JPS58110327A - Supporting device of power unit - Google Patents

Supporting device of power unit

Info

Publication number
JPS58110327A
JPS58110327A JP21472481A JP21472481A JPS58110327A JP S58110327 A JPS58110327 A JP S58110327A JP 21472481 A JP21472481 A JP 21472481A JP 21472481 A JP21472481 A JP 21472481A JP S58110327 A JPS58110327 A JP S58110327A
Authority
JP
Japan
Prior art keywords
fluid
power unit
chambers
vibration
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21472481A
Other languages
Japanese (ja)
Other versions
JPS6341322B2 (en
Inventor
Toshihiko Kakimoto
寿彦 柿本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP21472481A priority Critical patent/JPS58110327A/en
Publication of JPS58110327A publication Critical patent/JPS58110327A/en
Publication of JPS6341322B2 publication Critical patent/JPS6341322B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • F16F13/18Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper characterised by the location or the shape of the equilibration chamber, e.g. the equilibration chamber, surrounding the plastics spring or being annular

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Abstract

PURPOSE:To obtain a damping effect without an increase of a fitting space by arranging the directions generating volume changes in two fluid chambers in a supporting device in the static load direction and the roll direction of a power unit so as to communicate to one or more auxiliary chambers through orifices. CONSTITUTION:Against a shake of a low frequency and large amplitude in the static load direction, a fluid is flowed from main fluid chambers 8', 8' through main orifices 3', 3' into auxiliary chambers 9, 9, generating a damping force to suppress the vibration. Against a vibration of a low frequency and large amplitude in the roll direction, the fluid is flowed from sub-fluid chambers 8'', 8'' through orifices 3'', 3'' into the auxiliary chambers 9, 9, generating a damping force to suppress the vibration. In this case, individual elastic bodies 2', 2', 2'', 2'', main orifices 3', 3', sub-orifices 3'', 3'' are set respectively so that sufficient vibration proofing and vibration suppression effect can be available against vertical and roll direction vibrations of the power unit 1.

Description

【発明の詳細な説明】 この発明は、パワーユニットと車体との間に配置し、パ
ワーユニット側から車体側に伝達される振動を抑制する
ようにしたパワーユニットの支持装置に関し、とりわけ
、該支持装置内に流体が密封されオリフィスを介して連
通された流体室と副次室を有し、前記支持装置の比較的
低周波域の振動時に前記流体が前記流体室又は副次室の
一方から前記オリフィスを通って他方に流動し、そのと
きのオリフィス効果により前記撮動を抑制するようにし
たパワーユニットの支持装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a power unit support device disposed between a power unit and a vehicle body to suppress vibrations transmitted from the power unit side to the vehicle body side. A fluid chamber and a subchamber are sealed and communicated through an orifice, and the fluid passes through the orifice from either the fluid chamber or the subchamber when the support device vibrates in a relatively low frequency range. The present invention relates to a support device for a power unit in which the power unit flows to the other side, and the above-mentioned photographing is suppressed by an orifice effect at that time.

従来の流体を用いたパワーユニットの支持装置としては
、例えば第1図に示すようなものがある。
As a conventional power unit support device using fluid, there is one shown in FIG. 1, for example.

支持装置f151 、 (151はパワーユニット(1
)の両側に配tサレパワーユニット(1)側のプラタン
) (1,21、(1,2)と車体側メンバー(4)か
らのブラケット(12)、(12iとに両端でボルト(
1,1,a) 、(lla)、ナツト(]、1b) 、
(1,1,b)で固定しである。+51 、 (51と
(61、(61は互いに独立した枠体で、これら枠体間
に弾性部材(2) 、 (2+を固着し、該弾性部材+
2) 、 (2+内部には流体室!81 、 (81を
設は流体が充満しである。流体は該流体室+81 、 
C81と仕切板o3)。
Support device f151, (151 is a power unit (1
) on both sides of the power unit (1) side platen) (1, 21, (1, 2) and the bracket (12), (12i) from the vehicle body side member (4).
1,1,a), (lla), Natsuto (], 1b),
It is fixed at (1, 1, b). +51, (51 and (61, (61 are mutually independent frames, and elastic members (2) and (2+) are fixed between these frames, and the elastic members +
2), (2+ Inside is a fluid chamber! 81, (81 is installed is filled with fluid.The fluid is in the fluid chamber +81,
C81 and partition plate o3).

