JPS58109812A - Output circuit of pulse encoder - Google Patents

Output circuit of pulse encoder

Info

Publication number
JPS58109812A
JPS58109812A JP20885081A JP20885081A JPS58109812A JP S58109812 A JPS58109812 A JP S58109812A JP 20885081 A JP20885081 A JP 20885081A JP 20885081 A JP20885081 A JP 20885081A JP S58109812 A JPS58109812 A JP S58109812A
Authority
JP
Japan
Prior art keywords
pulse
output
signal
data
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20885081A
Other languages
Japanese (ja)
Other versions
JPH0245804B2 (en
Inventor
Katsuji Tsuruta
鶴田 克二
Riichi Abe
阿部 理一
Seiji Tsujikado
辻角 精二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP20885081A priority Critical patent/JPS58109812A/en
Priority to US06/427,926 priority patent/US4578748A/en
Priority to DE19823237857 priority patent/DE3237857A1/en
Priority to SE8206032A priority patent/SE461119B/en
Publication of JPS58109812A publication Critical patent/JPS58109812A/en
Publication of JPH0245804B2 publication Critical patent/JPH0245804B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/21Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device
    • G05B19/23Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control
    • G05B19/231Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control the positional error is used to control continuously the servomotor according to its magnitude
    • G05B19/232Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control the positional error is used to control continuously the servomotor according to its magnitude with speed feedback only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/33Director till display
    • G05B2219/33083Clock for microprocessor synchronized with pulses from encoder
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42213Position overshoot, axis still moves after stop
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50025Go to reference, switches and dog detect origin, combine with pulse from encoder

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Optical Transform (AREA)

Abstract

PURPOSE:To deliver plural pieces of forward and backward revolution information in a cycle of an output pulse with a simple constitution, by latching with two steps the output of a pulse encoder to form an address and then reading out the forward and backward revolution information from a storage means. CONSTITUTION:The waveform is shaped for output pulses PA and PB of a pulse encoder which have a shift of phases and the phase relation reversed between the forward and backward revolutions of a wheel. These output pulses are processed by a double-stage latch circuits 13 and 16 as well as 14 and 17. The addresses are formed with the outputs of these latch circuits, and an access is given to an ROM15. Therefore, for instance, the forward revolution information D1 of a high level is delivered in the case of an address excepting 1000 and synchronizes with a clock PC in response to 2-bit signals AD4, AD5, etc. which control the ROM15. Then plural pieces of forward revolution information are delivered up to 4 units, etc. in a cycle of the pulse PA. The same applies to the backward revolution information. In such a way, plural pieces of forward/backward revolution information are produced in a cycle of an output pulse of an encoder with a simple constitution of a reduced number of component parts. This improves the detecting resolution.

Description

【発明の詳細な説明】 本発明は、位相のずれ九同技形の2種類のパルス信号を
軸の回転に対応して発生する/4ルスエンプーダの出力
回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an output circuit for a /4 pulse empuder that generates two types of pulse signals with the same phase shift in response to rotation of a shaft.

一般に、位置決め制御系の位置検出懺置尋に用いられる
Δルスエンコーダは、第1図に示すようにその軸の回転
に対応した、かつ、互いに位相が90’ずれた同波形の
2種類のΔルス信号Pム、PBを発生し、それらのノ臂
ルス信号はパルスエンコーダの軸の正転時と逆転時とで
位相関係が逆転する・すなわち、ΔルスエンコーIの軸
が正転しているときには、同図に示したように信号PA
の位相が信号Paの位相よシも90°進み、軸が逆転し
ているときは、信号P1の位相が信号Pムの位相よシ9
0’進む。
In general, a Δ Luz encoder used for position detection and positioning in a positioning control system has two types of Δ Δ pulses with the same waveform that correspond to the rotation of its axis and are out of phase by 90', as shown in Figure 1. The pulse signals P and PB are generated, and the phase relationship of these pulse signals is reversed when the axis of the pulse encoder rotates forward and backward. In other words, when the axis of the Δ pulse encoder I rotates forward, , as shown in the figure, the signal PA
When the phase of the signal Pa is 90 degrees ahead of the phase of the signal Pa and the axis is reversed, the phase of the signal P1 is 90 degrees ahead of the phase of the signal P.
Go forward 0'.

