JPS58111304A - Superconducting electromagnet device - Google Patents

Superconducting electromagnet device

Info

Publication number
JPS58111304A
JPS58111304A JP21535581A JP21535581A JPS58111304A JP S58111304 A JPS58111304 A JP S58111304A JP 21535581 A JP21535581 A JP 21535581A JP 21535581 A JP21535581 A JP 21535581A JP S58111304 A JPS58111304 A JP S58111304A
Authority
JP
Japan
Prior art keywords
current
demagnetization
excitation
output
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21535581A
Other languages
Japanese (ja)
Other versions
JPH0324047B2 (en
Inventor
Takehiko Iwahana
岩花 武彦
Kaoru Nemoto
薫 根本
Ryuji Kurose
黒瀬 龍二
Susumu Mitsune
進 三根
Masaharu Matsuda
正治 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPANESE NATIONAL RAILWAYS<JNR>
Toshiba Corp
Japan National Railways
Nippon Kokuyu Tetsudo
Original Assignee
JAPANESE NATIONAL RAILWAYS<JNR>
Toshiba Corp
Japan National Railways
Nippon Kokuyu Tetsudo
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPANESE NATIONAL RAILWAYS<JNR>, Toshiba Corp, Japan National Railways, Nippon Kokuyu Tetsudo, Tokyo Shibaura Electric Co Ltd filed Critical JAPANESE NATIONAL RAILWAYS<JNR>
Priority to JP21535581A priority Critical patent/JPS58111304A/en
Publication of JPS58111304A publication Critical patent/JPS58111304A/en
Publication of JPH0324047B2 publication Critical patent/JPH0324047B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/006Supplying energising or de-energising current; Flux pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To shorten the time required for excitation and demagnetization, by detecting the current flowing through a shunt element in excitation or demagnetization, and supplying an output current corrected by the detected current value. CONSTITUTION:Both ends of a superconducting coil 2 housed in a cryostatic container 1 are connected to both ends of a variable-output DC power unit 21. A permanent current switch 5 and a protective resistor 6 are connected across the coil 2. In excitation or demagnetization, the unit 21 calculates the current flowing through a shunt element constituted by the resistor 6 and a resistor 13 of the switch 5 from the output voltage V and the output current Io and delivers an output current corrected by the calculated current value.

Description

【発明の詳細な説明】 発明の技術分野 本発明は、電磁石を構成する超電導コイルの両端間に励
減磁時に分流要素となり得るものが設けられている超電
導電磁石装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a superconducting electromagnet device in which a superconducting coil constituting an electromagnet is provided with a component that can serve as a current shunt element at the time of excitation and demagnetization between both ends of the superconducting coil.

発明の技術的背景 近年、静止機器は勿論の仁と回転機器に至る象で超電導
電磁石装置が用いられている、超電導電磁石装置は、周
知のように、内部が極低温に保たれた低温容器と、この
低温容器内に収容された超電導コイルと、この超電導コ
イルを励磁する直流電源装置とを主体にして構成されて
いる6そして、永久電流モ・−ドに切換えて運転できる
ようにしたものにあっては、低温容器内にあって前記超
電導コイルの両端を選択的に短絡する永久電流スイッチ
を設けたものとなっている。また、一般的には、超電導
コイルと低温容器外に位置する直流電源装置とを接続す
る一対のリード線間に保護抵抗を接続するようにしてい
る。
Technical Background of the Invention In recent years, superconducting electromagnet devices have been used in not only stationary equipment but also rotating equipment. , which is mainly composed of a superconducting coil housed in this low-temperature container and a DC power supply that excites this superconducting coil6, and which can be operated by switching to persistent current mode. In some cases, a persistent current switch is provided in the low temperature container and selectively shorts both ends of the superconducting coil. Further, generally, a protective resistor is connected between a pair of lead wires that connect the superconducting coil and a DC power supply located outside the low temperature container.