(13)を介して隔成した副次室t91 、 (91に
、前記仕切板++3)、 (131に設けたオリフィス
(31、+31を通して流動可能である。パワーユニッ
ト(1)が静荷重方向(図中のZ方向)に低周波で大振
幅のシェイク現象が生じた場合には、弾性体+21 、
 +2iが圧縮され、流体室f81 、 (81に体積
変化が生じ流体はオリフィス(31、(3)を通って副
次室+9) + +9)に流れ、そのときのオリフィス
による減衰力が制振効果をもたらす。尚、副次室(9)
 、 +9,1の上には、ダイヤフラムj7) 、 (
71を介して隔、成した空気室11Ql 、 QO)が
あり、副次室(9) 、 (91内の流体が増加した際
の体積補償を行なう。又、前記支持装置f151 、 
(151は弾性体+2+ 、 (2+の剛性を低くし、
エンジンから発生する高周波の微振動に対しては、流体
の出入りは、はとんどなく、前記弾性体(2)。
Flow is possible through the orifices (31, +31 provided in the sub-chambers t91, (91 and the partition plate ++3) and (131), which are separated through the sub-chambers t91, (13). If a shake phenomenon of low frequency and large amplitude occurs in the middle Z direction), the elastic body +21,
+2i is compressed, and the fluid chamber f81 (volume change occurs in 81 and the fluid flows through the orifice (31, (3) to the subchamber +9) + +9), and the damping force by the orifice at that time has a damping effect. bring about. Furthermore, the sub-room (9)
, above +9,1 is the diaphragm j7) , (
There are air chambers 11Ql, QO) separated through 71, which performs volume compensation when the fluid in the subchambers (9), (91) increases.
(151 is an elastic body +2+, (lower the rigidity of 2+,
In response to high-frequency micro-vibrations generated by the engine, there is little movement of fluid into and out of the elastic body (2).

(2)で防振している。Vibration is prevented by (2).

しかしながら、このような従来の流体を用いたパワーユ
ニットの支持装置にあっては、1つの流体室と、前記流
体室とオリフィスを通じて流体が流動可能な副次室のみ
しかない構造となっていた為、低周波で大振幅の振動に
対する減衰力は1方向、つまり静荷重方向のみしか得る
ことができず、ロール方向の低周波で大振幅では、流体
室f81 、 (810体積変化が生じず流体がオリフ
ィス(3) 、 (31を通って、副次室(9) 、 
(9+に流動しないので減衰力は得ることができなかっ
た。このため、ロール方向の低周波で大振幅の振動を減
衰させようとすると、ロール方向にも同じ支持装置f1
51 、 (+5)を配置するか、第2図に示すように
、小型のショックアブソーバ(16)を用いる方法が考
えられるが、前者の方法では、取付作業性の面で不利で
、またショックアブソーバを使用した場合には、さらに
、取付スペースが増加し、スティック状態が発生して、
こもり音が室内に直接的に伝わるという問題点がある。
However, such a conventional support device for a power unit using fluid has a structure that includes only one fluid chamber and a subchamber through which fluid can flow through the fluid chamber and an orifice. The damping force for low frequency and large amplitude vibrations can only be obtained in one direction, that is, in the static load direction.At low frequency and large amplitude vibrations in the roll direction, the fluid chamber f81 (810) does not change in volume and the fluid flows through the orifice. (3), (through 31, sub-chamber (9),
(Since it does not flow in the direction of 9+, damping force could not be obtained. Therefore, when trying to damp the low frequency and large amplitude vibration in the roll direction, the same support device f1 in the roll direction
51, (+5), or use a small shock absorber (16) as shown in Figure 2, but the former method is disadvantageous in terms of installation workability, and the shock absorber In addition, the installation space increases and a stick condition occurs when using
There is a problem in that the muffled sound is directly transmitted into the room.