第2図は、この/4ルスエンコー〆に付設される出力回
路の従来例を示すものである。この回路において、上記
ノ譬ルス信号Pム、Pmは波形整形回路1゜2によって
波形整形され、整形されたパルス信号P−*PS (第
3図伽) 、 (e)参照)は、後述する方向判別回路
KK設けられたナンド回路N41 、N(HK加えられ
る。ま良、紋ノナルス信号P’A 、 P%は微分回路
3゜4およびシ&建ットトリガ回路5,6によりて所定
・量ルス幅のノヤルス信号pl、i’2(tlK ”図
(d)参照)K変換され%tJiAルス信号P 1 #
 P 2は方向判別回路区に設けられた〒7リツデフロ
ツf7.8のりaツク入力CKに加えられる。
FIG. 2 shows a conventional example of an output circuit attached to this /4 pulse encoder. In this circuit, the above-mentioned pulse signals Pm and Pm are waveform-shaped by a waveform shaping circuit 1゜2, and the shaped pulse signal P-*PS (see Fig. 3), (e)) will be described later. A NAND circuit N41, N(HK) provided with a direction discrimination circuit KK is added.The non-linear signal P'A, P% is set to a predetermined amount by a differentiating circuit 3°4 and a set trigger circuit 5, 6. Width Noyalus signal pl, i'2 (tlK ''see figure (d)) K-converted %tJiArus signal P 1 #
P2 is applied to the gate input CK of a defroster f7.8 provided in the direction determining circuit section.

上記方向判別回路には、上記/llスス号P 1a P
z 。
The direction determination circuit includes the /ll susu No. P 1a P
z.

P’A、P%に基づき、Δルスエンコーダが正転してい
A トllKノ譬にス償号Pff:、*タパルスエンコ
ーダが逆転しているとき(パルス信号Prを各々形成す
るものであシ、以下この方向判別回路にの作用を説明す
る。
Based on P'A and P%, when the Δ pulse encoder is rotating in the forward direction, A pulse encoder is rotating in the forward direction. Next, the operation of this direction discrimination circuit will be explained below.

パルス信号Pム、Plが出力されないとき、つま夛エン
コーダが停止状IIKあるとき、初期設定用のリセット
信号R8がノア回路NrleNr2を介してデフ口、デ
フ口、f7.8のリセット入力Rに加えられ、同時にイ
ンノ櫂−タ關路Ivl jv2を介してDフリッデフロ
ッ7”9.10のリセット人力Rに上記リセット信号が
入力される。これによりて、!7リツデフロツデ7.8
およびDフリ、デフ口、f9.10がリセットされるの
でそれらの出力Qはいづれも“O”となる、なお、この
初期設定が終了するとリセット信号&−抹消失する。
When the pulse signals P and Pl are not output, and when the encoder is in the stop state IIK, the reset signal R8 for initial setting is added to the reset input R of the differential port, the differential port, and f7.8 via the NOR circuit NrleNr2. At the same time, the above-mentioned reset signal is inputted to the reset manual power R of the D flip-flop 7"9.10 via the inno-otor connection Ivl jv2. As a result, the reset signal is inputted to the reset manual R of the D flip-flop 7"9.10.
Since the D-flip, differential opening, and f9.10 are reset, their outputs Q all become "O". When this initial setting is completed, the reset signal &- disappears.

