JPH02177306A - Pulse magnetizing current controller - Google Patents

Pulse magnetizing current controller

Info

Publication number
JPH02177306A
JPH02177306A JP18269388A JP18269388A JPH02177306A JP H02177306 A JPH02177306 A JP H02177306A JP 18269388 A JP18269388 A JP 18269388A JP 18269388 A JP18269388 A JP 18269388A JP H02177306 A JPH02177306 A JP H02177306A
Authority
JP
Japan
Prior art keywords
coil
current
output terminal
thyristor
magnetizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18269388A
Other languages
Japanese (ja)
Inventor
Yutaka Ueda
豊 植田
Tadao Fukuhara
福原 忠夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAIHOO KK
Original Assignee
DAIHOO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAIHOO KK filed Critical DAIHOO KK
Priority to JP18269388A priority Critical patent/JPH02177306A/en
Publication of JPH02177306A publication Critical patent/JPH02177306A/en
Pending legal-status Critical Current

Links

Landscapes

  • Relay Circuits (AREA)

Abstract

PURPOSE:To prevent deterioration, burning, and breaking of a coil so as to lengthen the life of the coil by introducing unnecessary currents flowing to a yoke coil to a shunt circuit when letting pulse currents flow to the yoke coil for magnetization being load. CONSTITUTION:An input terminal 7 is connected to the output terminal 5 of a magnetizer, and a yoke coil 6 is connected to an output terminal 10 being load, and when the currents of the magnetizer flow, controlled currents are let flow to the coil 6. In this constitution, a + input terminal 7 connects directly with at + output terminal 10, and a - output terminal 10 connects with a - input terminal 7 through a shunt 11. On the other hand, a dividing circuit is constituted by serial connection of a dividing thyristor protective coil 8 and a dividing thyristor 9, and the cathode side of the thyristor 9 is connected to the -output terminal 10, while the protective side is connected to the + output terminal 10. When currents begin to flow by the voltage signal of the magnetizer which is input through the shunt 11 to which a gate pulse generating control board 12 is connected, the points, where the maximum value and counter-electromotive fourth occur, are detected and respective lapse times are measured, and the time when the temperature rise of the coil is the smallest is set to pulses.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明はパルス電流(以下電流と云う)にょる着磁器
の電流をtllf#L、て負荷である着磁用ヨークコイ
ル(以下ヨークコイルと云う)の発熱を押さえ、適正且
つ安定した着磁電流特性を維持する装(従来技術の問題
点〕 従来のこの種の着磁器の出力回路は第4図に示す如きも
のであり、il!荷を゛蓄えるコンデンサー1゜その電
荷を負荷のヨークコイル6に流す為のスイッチの役目を
するサイリスター3.そのサイリスターの保護用コイル
21回路に発生する逆起電力を順方向に還流させる還流
ダイオード4、電流を出力する出力端子5.からなり、
任意の電圧により蓄電されたコンデンサー1の電荷をサ
イリスター3のゲートにパルス電圧を印加することによ
りサイリスター3をターンオンさせ電流をヨークコイル
に流して磁力を発生させる仕組である。その電流波形を
第5図に示す1本来コイルの起磁力による着磁に必要な
電気エネルギーは概ね第5図の電流の流れ始めtoから
電流値のピーク経過点t1までであり(厳密に云えばこ
の他に被磁性体の磁壁移動に必要な最小限の時間は必要
とされている)これ以後の電流は主に熱に転化するロス
エネルギ−である、しかし従来の技術にあってはこの電
流を制御することが出来ず、toからt3までの総ての
電流をヨークコイルに流すためその温度は上昇し、この
結果がヨークコイルの劣化、焼損、断線等を招き、その
寿命を短くする最大の原因となり。
[Detailed Description of the Invention] (Industrial Application Field) This invention applies a pulse current (hereinafter referred to as current) to a magnetizer current tllf#L to a magnetizing yoke coil (hereinafter referred to as yoke coil) which is a load. The output circuit of a conventional magnetizer of this type is as shown in Fig. 4, and the output circuit of the conventional magnetizer is as shown in Fig. 4. 1. Thyristor 3. A thyristor 3. A thyristor 3. A thyristor 3. A thyristor 3. A reflux diode 4. A reflux diode 4. A reflux diode 4. Consisting of an output terminal 5 that outputs current,
By applying a pulse voltage to the gate of the thyristor 3, the thyristor 3 is turned on, and a current is caused to flow through the yoke coil, thereby generating magnetic force. The current waveform is shown in Fig. 5.1 The electrical energy required for magnetization by the magnetomotive force of the coil is approximately from the start of current flow to to the peak passing point t1 of the current value in Fig. 5 (strictly speaking, In addition to this, a minimum amount of time is required for the domain wall movement of the magnetic material.The current after this is mainly loss energy that is converted into heat, but in the conventional technology, this current Since all the current from to to t3 is passed through the yoke coil, its temperature rises, and this results in deterioration, burnout, disconnection, etc. of the yoke coil, and shortens its lifespan. It causes.