この発明は、このような従来の問題点に着目して成され
たもので、車体又はパワーユニットに各々取り付けられ
る2つの枠体に固着され、かつ、流体が充満された2つ
の流体室を備える弾性体に、該流体室とオリフィスを介
して連通する1つ以上の副次室を備えた防振体を、前記
2つの流体室の体積変化をさせる方向の、一方はパワー
ユニットの略静荷重方向に、他方は略ロール方向に配置
する二とにより、上記問題点を解決することを目的とし
ている。
The present invention has been made by focusing on the problems of the conventional technology. A vibration isolator provided with one or more sub-chambers communicating with the fluid chamber via an orifice is attached to the body in a direction that changes the volume of the two fluid chambers, one in a substantially static load direction of the power unit. , and the other is arranged substantially in the roll direction, thereby aiming to solve the above-mentioned problems.

以下、この発明を図面に基づいて説明する。第3図は、
この発明の一実施例を示す図である。
The present invention will be explained below based on the drawings. Figure 3 shows
FIG. 1 is a diagram showing an embodiment of the present invention.

先ず、構成を説明すると、支持装置tt4 、 ft!
Klはパワーユニット(1)の両側尾配置され、パワー
ユニット(11叫のブラケットIJ2)、 (+21と
車体イIIIメンバー(4)とに両端でボルト(lla
) +(lla)、ナツト(]、1b)、 (llb)
で固定しである。(5)、(6)は互いに独立した枠体
で、これら枠体(51、(6)間に弾性体<2’+ 、
 +25 、 (2’f 、 (2rを固着し、該弾性
体+2i 、 +2’+ 、 +2)’ 、 +2Y内
部には、それぞれメイン流体室+si 、 (8S、サ
ブ流体室ts7 、 (新を設は流体が充満しである。
First, to explain the configuration, the support devices tt4, ft!
Kl is located at both ends of the power unit (1), and bolts (lla
) + (lla), Natsuto (], 1b), (llb)
It is fixed. (5) and (6) are mutually independent frames, and between these frames (51, (6) there is an elastic body <2'+,
+25, (2'f, (2r) is fixed, and inside the elastic body +2i, +2'+, +2)', +2Y, main fluid chamber +si, (8S, sub fluid chamber ts7, (newly installed) It is full of fluid.

流体はこれらの流体室(8)、 +8i 。The fluid is in these fluid chambers (8), +8i.

(8了、(8γより前記各流体室の(81、+811 
(8γ、(8γの体積変化により仕切板(131、(1
31内に設けたメインオリフィスt3’+ 、 +31
、サブオリフィス(3γ、(3↑をそれぞれ通って副次
室I9) 、 (91へ流動可能である。尚、副次室(
9) 、 +9)の上にはダイヤフラム(7)、(7)
が有り、前記副次室1,9) 、 (910体積増加を
補償する空気室QO) 、 QO)が設けである。また
、本実施例では弾性体<2f 、 +2i 。
(8 completed, (8γ) of each fluid chamber (81, +811
(8γ, (Due to the volume change of 8γ, the partition plate (131, (1
Main orifice t3'+ provided in 31, +31
, through the sub-orifices (3γ, (3↑), respectively, to the sub-chambers I9) and (91.
Above 9) and +9) are diaphragms (7) and (7).
The sub-chambers 1, 9) and (910 air chambers QO) and QO) are provided to compensate for the volume increase. Further, in this example, the elastic body <2f, +2i.

(21′、(2Yの圧縮方向でこれらの流体室(8’l
 、 (s+ 、 (si′。
(21', (2Y compression direction) these fluid chambers (8'l
, (s+, (si′.

(8rの体積変化を生じさせているが、剪断方向で使用
してもよい。
(Although a volume change of 8r is caused, it may also be used in the shear direction.