かかる状態で/4ルスエンコー〆が正転すると、第3図
(d)に示した前記ノ!ルス信号P2がT7リツlフロ
ッf8をトリガしてその出方信号s1【″l”にさせ、
これによってD7すy 7’ 7 Hy f 10 (
D入力りが′1”となる、したがりて、その後このDフ
リップ7E! 、fl 0t)入’jJCKKIIE3
図(&)K斜at付して示したクロ、り信号Pcが入力
されると、#Dフリッデフロッf10が反転してその出
力信号的が第3図(f) K示す如く11#になる。
In such a state, when the /4 encoder rotates forward, the above-mentioned ! The pulse signal P2 triggers the T7 filter f8 to make its output signal s1 [“l”,
As a result, D7 sy 7' 7 Hy f 10 (
The D input becomes '1', therefore, after this D flip 7E!, fl 0t) enter'jJCKKIIE3
When the black signal Pc shown with the diagonal at in FIG.

しかして、乙の信号s2はアンド回路Ad2に加えられ
るので、鋏アンド回路ムd2は動作可能となり、しIF
、がりて、上記クロック信号Pcが立下がるとインイー
タ回路Iv2と上記アンド回路ムd2とを介してノア回
路Nrffiの出力端Qが@o#におかれる。
Since the signal s2 of B is applied to the AND circuit Ad2, the scissors AND circuit d2 becomes operational, and the IF
Then, when the clock signal Pc falls, the output terminal Q of the NOR circuit Nrffi is placed at @o# via the ineater circuit Iv2 and the AND circuit d2.

このため、〒7す、f70.fgがリセットされてその
出力信号s1が′″1o”になるので次のクロック信号
PcO立上がシでD7リツプフロツ7’IOは反転され
、その出方信号s2は第3図(f)に示したように″0
1となる。このとき、ノ量ルス信号れは嬬@1”の状態
を継続しておシ、シたがって、上記ナンド回路Nd2か
らは第3図(g)に示すような上記りaツク信号PcK
同期した信号Pfが出力される。
For this reason, 〒7su, f70. fg is reset and its output signal s1 becomes ``1o'', so when the next clock signal PcO rises, D7 lip flop 7'IO is inverted, and its output signal s2 is shown in FIG. 3(f). ``0''
It becomes 1. At this time, the normal pulse signal R continues to be in the state of ``@1'', and therefore, the above NAND circuit Nd2 outputs the above a check signal PcK as shown in FIG. 3(g).
A synchronized signal Pf is output.

なお、方向判別回路Kに示す各要素T7リツグフQyデ
フ、D7リツデフロツプ9、ナンド回路Nd1およびノ
ア回路Nr1勢紘、前記シ&ンットトリガ回路5の出力
信号PIK対し上記各要素T7リツ!フo、fll、D
7リツグ70ッデ10、ナンド回路N42シよびノア回
路N、l尋と同様の作用をなすものである。すなわち、
これらの要素からなる回路は、パルスエンブー〆の軸が
逆転した場合に、上記グI2vり信号PCに岡期し九パ
ルス償号P、會ナンド回路Ndlよ多出力させる。
It should be noted that each element shown in the direction discriminating circuit K includes the T7 differential, the D7 differential, the D7 differential flop 9, the NAND circuit Nd1, and the NOR circuit Nr1, and the output signal PIK of the shunt trigger circuit 5. Fuo, full, D
It has the same effect as the NAND circuit N42 and the NOR circuit N,1. That is,
When the pulse embossing axis is reversed, the circuit made up of these elements outputs multiple outputs from the above-mentioned G I2v signal PC, nine pulse cancel signal P, and the NAND circuit Ndl.

上記方向判別回路Xの出力信号p1 、prは、図示し
ていない位置決め制御系の位置確認用カクンタのアッグ
、ダウン入力信号勢に使用される。しかして、上記の例
では、上記し九クロツタ信号pcとして上記位置iii
iag用カウンタの同期クロック信号を用いている。
The output signals p1 and pr of the direction determining circuit X are used as up and down input signals of a position confirmation circuit of a positioning control system (not shown). Therefore, in the above example, as the nine-crotch signal pc, the position iii is
The synchronous clock signal of the iag counter is used.