第1図は、永久電流モードに切換えできるようにした超
電導電磁石装置の一例を示すもので、低温容器1内に収
容された超電導コイル1の両端をリード線ja 、Mk
を介して出力可変の直流電源装置4の出力端に接続する
とともに低温容器1内に上記超電導コイル2の両端を選
択的に短絡する熱式の永久電流スイッチ5を設け、さら
にリード線!1m、31a間に保護抵抗Cを設けている
。上記永久電流スイッチ5は、超電導線で構成されたス
イッチ本体11と、このスイッチ本体11を外部から入
力を得て選択的に加熱して常電導モード(オフ)および
超電導モード(オン)に切換えるヒータ12とから構成
されている。なお、図中13は常電導モードにおける等
価抵抗を示している。
FIG. 1 shows an example of a superconducting electromagnet device that can be switched to persistent current mode.
A thermal persistent current switch 5 is connected to the output end of the variable output DC power supply device 4 through a lead wire, and a thermal persistent current switch 5 is provided in the low temperature container 1 to selectively short-circuit both ends of the superconducting coil 2. A protective resistor C is provided between 1m and 31a. The persistent current switch 5 includes a switch body 11 made of superconducting wire, and a heater that selectively heats the switch body 11 by receiving input from the outside and switches it between a normal conduction mode (off) and a superconductivity mode (on). It consists of 12. Note that 13 in the figure indicates the equivalent resistance in the normal conduction mode.

しかして、上記のように構成された装置は、次のように
して、永久電流モードへの切換え(励磁)および永久電
流モードの解消(減磁)を行なうようにしている。すな
わち、励磁時には、ヒータ11に通電して永久電流スイ
ッチ5のスイッチ本体11をオフさせておき、この状態
で[ffi電源装置4の出力電流を予め定められた電流
増加率で直線的に増加させ、所定値に設定する。次に、
ヒータ1−への通電を停止することによって永久電流ス
イッチ5のスイッチ本体11をオン状態に切換える。続
いて、直流電源装置4の出力電流を低下させ零とする。
Therefore, the device configured as described above switches to the persistent current mode (excitation) and cancels the persistent current mode (demagnetization) in the following manner. That is, during excitation, the heater 11 is energized and the switch body 11 of the persistent current switch 5 is turned off. , set to a predetermined value. next,
By stopping the power supply to the heater 1-, the switch body 11 of the persistent current switch 5 is turned on. Subsequently, the output current of the DC power supply device 4 is lowered to zero.

このような制御によって、超電導コイル2と永久電流ス
イッチ5のスイッチ本体11とからなる閉回路に永久電
流が流れる、いわめる永久電流モードに切換えるように
している。また、減磁時には、まず、直流電源装置4の
出力電流を超電導コイル2に流れている永久電流と等し
い値まで増加させ、続いてヒータ12に通電して永久電
流スイッチ5のスイッチ本体11をオフに切換える。こ
の状態で直流電S装置4の出力電流を予め定められた電
流減少率で減少させ、最終的に零にする。そして、次に
ヒータ12への通電を停止して減磁制御を終了するよう
にしている。
Through such control, a switch is made to the so-called persistent current mode in which a persistent current flows in a closed circuit consisting of the superconducting coil 2 and the switch body 11 of the persistent current switch 5. In addition, during demagnetization, the output current of the DC power supply device 4 is first increased to a value equal to the persistent current flowing through the superconducting coil 2, and then the heater 12 is energized to turn off the switch body 11 of the persistent current switch 5. Switch to In this state, the output current of the DC power S device 4 is decreased at a predetermined current reduction rate, and finally becomes zero. Then, the power supply to the heater 12 is stopped to complete the demagnetization control.