次に作用を説明する。パワーユニット(1)の静荷重方
向(図中のZ方向)の高周波微振動が、弾性体(2’)
 、 +2’+ 、 (2’i 、 <2’+’に入力
する場合、弾性体t2’+ 、 +2iは圧縮変形する
が流体の流動は、はとんどなく、弾性体(2’+ 、 
<2fの拡径により体積変化を補償して該弾性体(2’
l 、 (2iにより防振し、前記弾性体(2’(+ 
(2ffの変形により、サブ流体室(8γ、(蛸は体積
変化を伴わず、弾性体(a 、 (21’の剪断方向の
変形により防振する。次に静荷重方向の低周波で大振幅
のシェイクに対しては、メイン流体室i81 、 (8
1からメインオリフィスtm 、 (aiを通って副次
室(9) l (91に流体が流れて減衰力を発生させ
て制振する。ロール方向(図中のφ方向)の振動も同様
に、高周波の微振動が弾性体(i)、 +2i 、 (
2T 、 (2了に入力する場合は、前記静荷重方向の
高周波微振動時と前記弾性部材t21 、(21+(2
T、(21′の作用が互いに逆になることにより防振で
きる。次に低周波で大振幅の振動に対しては、すプ流体
室(81、+81からサブオリフィス(31、(31を
通って副次室(9) 、 (9)に流体が流れて減衰力
を発生させて制振する。その時、各弾性体(2(、(2
’l 、 (2’+’ 、 (第やメインオリフィス(
3)、(3)、サブオリフィスf3)、(3)は各々、
パワーユニット(1)の上下及びロール方向の振動に充
分な防振、制振効果が得られるよう設定する。第4図は
第3図のパワーユニット(1)を横から見たもので、I
(−Rがロール軸、A−Aは前記ロール軸に垂直な面、
H−Bは鉛直面を示している。一方の弾性部材(2′l
 、 (2fは鉛直方向(図中B−B)に配宣し、エン
ジンから発生する高周波微振動によるこもり音が伝わら
ないように低剛性とし、メインオリフィス(31、(3
1による減衰力特性は、パワーユニット(1)の上下共
振時のシェイクのピークを制するように、共振周波数付
近に設定し、他方の弾性部材ti’+ 、 (2fはロ
ール振動入力方向に合わせて配置し、第4図のA−Aの
ようにロール軸と垂直になるよう傾けるとよい。同時に
前記弾性部材+2f 、 (i’+は、アイドリング振
動を防振する為に低剛性化し、サブオリフィス(3′f
 、 (3f’の減衰力特性は、P Rの場合は、パワ
ーユニット(1)のロール共振時のピーク、又、FFで
は、トルク入力によるパワートレーン系(ドライブシャ
フト、フライホイール、クラッチディスク、タイヤ等)
の共振のピークを制するよう設定するとよい。又、前記
弾性体(25、+2) 、 (2Y 、 <ifをA−
A面又はB−B面と略平行な同一面内に配置しても、該
同一面内での静荷重方向とロール方向の振動に対する減
衰力特性を設定するだけで、適度な減衰効果が得られる
Next, the effect will be explained. High-frequency microvibrations in the static load direction (Z direction in the figure) of the power unit (1) cause the elastic body (2') to
, +2'+ , (2'i , <2'+', the elastic body t2'+ , +2i is compressively deformed, but the fluid flow is almost constant, and the elastic body (2'+ ,
The elastic body (2'
l, (2i to provide vibration isolation, and the elastic body (2'(+
(Due to the deformation of 2ff, the sub-fluid chamber (8γ, (octopus is not accompanied by a volume change, and is damped by the deformation of the elastic body (a, (21') in the shear direction. Next, a large amplitude is generated at a low frequency in the static load direction For shake of main fluid chamber i81, (8
Fluid flows from the main orifice tm (91) through the main orifice (ai) to the subchamber (9) l (91) to generate a damping force and suppress vibrations.Similarly, vibrations in the roll direction (φ direction in the figure) are High-frequency minute vibrations occur in the elastic body (i), +2i, (
2T, (When inputting 2, the high frequency micro vibration in the static load direction and the elastic member t21, (21+(2
Vibration can be prevented by reversing the actions of T, (21').Next, for low-frequency and large-amplitude vibrations, the sub-orifice (31, (31) is The fluid flows into the subchambers (9) and (9) to generate a damping force and suppress vibrations.At that time, each elastic body (2(, (2)
'l, (2'+', (first or main orifice (
3), (3), sub-orifice f3), (3), respectively,
Settings are made so that sufficient vibration isolation and damping effects can be obtained against vibrations in the vertical and roll directions of the power unit (1). Figure 4 shows the power unit (1) in Figure 3 viewed from the side.
(-R is the roll axis, A-A is the plane perpendicular to the roll axis,
H-B indicates a vertical plane. One elastic member (2'l
, (2f is distributed in the vertical direction (B-B in the figure), has low rigidity to prevent the muffled sound caused by high-frequency micro vibrations generated from the engine from being transmitted, and has a main orifice (31, (3
The damping force characteristics according to 1 are set near the resonance frequency so as to control the peak of shake during vertical resonance of the power unit (1), and the damping force characteristics of the other elastic member ti'+, (2f are set in accordance with the input direction of roll vibration. It is preferable to arrange the elastic member +2f and (i'+) so that it is perpendicular to the roll axis as shown in A-A in Fig. 4. (3'f
(The damping force characteristic of 3f' is the peak at the roll resonance of the power unit (1) in the case of PR, and the peak at the time of roll resonance of the power unit (1) in the case of FF, and the damping force characteristic of the power train system (drive shaft, flywheel, clutch disc, tires, etc.) due to torque input in the case of PR. )
It is recommended that the setting be made to suppress the resonance peak of . Moreover, the elastic body (25, +2), (2Y, <if A-
Even if it is placed in the same plane that is approximately parallel to the A plane or the B-B plane, an appropriate damping effect can be obtained by simply setting the damping force characteristics for vibrations in the static load direction and roll direction within the same plane. It will be done.