上記した従来の出力回路は、その構成が複雑で部品数が
多いという問題がToヤ、また、パルスエンコーダの出
カッ譬ルス信号Pムsolの1周期の間に複数個の出力
・譬ルス信号Pr(Pr)を必要とする場合、全く適用
することができないという欠点をもつ。
The above-mentioned conventional output circuit has a problem that its configuration is complicated and the number of parts is large.In addition, a plurality of output pulse signals are generated during one cycle of the output pulse signal Psol of the pulse encoder. It has the disadvantage that it cannot be applied at all when Pr (Pr) is required.

本発明は、上述の問題を確決する九めKなされ丸もので
ある。
The present invention is a complete solution to the problems mentioned above.

本発明によれば、パルスエンコーダが出力する2Ii類
のノ譬ルス信号を同期りOyり信号によってラッチする
第1の2.チ手段と、骸第1のラッチ手段の出力を前記
同期クロック信号によってラッチする第2のう、チ手段
と、これらの第1および嬉2のう、チ手段の出力をアド
レスデータとして受入し、予め記憶させた正逆転データ
を前記アドレスデータによって出力する記憶手段とを設
けて上記目的を達成している。
According to the present invention, the first 2.2. a first latch means, a second latch means for latching the output of the first latch means in accordance with the synchronous clock signal, and receiving the outputs of the first and second latch means as address data; The above object is achieved by providing storage means for outputting forward/reverse data stored in advance in accordance with the address data.

以下、本発明を添附図面の実施例に基づいて詳細に説明
する。
Hereinafter, the present invention will be described in detail based on embodiments shown in the accompanying drawings.

第4図は本発明に係る/譬ルスエンコー〆の出力回路の
一実施例を示すものである。
FIG. 4 shows an embodiment of the output circuit of the /digital encoder according to the present invention.

この回路において、第5開缶) 、 (e)に示した前
記ノ譬ルスエンコー〆の正転時における出力/fルヌ信
号PAePIは、各々波形整形回路11.12を介して
ラッチ回路13.14に加えられる・ラッチ回路13,
14aう、チ入力りに加わる同期タロツタ信号Pc (
第5図(a)参照)の立ち上がり端で上記・臂ルス信号
Pム、P農をう、チするものであり、第5図0)5(・
)K示したそれらの出力信号ムD6.AD1は後述する
10111 (読み出し専用メモリ)15のアドレス人
カム0.ム1およびう、チ回路16.17に加えられる
。ラッチ回路16,17は、ラッチ人力りに加わる上記
同期クロ、り信号pcの立上がルで信号AD 、 # 
AD 1をラッチするものであシ、その出力信号ムD、
、ADi (第S図(f) 、 (x>参照)、社上記
ROM 15のアドレス入力端ム2.ム5に加えられる
。なお、ROM 15のアドレス入力端ム41ム5には
、上記/4ルス信号PムsPIの周期Tl14に:出力
する後述の/量ルス信号Pf、PyO数を設定するアド
レスデータムD4 。
In this circuit, the output /f lune signal PAePI at the time of normal rotation of the falsification encoder shown in 5th open can) and (e) is sent to a latch circuit 13.14 via a waveform shaping circuit 11.12, respectively. Added latch circuit 13,
14a, the synchronous tarot signal Pc (
5(a)), the above-mentioned arm pulse signals P and P are turned on at the rising edge of FIG. 5(a)).
) K and their output signals D6. AD1 is the address person cam 0 of 10111 (read-only memory) 15, which will be described later. 16.17. The latch circuits 16 and 17 output the signals AD, # when the synchronous clock signal pc rises, which is added to the latch force.
It latches AD1, and its output signal D,
, ADi (see FIG. 4. Address datum D4 for setting the number of pulse signals Pf and PyO to be described later.

ADsが加えられる。ADs are added.