且つこの温度上昇によるコイルの抵抗の変化はそのまま
着磁電流特性の変化となり、これが着磁レベルの低下や
バラツキとなって製品に呪われる為、空冷や水冷の強制
冷却方法を用いるか、或は通電間隔をおくか、この何れ
かをその対策としているのが現状である。然しこれはあ
くまでも間接的手段であって根本的対策とは云えず、大
電流をコイルに流すことにより発生するコイル自体の線
膨張や発熱を防止する方法としては効果的ではなかった
。加えて最近希土類マグネットを始め、より強力な素材
が開発され形状もますます小型化し、よって着磁により
大きな電流が必要となり、この問題は着磁工程の大きな
障害となっている。
In addition, changes in coil resistance due to this temperature rise directly result in changes in the magnetizing current characteristics, which can lead to a drop in magnetization level and variations, which can be detrimental to the product, so forced cooling methods such as air cooling or water cooling must be used, or At present, the current countermeasures are to set intervals between energizations or to do one of the following. However, this is only an indirect measure and cannot be called a fundamental measure, and was not effective as a method for preventing the linear expansion and heat generation of the coil itself caused by passing a large current through the coil. In addition, stronger materials such as rare earth magnets have recently been developed, and their shapes have become smaller and smaller, requiring larger currents for magnetization, and this problem has become a major obstacle in the magnetization process.

(実施例)パルス着磁電流制御装置 この装置は前記不都合を解決する為になされたものであ
り、その楕成は下記(第1図)の通りである。
(Embodiment) Pulse magnetizing current control device This device was made to solve the above-mentioned disadvantages, and its structure is as shown below (FIG. 1).

7、入力端子(+・−′) 着磁器の電流を入力する端子である。7. Input terminal (+/-') This is a terminal to input the current of the magnetizer.

8、分流サイリスター保護用コイル 分流サイリスターのdi/dt特性を 保護するコイル(L)である。8. Shunt thyristor protection coil Di/dt characteristics of shunt thyristor This is the protective coil (L).

9、分流サイリスター 設定された時間に着磁器の電流を分流するためのもので
ある。
9. Shunt thyristor This is for shunting the current of the magnetizer at a set time.

(G)ゲートである。(G) It is a gate.

10、出力端子(+・−) 制御された電流を出力する端子である。10, Output terminal (+/-) This is a terminal that outputs a controlled current.

11、分流器、又はカーレントトランス(以下分流器と
云う) 着磁器の電流より電圧信号を取り出す為のものである。
11. Current transformer or current transformer (hereinafter referred to as a current transformer) This is for extracting a voltage signal from the current of the magnetizer.