背景技術の問題点 上述の制御によって、確かに永久電流モードへの切換え
および永久電流モードの解消を行なうことができる。し
かし、従来装置にあって&ま、励減磁時に直流電源装置
の出力電流を、励磁時には零から、減磁時には永久電流
値からそれぞれ連続的に定められた電流増加率(減少率
)で変化させるように制御しているので、励磁に要する
時間および減磁に要する時間が必然的に長くなると云ろ
問題があった。すなわち、励磁時に、たとえば第2図中
左半分に実線!0 で示すように直流電源装置4の出力
電流を増加させた場合、この出力電流が時点t1  に
おいて設定値に達しても超電導コイル2に実際に流れて
いる電流は、自己のインダクタンスと保護抵抗6および
永久電流スイッチ5の常電導モードに伴なう抵抗、つま
り分流要素との存在によって第2図中破−IL で示す
ようになり、超電導コイル2に流れる1流が設定値と一
致する時点t、は時点1.  より相轟遅れる。このた
め、励磁に長時間を要するばかりか、それだけの期間、
永久電流スイッチ5のヒータ12に通電する必要がMの
で冷媒の損失も多いと云う問題があった。
Problems with the Background Art The above-described control certainly makes it possible to switch to persistent current mode and eliminate persistent current mode. However, in conventional devices, the output current of the DC power supply during excitation and demagnetization is continuously changed from zero at the time of excitation and from the persistent current value at the time of demagnetization at a determined current increase rate (decrease rate). Therefore, there is a problem in that the time required for excitation and the time required for demagnetization are inevitably increased. That is, during excitation, for example, the solid line in the left half of Figure 2! When the output current of the DC power supply 4 is increased as shown by 0, even if this output current reaches the set value at time t1, the current actually flowing through the superconducting coil 2 depends on its own inductance and the protective resistor 6. Due to the presence of the resistance associated with the normal conduction mode of the persistent current switch 5, that is, the presence of the shunt element, the current flowing through the superconducting coil 2 becomes equal to the set value, as shown in FIG. , is time point 1. It's even more delayed. For this reason, not only does excitation take a long time, but also
Since it is necessary to energize the heater 12 of the persistent current switch 5, there is a problem in that there is a large loss of refrigerant.

このことは、励磁時に限らず、第2図中左半分に示すよ
うに減磁時においても全く同じことが云えた。励減磁時
において、超電導コイル2に流れる電流の増加率(減少
率)は、そのコイルの特性によって゛抑えられる。した
がって、従来装置は、上記特性によって決まる増加率(
減少率)で直流電源装置4の出力電流を零(設定値)か
ら変化させているので上述した不具合を免れ得ない欠点
があった。なお、第2図中Hは超電導コイル1で発生し
た磁界の強さを示していも発明の目的 本発明は、□このような事情に鑑みてなされたもので、
その目的とするところは、励減磁に要する時間の短縮化
を図れる超電導電磁石装置を提供することにある。
This was true not only during excitation but also during demagnetization as shown in the left half of FIG. During excitation and demagnetization, the rate of increase (rate of decrease) of the current flowing through the superconducting coil 2 is suppressed by the characteristics of the coil. Therefore, the conventional device has an increase rate (
Since the output current of the DC power supply device 4 is changed from zero (set value) at a decreasing rate), the above-mentioned problems cannot be avoided. Note that although H in FIG. 2 indicates the strength of the magnetic field generated in the superconducting coil 1, the present invention has been made in view of the above circumstances.
The purpose is to provide a superconducting electromagnet device that can shorten the time required for excitation and demagnetization.

発明の概要 本発明に係る超電導電磁石装置は、直流電源装置として
、励減磁時に、その出力端電圧と分流要素の抵抗値とか
ら上記分流要素に流れる電流を検出し、この検出電流値
分だけ修正した出力電流を送出する構成のものを用いた
ことを特徴としている。
Summary of the Invention The superconducting electromagnet device according to the present invention, as a DC power supply device, detects the current flowing through the shunt element from the output terminal voltage and the resistance value of the shunt element during excitation and demagnetization, and only the detected current value. It is characterized by using a configuration that sends out a modified output current.