上記ROM 15に祉、下記第1表に示すデータD1w
D2が記憶されておシ、その各アドレス入力端ム。〜ム
SK加わる上記各アドレスデータAD、S山5によシ選
択される記憶データJpD2がそのデータ出力端01,
02から出力される。
In the above ROM 15, the data D1w shown in Table 1 below
D2 is stored at each address input terminal. The storage data JpD2 selected by the above-mentioned address data AD and S mountain 5 to be added to MSK are outputted from the data output terminal 01,
Output from 02.

第4図に示した回路は、上記ROM 15の出力データ
D1を九紘D2によ〉上記パルスエンコーダの出力/f
ルス償号Pム、P1の周期1間に、クロック/母ルス信
号PcK同期した最高4個O正転パルス信号Pfi九は
逆転Ifルス信号P、を得ることができる。以下、その
作用をパルスエンコーダが正転じ九場合のタイζンダチ
ャートを示した第5図を参照しながら説明する。
The circuit shown in FIG.
During one period of the pulse compensation signal Pm, P1, a maximum of four normal rotation pulse signals Pfi9 synchronized with the clock/mother pulse signal PcK can be obtained as a reverse rotation pulse signal P. Hereinafter, its operation will be explained with reference to FIG. 5, which shows a tie ζ star chart when the pulse encoder rotates in the normal direction.

いま、上記周期T関に1個の正転/fルスPfを得るべ
くアドレスデータIJ)4 # AX)5を各々@0”
、101に設定すると、上記4個のアドレスデーメD、
〜ムDiの変化に対応して、前記表の領域ムに示す16
個OデータD1#D2のいづれかが上記クロック信号P
cの発生周期で選択される。
Now, in order to obtain one forward rotation/f pulse Pf in the period T, address data IJ)4 #AX)5 are each @0''
, 101, the above four addresses D,
~16 shown in area M of the table above in response to changes in Di.
One of the data D1#D2 is the clock signal P.
It is selected based on the frequency of occurrence of c.

上記パルスエンコーダの正転時における上記アドレスデ
ータD、〜ムDsは、第5図(d)〜(g)に示す位相
関係をもつので、上記アドレスデータD0゜ADI *
 AD2 * ADjカ@1 ” # ” 0 ’ e
 @O’ e ” O’ Kな−)九ときのみ、つt)
同図に示すjlsl’1sj“1時点でのみ正転データ
D1が@01に変化しく前記表の領域ムに@正”で示す
)、この状態は次のクロック信号Pcが発生してアドレ
スデータADi カ@1”Kなるまで継続される。ζO
結果上記ROM15の正転側出力端01から同開缶)に
示すようにクロック信号Pcに同期した負極性のΔルス
Pfが上記周期T間1個出力される。
Since the address data D, -Ds during normal rotation of the pulse encoder have the phase relationship shown in FIGS. 5(d) to (g), the address data D0°ADI*
AD2 *ADjka@1 ” # ” 0 ' e
@O' e ” O' K na-)Only at 9 o'clock, tsut)
The normal rotation data D1 changes to @01 only at time 1 (indicated by @positive in the area M of the table), and this state occurs when the next clock signal Pc is generated and the address data ADi Continues until the number reaches 1”K. ζO
As a result, one negative polarity Δlus Pf synchronized with the clock signal Pc is output from the normal rotation side output terminal 01 of the ROM 15 during the period T, as shown in FIG.

前記表の領域ムにおいて、上記アドレスデータAD6 
e AD1* AD2 a ADB i)E G ’ 
、 ’ O”、′1”。
In the area M of the table, the address data AD6
e AD1* AD2 a ADB i)E G'
, 'O'', '1''.

@O”となった場合に上記ROM 1 Bの記憶データ
D2が101に変化するが、第5図に示す上記エンコー
ダの出力Δルス信号PムJlの位相関係にシいて、上記
データムD@ @ ADl aムD2 x ADBが@
o 、o 。
@O'', the stored data D2 of the ROM 1B changes to 101, but due to the phase relationship of the output Δ pulse signal PmJl of the encoder shown in FIG. ADl am D2 x ADB @
o, o.