12、ゲートパルス発生制御基板 分流器11を介して入力した着磁器の電圧信号を分析測
定する一方、ゲートパルス電圧を発生し、これを設定さ
れた時間に分流サイリスター9のゲートCG)に印加す
るI!能を持つ基板である。
12. Gate pulse generation control board While analyzing and measuring the magnetizer voltage signal input through the shunt 11, generates a gate pulse voltage and applies it to the gate CG of the shunt thyristor 9 at a set time. I! It is a board with functions.

(in) 分流器11より着磁器の電圧信号を入力する端子である
(in) This is a terminal for inputting the voltage signal of the magnetizer from the shunt 11.

(out) ゲートパルス電圧を出力する端子である。(out) This is a terminal that outputs gate pulse voltage.

(VR) 分流サイリスターをターンオンさせる為のゲートパルス
電圧の印加時間(tlからt2に於ける)を設定するボ
リュームである。
(VR) This is a volume for setting the application time (from tl to t2) of the gate pulse voltage for turning on the shunt thyristor.

13、ゲートパルス発生制御基板のf!!源ゲートパル
ス発生制御基板に電力を供給するものである。
13. f! of gate pulse generation control board! ! This supplies power to the source gate pulse generation control board.

以上がその構成であり、この入力端子7を着磁器の出力
端子5に接続し5出力端子10に負荷であるヨークコイ
ル6を接続する0着磁器の電流が流れるとヨークコイル
6に制御された電流が流れる。
The above is the configuration. This input terminal 7 is connected to the output terminal 5 of the magnetizer, and the yoke coil 6, which is a load, is connected to the 5 output terminal 10. When the current of the magnetizer flows, it is controlled by the yoke coil 6. Current flows.

この装置に係る原理動作及び、その結果を第1図、第2
図にて説明する。第1図に於いて本装置の入力端子7(
+)は出力端子10(+)に直結されている。出力端子
10(−)は分流器11を経て入力端子7(−)に接続
されている。一方分流回路は分流サイリスター保護コイ
ル8と分流サイリスター9を直列に接続し、分流サイリ
スター9のカソード側をを出力端子1oの(−)に接続
し。
The principle operation of this device and its results are shown in Figures 1 and 2.
This will be explained with a diagram. In Fig. 1, input terminal 7 (
+) is directly connected to the output terminal 10(+). The output terminal 10(-) is connected to the input terminal 7(-) via a shunt 11. On the other hand, the shunt circuit connects a shunt thyristor protection coil 8 and a shunt thyristor 9 in series, and connects the cathode side of the shunt thyristor 9 to the (-) output terminal 1o.

分流サイリスター保護コイル側を出力端子lOの(+)
に接続する0分流器11に接続される12はゲートパル
ス発生制御#基板であり1分流器11を介して入力した
着磁器の電圧信号より電流の流れ始めto、その最大値
tr、逆起電力(キックパック)の生する点t3の3点
を検出し、それぞれの経過時間を測定する。そしてtl
を起点とするt2までの時間巾のうち適正な時間(必要
発生磁界が得られ且つヨークコイルの温度上昇の少ない
時間)をゲートパルス電圧印加時間設定ボリュー4によ
りセットする。これにより着磁器からの電流は設定され
た時間に分流サイリスターに流れ。
Shunt thyristor protection coil side (+) of output terminal IO
12 connected to the current shunt 11 connected to the current shunt 11 is a gate pulse generation control board. 1 The voltage signal of the magnetizer inputted through the current shunt 11 determines the current flow start to, its maximum value tr, and the back electromotive force. The three points t3 where the (kick puck) is generated are detected, and the elapsed time at each point is measured. and tl
An appropriate time (a time in which the required generated magnetic field is obtained and the temperature of the yoke coil does not rise much) is set using the gate pulse voltage application time setting knob 4 in the time range from t2 to t2. This causes the current from the magnetizer to flow to the shunt thyristor at the set time.

結果第2図に示す様にカットされた電流がヨークコイル
に流れることになる。
As a result, the cut current flows through the yoke coil as shown in FIG.

