JPS5815924B2 - Superconducting coil excitation device - Google Patents
Superconducting coil excitation deviceInfo
- Publication number
- JPS5815924B2 JPS5815924B2 JP14607779A JP14607779A JPS5815924B2 JP S5815924 B2 JPS5815924 B2 JP S5815924B2 JP 14607779 A JP14607779 A JP 14607779A JP 14607779 A JP14607779 A JP 14607779A JP S5815924 B2 JPS5815924 B2 JP S5815924B2
- Authority
- JP
- Japan
- Prior art keywords
- superconducting coil
- current switch
- power supply
- persistent current
- excitation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F6/00—Superconducting magnets; Superconducting coils
- H01F6/005—Methods and means for increasing the stored energy in superconductive coils by increments (flux pumps)
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Containers, Films, And Cooling For Superconductive Devices (AREA)
- Superconductive Dynamoelectric Machines (AREA)
Description
【発明の詳細な説明】
本発明は超電導コイルを励磁する超電導コイル励磁装置
に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a superconducting coil excitation device for exciting a superconducting coil.
極低温容器内の超電導コイルを励磁する方法として、直
流電源からリード線を極低温容器に導いて大電流で励磁
する方法と、フラックスポンプ装置を用いて励磁する方
法とがある。There are two methods for exciting a superconducting coil in a cryogenic container: a method in which lead wires are led from a DC power supply to the cryogenic container and excited with a large current, and a method in which a flux pump device is used to excite the superconducting coil.
しかし、直流電源を用いて励磁する方法は、リード線が
常温である約300°Kから4.2°にである極低温容
器内に導かれるので大量の熱侵入があり、又、リード線
にはジュール熱が発生するが電流の2乗に比例してくる
ので相当の熱量が極低温容器内に侵入することになる。However, in the method of excitation using a DC power supply, the lead wire is guided into a cryogenic container at a temperature of 4.2° from the room temperature of approximately 300°K, so a large amount of heat enters the lead wire. Joule heat is generated, but it is proportional to the square of the current, so a considerable amount of heat will enter the cryogenic container.
従って、超電導コイルを励磁する時間は早いが、極低温
容器内に相当の熱量が侵入するので冷却効率との観点か
ら問題がある。Therefore, although the time to excite the superconducting coil is quick, a considerable amount of heat enters the cryogenic container, which poses a problem in terms of cooling efficiency.
フラックスポンプ装置を用いて超電導コイルを励磁する
方法は、直流電源を用いる方法に比べ外部からの電流の
流入が少いのでリード線が細くて済み、外部からの熱侵
入も少(なり、ジュール熱の発生も少いが、超電導コイ
ルを励磁するのに長時間を要する失点がある。The method of exciting a superconducting coil using a flux pump device requires less current to flow in from the outside than the method using a DC power supply, so the lead wires can be thinner, and there is also less heat intrusion from the outside (and less Joule heat). However, there is a disadvantage that it takes a long time to excite the superconducting coil.
本発明の目的は、上記の欠点を除去し、超電導コイルの
励磁を短時間で行い、しかも超電導コイルの励磁の微調
整ができ、極低温容器内への熱侵入の少い超電導コイル
励磁装置を提供することにある。An object of the present invention is to provide a superconducting coil excitation device that eliminates the above-mentioned drawbacks, excite a superconducting coil in a short time, allows fine adjustment of the excitation of the superconducting coil, and minimizes heat intrusion into the cryogenic container. It is about providing.
本発明は、フラックスポンプ装置の超電導コイルに直流
電源用永久電流スイッチと電流反転検知回路とを直列に
接続した直列回路を並列に接続し、前記直列回路に並列
に直流電源を接続して前記超電導コイルを励磁するよう
にしたものである。In the present invention, a series circuit in which a persistent current switch for a DC power source and a current reversal detection circuit are connected in series is connected in parallel to a superconducting coil of a flux pump device, and a DC power source is connected in parallel to the series circuit. It is designed to excite a coil.
以下、本発明の代表的実施例を図面を用いて説明する。Hereinafter, typical embodiments of the present invention will be described using the drawings.
本発明に係る超電導コイル励磁装置1は、第1図に示す
ように、変圧器2の2次巻線3の両端にそれぞれの永久
電流スイッチ4.5及びそれぞれの電流反転検知回路6
.7を直列に接続して、一端が2次巻線3の中性点に接
続される超電導コイル8の他端につながれ、電圧波形制
御回路9が変圧器201次巻線10に接続された整流型
フラックスポンプ装置11において、直流電源用永久電
流スイッチ12と電流反転検知回路13とで直列回路1
4を形成して超電導コイル8に並列に接続し、前記直列
回路に並列に直流電源を接続して超電導コイル8に電流
を供給できるようになっている。As shown in FIG. 1, a superconducting coil excitation device 1 according to the present invention includes persistent current switches 4.5 and current reversal detection circuits 6 at both ends of a secondary winding 3 of a transformer 2.
