatus
RU1788530C (en) Device for control over a c electric magnet
SU1295472A1 (en) Current relay