第5図(A)、第5図(B)及び第6図には他の実施例
を示す。第5図(B)は、同図(A)の支持装置(15
1、、(151のI−Iでの断面を示したものであり、
弾性体(2) 、 (2+の円周部にサブ流体室(1,
61、(161とサブ副次室f171 、α力を設け、
該サブ流体室T1.61 、 (161はサブオリフィ
スtJ81. Q81を通ってサブ副次室(171、α
力と流動可能である。尚、サブ流体室f161 、 (
161とサブ副次室ロア1 、 (17]及びサブオリ
フィスα紛+ (181は弾性体t2) 、 (2)と
補強板t11.9) 、 (+9)との間に密封される
。(20)は連結ゴムである。他の構造は従来と同様な
ので説明は省略する。この実施例では、パワーユニツ)
 fi+の上下方向の振動に対する防振、制振作用と、
ロール方向の高周波微振動に対する防振作用は従来例と
全く同じであるが、ロール方向の低周波で大振幅の振動
が入力した場合には、サブ流体室f161 、 (16
1からサブ副次室(171、071へ流体が流され、そ
のときサブオリフィス081 、 (+81による減衰
力で制振効果が得られる。
Other embodiments are shown in FIG. 5(A), FIG. 5(B), and FIG. 6. FIG. 5(B) shows the support device (15) in FIG. 5(A).
1, (This is a cross section taken along I-I of 151,
Elastic body (2), sub-fluid chamber (1,
61, (161 and sub-auxiliary chamber f171, α force is provided,
The sub-fluid chamber T1.61 (161 passes through the sub-orifice tJ81.Q81 to the sub-auxiliary chamber (171, α
Force and fluidity possible. In addition, the sub-fluid chamber f161, (
161 and the sub-auxiliary chamber lower 1, (17) and the sub-orifice α powder+ (181 is the elastic body t2), (2) and the reinforcing plate t11.9), (+9) are sealed. (20) is a connecting rubber. The other structures are the same as the conventional ones, so their explanation will be omitted. In this example, power units)
Anti-vibration and damping effect against vertical vibration of fi+,
The vibration isolation effect against high-frequency micro-vibration in the roll direction is exactly the same as in the conventional example, but when a low-frequency, large-amplitude vibration in the roll direction is input, the sub-fluid chamber f161, (16
1 to the sub-auxiliary chambers (171, 071), at which time a damping effect is obtained by the damping force due to the sub-orifices 081, (+81).