.. 7 are connected in series, one end is connected to the neutral point of the secondary winding 3, the other end is connected to the superconducting coil 8, and the voltage waveform control circuit 9 is connected to the transformer 20 primary winding 10. In the type flux pump device 11, a series circuit 1 is formed by a persistent current switch 12 for DC power supply and a current reversal detection circuit 13.
4 is formed and connected in parallel to the superconducting coil 8, and a DC power source is connected in parallel to the series circuit to supply current to the superconducting coil 8.
次に動作について説明する。Next, the operation will be explained.
永久電流スイッチ4.5、直流電源用永久電流スイッチ
12をオフ状態とする。The persistent current switch 4.5 and the persistent current switch 12 for DC power supply are turned off.
直流電源15から超電導コイル8に電流を流して急速励
磁を行う。A current is passed through the superconducting coil 8 from the DC power supply 15 to perform rapid excitation.
許容電流まで励磁した後、直流電源用永久電流スイッチ
12をオン状態とし、超電導コイル8と直列回路14と
の永久電流としてから直流電源15を切り離すと、電流
は方向16に流れる。After being excited to the permissible current, the persistent current switch 12 for the DC power source is turned on to create a persistent current between the superconducting coil 8 and the series circuit 14, and then the DC power source 15 is disconnected, and the current flows in the direction 16.
次に整流型フラックスポンプ装置11の永久電流スイッ
チ4をオン状態にし、直流電源用永久電流スイッチ12
に流れる電流を相殺できる電流の方向になるように変圧
器201次側に微少電圧を印加する。Next, the persistent current switch 4 of the rectifying flux pump device 11 is turned on, and the persistent current switch 12 for DC power supply is turned on.
A small voltage is applied to the primary side of the transformer 20 so that the current direction can cancel out the current flowing in the transformer 20.
変圧器2の2次巻線3のインダクタンスが小さぐかつ、
永久電流スイッチ4及び直流電源用永久電流スイッチ1
2がオン状態であるため1次巻線の微少電圧によっても
永久電流スイッチ4及び直流電源用永久電流スイッチ1
2には方向17に大きな電流が流れる。The inductance of the secondary winding 3 of the transformer 2 is small and
Persistent current switch 4 and persistent current switch 1 for DC power supply
Since persistent current switch 2 is in the on state, persistent current switch 4 and persistent current switch 1 for DC power supply are activated even by a minute voltage of the primary winding.
2, a large current flows in direction 17.
これにより、直流電源用永久電流スイッチ12に流れる
電流が零となり、この状態を電流反転検知回路13が検
知すると、直流電源用永久電流スイッチ12をオフ状態
にし、この検知信号を電圧波形制御回路9に送る。As a result, the current flowing through the DC power persistent current switch 12 becomes zero, and when the current reversal detection circuit 13 detects this state, the DC power persistent current switch 12 is turned off, and this detection signal is sent to the voltage waveform control circuit 9. send to
この動作により、直流電源15から供給された超電導コ
イル8の充電電流は、永久電流スイッチ4側の閉回路に
移る。By this operation, the charging current of the superconducting coil 8 supplied from the DC power supply 15 is transferred to the closed circuit on the persistent current switch 4 side.
以後、通常の整流型フラックスポンプ装置11の動作を
行わせることにより超電導コイル8の励磁の微調整を行
うことができる。Thereafter, the excitation of the superconducting coil 8 can be finely adjusted by operating the rectifying flux pump device 11 normally.
同、電圧波形制御回路9はプログラムされた波形を出力
するように構成されている。Similarly, the voltage waveform control circuit 9 is configured to output a programmed waveform.
以上の実施例では整流型フラックスポンプ装置の場合に
ついて説明したが、回転磁界型フラックスポンプ装置等
フラックスポンプ装置であればどのような形式のもので
あってもよい。In the above embodiments, the case of a rectifying type flux pump device has been described, but any type of flux pump device such as a rotating magnetic field type flux pump device may be used.