A(■■■)B(■■)は異なフた負荷(ヨークコイル
)で、それぞれの波形はそれぞれ異なった時間に分流さ
せたものである。
A (■■■) and B (■■) are different lid loads (yoke coils), and their respective waveforms are obtained by dividing the current at different times.

(発明の効果) 上記のような作用によりヨークコイルに流れる不必要な
電流を分流回路に導くこによりヨークコイルの発熱を直
接押さえることができ、結果ヨークコイルの劣化、焼損
、断線を防止し、ヨークコイルの寿命を著しく向上させ
るものである。又温度上昇によるヨークコイルの抵抗値
の変化も少くなるため極めて安定した着磁電流特性が得
ら九、均一な着磁が可能になる。この実用的iutは大
電流を必要とする希土類マグネット用のヨークコイルや
多極ヨークコイル、また細い巻線を使用したヨークコイ
ルに顕著な効果を発揮するものである。
(Effects of the invention) Due to the above-mentioned action, the unnecessary current flowing through the yoke coil is guided to the shunt circuit, thereby directly suppressing the heat generation of the yoke coil.As a result, deterioration, burnout, and disconnection of the yoke coil are prevented. This significantly improves the life of the yoke coil. Further, since the change in resistance value of the yoke coil due to temperature rise is reduced, extremely stable magnetizing current characteristics can be obtained, and uniform magnetization can be achieved. This practical IUT exhibits a remarkable effect on yoke coils for rare earth magnets that require large currents, multipolar yoke coils, and yoke coils that use thin windings.

従って、この種のヨークに従来用いられている水冷や空
冷による面倒な冷却装置の必要はなくなり大部分のヨー
クコイルが本装置を用いることにより冷却不要となる。
Therefore, there is no need for a complicated cooling device such as water cooling or air cooling conventionally used for this type of yoke, and most yoke coils do not require cooling by using this device.

又、通電間隔をおくことによる作業のロスタイムがなく
なり作業効率の向上にもつながる。第3図は同一条件下
に於ける同一ヨークコイルによる温度上昇比較試験デー
タのグラフである。
Furthermore, there is no lost time in work due to intervals between energizations, leading to improved work efficiency. FIG. 3 is a graph of temperature rise comparison test data using the same yoke coil under the same conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

(第1@) 本装置のブロック回#F図である。 (第2図) 本装置を使用した時の電流の出力波形である0分流開始
の時間を変えることによりtlからt2までの電流を自
由にコントロール出来る。 (第3図) 本装置を使用した時と、しない時の同一条件下に於ける
同一ヨークコイルの温度上昇比較試験データのグラフで
ある。 (第4図) 従来の着磁器の[流出力ryJ路図である。 (第5図) 84図の電流波形である。 第1図(本装置のブロック回路図)
(First @) It is a block #F diagram of the present device. (Fig. 2) When using this device, the current from tl to t2 can be freely controlled by changing the time at which the 0 minute flow starts, which is the output waveform of the current. (FIG. 3) This is a graph of temperature rise comparison test data of the same yoke coil under the same conditions when this device is used and when it is not used. (FIG. 4) This is an outflow output ryJ path diagram of a conventional magnetizer. (Fig. 5) This is the current waveform of Fig. 84. Figure 1 (Block circuit diagram of this device)

Claims (1)

【特許請求の範囲】[Claims] 従来のパルス電流による着磁器の出力回路に接続し、パ
ルス電流の最大値(ピーク値)経過点より逆起電力(キ
ックバック)の生する点までの電流を制御しサイリスタ
ー及び、その保護用コイルより成る分流回路に適宜に分
流することにより、負荷である着磁用ヨークコイルの発
熱を押え、適正且つ安定した着磁電流特性を維持する装
置。
Connected to the output circuit of a conventional magnetizer using pulsed current, it controls the current from the maximum value (peak value) of the pulsed current to the point where back electromotive force (kickback) is generated. A device that suppresses the heat generation of the magnetizing yoke coil, which is the load, and maintains appropriate and stable magnetizing current characteristics by appropriately dividing the current into a current dividing circuit consisting of the following:
JP18269388A 1988-07-21 1988-07-21 Pulse magnetizing current controller Pending JPH02177306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18269388A JPH02177306A (en) 1988-07-21 1988-07-21 Pulse magnetizing current controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18269388A JPH02177306A (en) 1988-07-21 1988-07-21 Pulse magnetizing current controller