第6図は、支持装置内(1畜’ 、 (t4’の弾性部
材(2i 、 (f+ 。
FIG. 6 shows the elastic members (2i, (f+) in the support device (1), (t4').

(2’f 、 (づ)内に流体を満たした流体室(81
+ (81+ (8了、(glを設けられてそれぞれパ
ワーユニット(1)の静荷重方向とロール方向に配置さ
れているが、前記両流体室は共通のオリフィス(31、
(31を通して副次室(9)。
(2'f, fluid chamber (81) filled with fluid
+ (81+ (8了, (gl) is provided and arranged in the static load direction and roll direction of the power unit (1), respectively, but both the fluid chambers have a common orifice (31,
(Secondary chamber (9) through 31.

(9)と流通可能である。言うまでもなく、静荷重方向
の低周波で、大振幅のシェイクに対しては弾性体(2′
)、(21が圧縮変形し流体室ts+ 、 (d+の流
体が押し流されてオリフィス(31、+31を通って副
次室(9) 、 (9)に流れ、減衰力を発生する。同
様に、ロール方向の低周波で大振幅の振動に対しては弾
性体+2f 、 +第が圧縮変形し、流体室t8+ 、
 (8+の流体がオリフィス(31、(31を通って副
次室(9+ 、 (9)に流れて減衰力を発(9) 生する。
(9) and can be distributed. Needless to say, an elastic body (2'
), (21 are compressively deformed and the fluid in the fluid chambers ts+ and (d+ is swept away and flows through the orifices (31, +31 to the subchambers (9) and (9), generating a damping force.Similarly, In response to low-frequency, large-amplitude vibrations in the roll direction, the elastic bodies +2f and + are compressively deformed, and the fluid chambers t8+ and
(8+ fluid flows through the orifice (31, (31) to the subchamber (9+, (9)) and generates a damping force (9).

以上説明してきたように、この発明によれば、その構成
を、車体又はパワーユニットに各々取り付けられる2つ
の枠体に固着され、かつ、流体が充満された2つの流体
室を備える弾性体に、該両流体室とオリフィスを介して
連通ずる1つ以上の副次室を備えた防振体を、前記2つ
の流体室の体積変化を生じさせる方向の、一方はパワー
ユニットの略静荷重方向に、他方は略ロール方向に配置
したため、取付スペースや取付作業性を増加させずに、
パワーユニットの静荷重、ロール方向の両方で、低周波
の大振幅振動の制振効果が得られる。
As described above, according to the present invention, the structure is fixed to two frames attached to the vehicle body or the power unit, respectively, and includes two fluid chambers filled with fluid. A vibration isolator having one or more subchambers communicating with both fluid chambers via an orifice is arranged in a direction that causes a change in the volume of the two fluid chambers, one in the substantially static load direction of the power unit, and the other in the substantially static load direction of the power unit. is placed approximately in the roll direction, without increasing installation space or installation workability.
The damping effect of low-frequency, large-amplitude vibrations can be obtained both in the static load of the power unit and in the roll direction.

さらに、第3図、第6図の実施例においては、副次室を
共通にしているため、防振体をより小さくでき、第6図
の実施例ではオリフィスも共通化しているため、部品点
数を削減することができる。
Furthermore, in the embodiments shown in Figs. 3 and 6, the secondary chamber is shared, so the vibration isolator can be made smaller. In the embodiment shown in Fig. 6, the orifice is also shared, so the number of parts is reduced. can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は従来例を示す断面図、第3図は本発明
を示す断面図、第4図は作用力線を示した図である。第
5図(A)は他の実施例を示しく10) た断面図で同図(B)は、支持装置を」1下2つに分割
した時の断面図であり、第6図は、さらに他の実施例を
示した断面図である。
1 and 2 are cross-sectional views showing a conventional example, FIG. 3 is a cross-sectional view showing the present invention, and FIG. 4 is a view showing lines of acting force. FIG. 5(A) is a cross-sectional view showing another embodiment, and FIG. 5(B) is a cross-sectional view when the support device is divided into two parts. FIG. 7 is a sectional view showing still another embodiment.