以上の説明で明らかなように本発明に係る超電導コイル
励磁装置を用いれば、所定の値の近傍まで直流電源を用
いて超電導コイルを急速励磁し、その後はフラックスポ
ンプ装置を用いて超電導コイルの励磁を行うことができ
るので、超電導コイルの励磁時間の短縮となり、しかも
励磁の微調整ができ、しかも、一度所定の値まで超電導
コイルを励磁した後はフラックスポンプ装置を用いるの
で、極低温容器内への熱浸入量が減るので冷却効率が向
上するなど種々の優れた効果を奏する。As is clear from the above explanation, if the superconducting coil excitation device according to the present invention is used, the superconducting coil can be rapidly excited using a DC power supply until a predetermined value is reached, and then the superconducting coil is excited using a flux pump device. As a result, the excitation time of the superconducting coil can be shortened, and the excitation can be finely adjusted.Furthermore, once the superconducting coil has been excited to a predetermined value, a flux pump device is used, so that the superconducting coil cannot be moved into the cryogenic container. Since the amount of heat infiltration is reduced, cooling efficiency is improved, and various other excellent effects can be achieved.
第1図は本発明に係る超電導コイル励磁装置の代表的実
施例を示す回路図である。
1…超電導コイル励磁装置、4.5…永久電流スイツチ
、6.7.13…電流反転検知回路、8…超電導コイル
、11…整流型フランクスポンプ装置、12…直流電源
用永久電流スイツチ、14…直列回路、15…直流電源
。FIG. 1 is a circuit diagram showing a typical embodiment of a superconducting coil exciting device according to the present invention. DESCRIPTION OF SYMBOLS 1... Superconducting coil excitation device, 4.5... Persistent current switch, 6.7.13... Current reversal detection circuit, 8... Superconducting coil, 11... Rectifying Franks pump device, 12... Persistent current switch for DC power supply, 14... Series circuit, 15...DC power supply.
Claims (1)
で励磁するフラックスポンプ装置を有スるものにおいて
、直流電源用永久電流スイッチ及びこの直流電源用永久
電流スイッチの制御を行う電流反転検知回路で直列回路
を構成し、前記超電導コイルに前記直列回路を並列に接
続し、前記直列回路に並列に直流電源を接続して前記超
電導コイルを励磁するごとく構成してなることを特徴と
する超電導コイル励磁装置。1. In a device that has a flux pump device that excites a superconducting coil with an excitation circuit via a persistent current switch, a series circuit with a persistent current switch for a DC power supply and a current reversal detection circuit that controls the persistent current switch for a DC power supply. A superconducting coil excitation device, characterized in that the superconducting coil is configured such that the series circuit is connected in parallel to the superconducting coil, and a DC power source is connected in parallel to the series circuit to excite the superconducting coil.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14607779A JPS5815924B2 (en) | 1979-11-13 | 1979-11-13 | Superconducting coil excitation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14607779A JPS5815924B2 (en) | 1979-11-13 | 1979-11-13 | Superconducting coil excitation device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5669810A JPS5669810A (en) | 1981-06-11 |
JPS5815924B2 true JPS5815924B2 (en) | 1983-03-28 |
Family
ID=15399580
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14607779A Expired JPS5815924B2 (en) | 1979-11-13 | 1979-11-13 | Superconducting coil excitation device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5815924B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10206229C1 (en) * | 2002-02-15 | 2003-10-02 | Karlsruhe Forschzent | Transport current transformer, flow pump and method for operating it |
-
1979
- 1979-11-13 JP JP14607779A patent/JPS5815924B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5669810A (en) | 1981-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH09180615A (en) | Electromagnetic switch | |
US3600656A (en) | Starting means for a single-phase asynchronous motor | |
JPS5815924B2 (en) | Superconducting coil excitation device | |
US4879477A (en) | Procedure and circuit arrangement for switching on an inductance subject to remanence | |
US3242413A (en) | Magnetic circuit employing a saturable reactor and saturable transformer for firing a silicon controlled rectifier | |
SE8005720L (en) | CIRCUIT FOR GENERATING AN ISOLATED OUTPUT PROPORTIONAL TO THE CURRENT THROUGH A LOAD | |
JP3030612B2 (en) | Power saving device | |
US2820190A (en) | Electromagnetic rectifier | |
JPH0359565B2 (en) | ||
JPS6039037A (en) | Demagnetizer | |
US3138753A (en) | Magnetic amplifier with shunt reset circuit | |
US2710356A (en) | Device for limiting the primary current when bringing a transformer into circuit | |
JP2951459B2 (en) | Power supply for superconducting magnet | |
SU1290570A1 (en) | Induction heating installation | |
JPH11225432A (en) | Transformer rush current reduction method | |
JPS5949556B2 (en) | How to excite a large capacity coil | |
SU150852A1 (en) | Device for controlling electrical interlocking arrows | |
SU853620A1 (en) | Device for regulating alternating current | |
JP2000267746A (en) | Voltage adjusting device | |
JP3151164B2 (en) | Power saving device | |
JPH0219933Y2 (en) | ||
JPH04336402A (en) | Power source for exciting electromagnet | |
JPS6159650B2 (en) | ||
US3118089A (en) | Phase-sensitive device | |
SU93260A2 (en) | Device to control the position of the arrows |