1.0”に表ることはなく、し九がうて、ROM 15
の逆転側出力端02の出力データD2は、第5図(1)
K示すごとく全く変化することなく11”状IIKおか
れる。
1.0", but the current value is ROM 15.
The output data D2 of the reverse side output terminal 02 of is shown in FIG. 5 (1).
As shown in K, 11" IIK is placed without any change.

りぎに1上記工ンコー〆が逆転するときには、上記回路
が第6図に示すタインンダ動作をするので、上記アドレ
スデータD0.ムD1.ムD2 * ADBが@0’、
”0’、@l’、@O’Kf12ftと@ (f記il
の領域ムに@逆”で示す)のみ上記ROM 15の逆転
出力端02の出力データD2が10”になる・したがう
て同図(1)K示したように、上記周期Tの間にクロツ
タ信号PcK同期し九1個の負極性パルス信号P1が上
記ROM 15よ)出力される。もちろんこの場合には
上記アドレスデータムD@IAD1 、 AD2 。
When the above-mentioned rotor is reversed, the circuit performs the inverter operation shown in FIG. 6, so that the address data D0. Mu D1. M D2 *ADB @0',
"0', @l', @O'Kf12ft and @ (f
The output data D2 of the reverse output terminal 02 of the ROM 15 becomes 10'' only in the region M of In synchronization with PcK, 91 negative polarity pulse signals P1 are outputted from the ROM 15). Of course, in this case, the above address datums D@IAD1 and AD2.

ADiが11” @ 0 # 、 @ 0”、@0”に
なることはないので、同開缶)K示したように、上記R
OM 15の正転出力端01の出力データD1は″1”
の状態を保持する。
Since ADi will never be 11" @ 0 #, @ 0", @ 0", as shown in the above R
Output data D1 of normal rotation output terminal 01 of OM 15 is "1"
maintain the state of

かくして、上記アドレスデータAD4 、 AD、が@
O”、@0” に設定されている場合において、上記エ
ンコーダが正転または逆転するときには、その出力パル
ス信号PA#PI O周期T間に1個の正転/4ルス備
号Pf−1えは逆転パルス信号P、が各々上記ROM 
1 !!よ〕出力される。
Thus, the address data AD4, AD, are @
When the above encoder rotates forward or reverse, one forward rotation/4 pulse signal Pf-1 is output during the output pulse signal PA#PIO period T. is the reverse pulse signal P, and the above ROM
1! ! ] will be output.

本発明の装置は、アドレスデータAD4 、ムn5を変
化させることによ)、上記/4ルスエンコーダ出力Pム
eelの一周期TO間に2〜4個の出力パルスを得るこ
とができ、たとえば、前記表の領域BK示すようにアド
レスデータAD4 *ムDsを各々“0”。
The device of the present invention can obtain 2 to 4 output pulses during one period TO of the /4 pulse encoder output Pm eel by changing the address data AD4 and mn5, for example, As shown in area BK of the table, address data AD4*Ds are each set to "0".

Il#とじた場合には、′正”および1逆”で示す如く
エンコーダの正転および逆転時に各々2個のΔルヌ信号
PfおよびP、が上記周期T内に発生する・そして、前
記表の領域CおよびDに示すように、アドレスデータA
D4.AD5が各々@l#、@l□#  および@l”
#@1”に設定されている場合には、上記周期TO間に
おいて3個および4個の正逆転/4ルス信号Pf IP
rが上記クロック信号pcに同期して、上記ROM 1
−5よ多出力される。
In the case of Il#, two Δlunu signals Pf and P are generated within the above period T when the encoder rotates forward and backward, as shown by 'forward' and '1 reverse'. As shown in areas C and D, address data A
D4. AD5 are @l#, @l□# and @l” respectively.
#@1", 3 and 4 forward/reverse/four pulse signals Pf IP during the above period TO
r is synchronized with the clock signal pc, the ROM 1
-5 more output.