発明の効果 上記構成の直流電源装置を用いているので、励減磁時に
超電導コイルに、このコイルの特性によって決まる′増
加率(減少率)の電流を確実に流すことができ、結局、
超電導コイルの特性によって決まる許容最短時間で励減
磁を行なうことができる。したがって、従来装置に較べ
て励減磁に要する時間の短縮化ならびに永久電流モード
に切換えできるものにあっては励磁1紗冷媒損失を減少
させることができる。
Effects of the Invention Since the DC power supply device with the above configuration is used, a current with an increase rate (decrease rate) determined by the characteristics of this coil can be reliably passed through the superconducting coil during excitation and demagnetization, and as a result,
Excitation and demagnetization can be performed in the shortest allowable time determined by the characteristics of the superconducting coil. Therefore, compared to conventional devices, the time required for excitation and demagnetization can be shortened, and if the device can be switched to persistent current mode, the refrigerant loss per excitation can be reduced.

発明の実施例 第3図は本発明の一実施例に係る超電導電磁石装置の回
路構成を示すもので、第1図と同一部分は同一符号で示
しである。したがって、重複する部分の説明は省略する
Embodiment of the Invention FIG. 3 shows a circuit configuration of a superconducting electromagnet device according to an embodiment of the present invention, and the same parts as in FIG. 1 are designated by the same reference numerals. Therefore, the explanation of the overlapping parts will be omitted.

この実施例にあって、従来装置と異なる点は、直流電源
装置21の構成にある。すなわち、直流電源装置21は
負の出力電流も出力できるもン のであり、励減磁時に出力端電圧Vと、Vヤント22に
よって出力゛1流!。とを検出し、このV、!、を導入
して次のように出力電流■、を制御している。今、保護
抵抗6の抵抗値をRK とし、永久電流スイツ′チ5の
抵抗1sめ抵抗値をipとし、RxとRP  との並列
抵抗値を8とし、また、超電導コイル2の特性から□決
まるコイル電流”IL  の時□間関数をIL=K(t
lとし、コイル電流の一般定値を1M としたとき゛、
励磁開始を表わす制御信号Pが与えられると、 = IL+ V/R−−−−一−(11但し、!乙の最
大値は1M なる゛関係で増加する出力電流!。を送出し、また、減
磁開始を表わす制御信号Qが与えられ゛ると、 = (IM −LL) −V/ B   −−−−−(
21但し、ILの最大値はIM なる関係で減少する出力域tlx*  を送出するよう
に構成されている。すなわち、上記(11、tK1式に
おいて、■は励減磁時に保護抵抗lおよび抵抵抗である
から、v/itは上記並列合成抵抗、つまり分流要素に
流れる電流となる。本発明装置にあっては、予めRを求
めておき、この8を使ってV/Rを算出し、励磁時には
v/Rが加算された出力域ft、!、を送出させ、また
、減磁時にはV/Rを減算した出力電流■。を送出させ
るようにしているのである。したがって励磁時における
直流電源装置21の出力電流は第4図の左半分に!。で
示すようになり、また、このとき超電導コイル2に流れ
る電流は同図のrLで示すようになり、さ−らに超電導
コイル2に発生した磁界の強さは同図のHで示すように
なり、超電導コイル2にはこのコイルの特性によって選
択された増加率の電流が零から流れることになる。また
、減磁時にも第4図の右半分に示すように超電導コイル
2に流れる電流はこのコイルの特性によって選択された
減少率で減少することになる。したがって、超電導コイ
ル2の特性によって決まる許容最短時間T、で励減磁を
行なうことができるので、励減磁に要する時間の短縮化
ならびに励滅細−こおける冷媒損失の減少化を図ること
ができる。また、励磁時には、直流電源装置21の出力
電流が最大値に違した時点で超電導コイル2に流れる電
流が設定値に達しているので、上記直流電源装置21の
出力電流が最大値に達した時点でヒータ12の通電を停
止させることによって、目標通りの永久電流および目標
通りの磁界を発生させることができる。
This embodiment differs from the conventional device in the configuration of the DC power supply device 21. That is, the DC power supply device 21 can also output a negative output current, and when excitation and demagnetization are performed, the output terminal voltage V and the V-yant 22 produce an output of 1 current! . Detects this V,! , the output current ■ is controlled as follows. Now, the resistance value of the protective resistor 6 is RK, the resistance value of the first resistor of the persistent current switch 5 is ip, the parallel resistance value of Rx and RP is 8, and it is determined from the characteristics of the superconducting coil 2. The time function of the coil current “IL” is expressed as IL=K(t
When the general value of the coil current is 1M,
When the control signal P indicating the start of excitation is given, the output current increases as follows: When the control signal Q indicating the start of demagnetization is given, = (IM -LL) -V/B -------(
21 However, the maximum value of IL is configured to transmit an output range tlx* that decreases in the relationship IM. That is, in the above equation (11, tK1), since (■) is the protective resistance l and the resistance resistance during excitation and demagnetization, v/it is the current flowing through the parallel combined resistance, that is, the shunt element.In the device of the present invention, calculates R in advance, calculates V/R using this 8, sends out the output range ft,!, with v/R added when magnetizing, and subtracts V/R when demagnetizing. Therefore, the output current of the DC power supply 21 during excitation is as shown in the left half of Fig. 4, and at this time, the output current of the DC power supply 21 is The flowing current is shown by rL in the figure, and the strength of the magnetic field generated in the superconducting coil 2 is shown by H in the figure. In addition, during demagnetization, the current flowing through the superconducting coil 2 decreases at a rate selected depending on the characteristics of this coil, as shown in the right half of Figure 4. Therefore, excitation and demagnetization can be performed in the minimum allowable time T determined by the characteristics of the superconducting coil 2, which reduces the time required for excitation and demagnetization and reduces the refrigerant loss during excitation and demagnetization. In addition, during excitation, the current flowing through the superconducting coil 2 reaches the set value at the time when the output current of the DC power supply 21 reaches the maximum value, so the output current of the DC power supply 21 reaches the maximum value. By stopping the energization of the heater 12 when the value is reached, it is possible to generate the desired persistent current and the desired magnetic field.