Claims (1)

【特許請求の範囲】 il+  車体又はパワーユニットに各々取り付けられ
る2つの枠体と、該2つの枠体に固着され、流体が充満
された2つの流体室を備える弾性体と、該両流体室とオ
リフィスを介して連通ずる1つ以ヒの副次室を備えた防
振体を、前記2つの流体室の体積変化を生じさせる方向
の内、一方はパワーユニットの賂静荷重方向に、他方は
略ロール方向になるように配置したことを特徴とするパ
ワーユニットの支持装置。 (2)前記2つの流体室の体積変化を生じさせる方向は
、前記両枠体が近接または離反する方向であることを特
徴とした第(1)項のパワーユニットの支持装置。
[Claims] il+ Two frames each attached to a vehicle body or a power unit, an elastic body fixed to the two frames and having two fluid chambers filled with fluid, and an orifice between the two fluid chambers. The vibration isolator is equipped with one or more sub-chambers that communicate with each other through the two fluid chambers, one in the direction of the static load of the power unit and the other in the direction of the static load of the power unit. A support device for a power unit, characterized in that the device is arranged so as to be oriented in the same direction. (2) The power unit support device according to item (1), wherein the direction in which the volume change of the two fluid chambers is caused is the direction in which both the frames approach or move away from each other.
JP21472481A 1981-12-23 1981-12-23 Supporting device of power unit Granted JPS58110327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21472481A JPS58110327A (en) 1981-12-23 1981-12-23 Supporting device of power unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21472481A JPS58110327A (en) 1981-12-23 1981-12-23 Supporting device of power unit

Publications (2)

Publication Number Publication Date
JPS58110327A true JPS58110327A (en) 1983-06-30
JPS6341322B2 JPS6341322B2 (en) 1988-08-16

Family

ID=16660567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21472481A Granted JPS58110327A (en) 1981-12-23 1981-12-23 Supporting device of power unit

Country Status (1)

Country Link
JP (1) JPS58110327A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6040842U (en) * 1983-08-29 1985-03-22 三菱自動車工業株式会社 liquid filled mount
JPS6059840U (en) * 1983-09-30 1985-04-25 エヌ・オ−・ケ−・メグラステック株式会社 rolling insulator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6040842U (en) * 1983-08-29 1985-03-22 三菱自動車工業株式会社 liquid filled mount
JPS6059840U (en) * 1983-09-30 1985-04-25 エヌ・オ−・ケ−・メグラステック株式会社 rolling insulator

Also Published As

Publication number Publication date
JPS6341322B2 (en) 1988-08-16

Similar Documents

Publication Publication Date Title
JPH10184771A (en) Fluid sealing type vibration control device
JPS6196229A (en) Liquid enclosing type vibro-isolating body
JPH0247613B2 (en)
JPH04203629A (en) Vibration isolator
JPH01238730A (en) Fluid seal type mount device
JPS58110327A (en) Supporting device of power unit
JPS60192141A (en) Liquid-sealed vibration proof device
JP2773796B2 (en) Anti-vibration support device
JP2002206590A (en) Liquid sealing type vibration absorbing device
JPH0239065Y2 (en)
JP2848399B2 (en) Inner / outer cylinder type fluid-filled vibration isolator
JPH0237497B2 (en)
JP3231095B2 (en) Fluid-filled anti-vibration mount
JPH0771506A (en) Ff type automobile engine supporting device
JP3570105B2 (en) Liquid filled type vibration damping device
JPS61278638A (en) Liquid-sealed type vibration insulating body
JPH032089B2 (en)
JPS5845135Y2 (en) engine support device
JP3564594B2 (en) Anti-vibration device
JPS60175833A (en) Mounting device of power unit
JPH053791Y2 (en)
JP3511124B2 (en) Liquid filled type vibration damping device
JPS60231040A (en) Liquid-seal vibro-isolating device
JP2002089615A (en) Active type fluid-filled vibration control equipment
JPS60192140A (en) Liquid-containing power unit mount device