Publications (1)

Publication Number Publication Date
JPH02177306A true JPH02177306A (en) 1990-07-10

Family

ID=16122783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18269388A Pending JPH02177306A (en) 1988-07-21 1988-07-21 Pulse magnetizing current controller

Country Status (1)

Country Link
JP (1) JPH02177306A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001332423A (en) * 2000-05-18 2001-11-30 Mitsubishi Electric Corp Magnetizing apparatus
JP2008084371A (en) * 2006-09-26 2008-04-10 Nanayama Michishi Magnetic data erasing device
JP2009004022A (en) * 2007-06-21 2009-01-08 Nanayama Michishi Magnetic data erasing device
JP2009004067A (en) * 2008-01-28 2009-01-08 Nanayama Michishi Magnetic data erasing device
JP2019033225A (en) * 2017-08-09 2019-02-28 テンソー電磁技術工業株式会社 High current power supply for magnetization

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4911021A (en) * 1972-05-26 1974-01-31

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4911021A (en) * 1972-05-26 1974-01-31

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001332423A (en) * 2000-05-18 2001-11-30 Mitsubishi Electric Corp Magnetizing apparatus
JP2008084371A (en) * 2006-09-26 2008-04-10 Nanayama Michishi Magnetic data erasing device
JP2009004022A (en) * 2007-06-21 2009-01-08 Nanayama Michishi Magnetic data erasing device
JP2009004067A (en) * 2008-01-28 2009-01-08 Nanayama Michishi Magnetic data erasing device
JP2019033225A (en) * 2017-08-09 2019-02-28 テンソー電磁技術工業株式会社 High current power supply for magnetization

Similar Documents

Publication Publication Date Title
US5715150A (en) Inverter output circuit
US4453073A (en) High frequency welding apparatus
US5083001A (en) Waveform control device for electrical discharge machining apparatus
KR850008636A (en) Pulse generator for metal discharge machining
JPH02177306A (en) Pulse magnetizing current controller
US3089965A (en) Shunt control circuit for controlling waveform
Nguyen et al. Gate drive for high speed, high power IGBTs
US4122382A (en) Load-responsive treater controller
JPH0240904A (en) Method of controlling pulse magnetizing current
JP2008070156A (en) Method for measuring current dependance of inductance and electric circuit thereof
JPS592569A (en) Switching regulator
JP2000288836A (en) Power supply device for electric discharge machine
Hickman et al. Evaluation of MOSFETs and IGBTs for pulsed power applications
Heffernan et al. Trapezoidal current generator for an electromagnetic groundwater flowmeter
Obara et al. Development of twin-type resistorless power supply for electrical discharge machining
RU39235U1 (en) DOUBLE-VOLTAGE VOLTAGE CONVERTER
US4066956A (en) Semiconductor switch device having means for supplying control current to a control electrode
Praeg A pulsed and flattopped 24 kG· m beam switching magnet system
Kaiser et al. A Novel Test Setup for Arbitrary PWM Converter Excitations of Nonlinear Inductors
RU1788530C (en) Device for control over a c electric magnet
Balenovich et al. Thyristor High-Frequency Ratings by Concurrent Testing and Computer Simu1ation
Acarnley et al. Machine/drive circuit interactions in small variable-reluctance stepping and brushless DC motor systems
JPS6261391B2 (en)
JPH0767648B2 (en) Electric discharge machine
SU486305A1 (en) Multipoint measuring device