なお、上述した実施例では直流電流装置として員の出力
電流を送出できるようにしたものを用いているが正の出
力電流だけ送出できるものでもよい。この場合には、減
磁時の最終段階において超電導コイルに流れる電流の変
化率がゆるやかなものになるが、それ程影響を与えない
In the above-mentioned embodiments, a DC current device that can send out the output current of the member is used, but it may be possible to send out only the positive output current. In this case, the rate of change in the current flowing through the superconducting coil at the final stage of demagnetization becomes gradual, but it does not have much of an effect.

また、本発明は、保護抵抗だけが存在し、永久電流スイ
ッチの存在しないものにも適用できることは勿論である
。また、制御信号および検出g身、をデジタル化して使
用するようにしてもよい。
Furthermore, it goes without saying that the present invention can also be applied to a device in which only a protective resistor is present and no persistent current switch is present. Further, the control signal and the detection body may be digitized and used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の超電導電磁石装置の回路構成図、第2図
は同装置の励減磁時における各部波形例を説明するため
の図、第3図は本発明の一実施例に係る超電導電磁石装
置の回路構成図、第4図は同実施例の励減磁時における
各部の波形を説明するための図である。 l・・・低温容器、2・・・超電導コイル、511@I
I永久電流スイツチ、d・・・保護抵抗、21・・・直
流電源装置。 出願人代理人  弁理士 鈴 江 武 彦第1図 92図 第3図 第4図
Fig. 1 is a circuit configuration diagram of a conventional superconducting electromagnet device, Fig. 2 is a diagram for explaining waveform examples of various parts during excitation and demagnetization of the same device, and Fig. 3 is a superconducting electromagnet according to an embodiment of the present invention. FIG. 4, a circuit diagram of the apparatus, is a diagram for explaining waveforms of various parts during excitation and demagnetization of the same embodiment. l...Low temperature container, 2...Superconducting coil, 511@I
I persistent current switch, d...protective resistor, 21...DC power supply device. Applicant's Representative Patent Attorney Takehiko Suzue Figure 1, Figure 92, Figure 3, Figure 4

Claims (1)

【特許請求の範囲】[Claims] 電磁石を構成する超電導コイルの両端に励減磁用の出力
可変の直流電源装置を接続するとともに分流要素を接続
してなる超電導電磁石装置において、前記直流電源装置
は、励減磁時に、出力端電圧と前記分流要素の抵抗値と
から上記分流要素に流れる電流を検出し、この検出電流
値分だけ修正した出力電流を送出するように構成されて
なることを特徴とする超電導電磁石装置。
In a superconducting electromagnet device in which a variable output DC power supply device for excitation and demagnetization is connected to both ends of a superconducting coil constituting an electromagnet, and a shunt element is connected, the DC power supply device adjusts the output terminal voltage at the time of excitation and demagnetization. A superconducting electromagnet device characterized in that it is configured to detect a current flowing through the shunt element from the resistance value of the shunt element and to send out an output current corrected by the detected current value.
JP21535581A 1981-12-24 1981-12-24 Superconducting electromagnet device Granted JPS58111304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21535581A JPS58111304A (en) 1981-12-24 1981-12-24 Superconducting electromagnet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21535581A JPS58111304A (en) 1981-12-24 1981-12-24 Superconducting electromagnet device

Publications (2)

Publication Number Publication Date
JPS58111304A true JPS58111304A (en) 1983-07-02
JPH0324047B2 JPH0324047B2 (en) 1991-04-02

Family

ID=16670918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21535581A Granted JPS58111304A (en) 1981-12-24 1981-12-24 Superconducting electromagnet device

Country Status (1)

Country Link
JP (1) JPS58111304A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864412A (en) * 1993-02-03 1996-03-08 Furukawa Electric Co Ltd:The Magnetization/demagnetization method of superconductive coil which rapidly attain specified magnetic field attenuation degree

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5673410A (en) * 1979-11-21 1981-06-18 Toshiba Corp Apparatus for exciting superconductive magnet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5673410A (en) * 1979-11-21 1981-06-18 Toshiba Corp Apparatus for exciting superconductive magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864412A (en) * 1993-02-03 1996-03-08 Furukawa Electric Co Ltd:The Magnetization/demagnetization method of superconductive coil which rapidly attain specified magnetic field attenuation degree

Also Published As

Publication number Publication date
JPH0324047B2 (en) 1991-04-02

Similar Documents

Publication Publication Date Title
JPH02190068A (en) Electronic calling signal generator
US4114010A (en) Test circuit and method for matching an induction load to a solid state power supply
JPS58111304A (en) Superconducting electromagnet device
JPH0630579A (en) Current detecting circuit
JPH0359565B2 (en)
JPS61191273A (en) Power source for nuclear fusion reactor
JP2704571B2 (en) AC switchgear
JP2597592B2 (en) Superconducting transformer monitoring device
JP4647752B2 (en) Voltage control method and apparatus
JPH07222450A (en) Dc link parallel resonance-type inverter
JPH065647B2 (en) Superconducting coil monitor
JP3557144B2 (en) AC voltage controller
JP3171747B2 (en) Automatic frequency control circuit of high frequency inverter for induction heating
JP3094733B2 (en) Ironing equipment
JP2001112166A (en) Current limiter
CA1118043A (en) Push-pull inverter including starter circuit
JPS58121613A (en) Superconducting electromagnet device
JPH03145021A (en) Power source switching device
JPH0973324A (en) Cycle control method for alternating-current electric power
JPH11312612A (en) Voltage adjusting device
JPH03295868A (en) Method for controlling output of power source for electrically bonding ceramics
JPH0246176A (en) Output voltage detecting circuit for inverter device
JPH0234050B2 (en) JIFUNTANSHOYONOTEIDENRYUJIKADENGENSOCHI
JPH05144636A (en) Demagnetizing method for superconducting magnet
JPS6018179B2 (en) Rectifier flux pump device