上述の実施例においてはΔルメ償号PムとPIとの位相
差を該ノ臂ルス信号P轟、Plの4分の1周期として説
明し九が、この位相差は4分の1周期に限るものではな
く、第7図(a) 、 (b)に示したようにパルス信
号P−とれとの位相差φ1が4分の1周期よシも小さい
場合、および、第7図(@) 、 (d)に示したよう
に/fルス信信号色6との位相差φ′1が4分の1周期
よルも大きい場合にも、同様に適用することができる。
In the above embodiment, the phase difference between the Δlume correction signals P and PI is explained as a quarter cycle of the arm pulse signals P and Pl. However, as shown in FIGS. 7(a) and 7(b), when the phase difference φ1 between the pulse signal P and the pulse signal is as small as 1/4 period, and FIG. 7(@) , (d), the same application can be made even when the phase difference φ'1 with the /f pulse signal color 6 is larger than one-fourth period.

九だし、ノ譬ルス信号ねと6との位相差φ1が4分の1
周期よシも小さい場合は上記クロック信号pcとして咳
位相差φ1以下の周期のクロック信号Pcを用いる必要
があシ、また、パルス信号どムとflとの位相差φ′1
が4分の1周期よシも大きい場合は上記クロツタ信号p
cとしてノ帯ルス信号P”sの立上がIIIからパルス
信号60立下がシ端までの期間φ2(第7図(d)参照
)以下の周期のクロ。
Since it is 9, the phase difference φ1 between the nollus signal and 6 is 1/4
If the period is also small, it is necessary to use a clock signal Pc with a period less than the cough phase difference φ1 as the clock signal pc, and the phase difference between the pulse signals Dom and fl is φ'1.
If is larger than 1/4 period, the above blackout signal p
As c, the period from the rising edge of the pulse signal P"s to the falling edge of the pulse signal 60 is less than or equal to φ2 (see FIG. 7(d)).

り信号PCを用いる必要があり。It is necessary to use a signal PC.

以上説明し九ように、本発明によれば・ぐルスエンコー
〆の出力/母ルス信号の1周期間に複数個(最大4備)
の正逆転データを得ることができ、ノ々ルスエンコー〆
の分解能を向上できる。を九、ROM K予め正逆転デ
ータを記憶させておき、それラノテータka4ルスエン
コーIの出カッ臂ルスの位相関係を示すアドレスデータ
で選択出力させるようにしているので回路の簡単化が計
れる。
As explained above, according to the present invention, a plurality of pulse encoders (maximum 4) are output during one period of the pulse encoder output/mother pulse signal.
It is possible to obtain forward and reverse rotation data, improving the resolution of the Nords encoder. 9. Forward and reverse rotation data is stored in advance in the ROM K, and is selectively outputted using address data indicating the phase relationship between the output pulses of the lanotator KA4 pulse encoder I, thereby simplifying the circuit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図←)、(bl、ノヤルスエンコーダの出力パルス
信号の一例を示す波形図、第2図は、)!ルスエンコー
!の出力回路の従来例を示すプロ、り図、第3図(、)
〜(g) t;j 、第2図に示した回路の動作を示し
たタイ建ングチャート、tIN4図は、本発明に係るパ
ルスエンコーダの出力回路の一実施例を示す!ロック図
、第5図(a)〜(1)および第6図(、)〜(1)は
、力/ffルス号の他の例を示す波形図である。 11.12−・・液形整形回路、13.14,16.1
7・・・ラッチ回路、15・・・ROM (読み出し専
用メモリ)。
Fig. 1←), (bl, waveform diagram showing an example of the output pulse signal of the Noyals encoder, Fig. 2 is)! Rusuenko! Figure 3 shows a conventional example of an output circuit.
~(g) t;j, a tie-building chart showing the operation of the circuit shown in FIG. 2, tIN4 FIG. 4 shows an embodiment of the output circuit of the pulse encoder according to the present invention! The lock diagram, FIGS. 5(a) to (1), and FIGS. 6(a) to (1) are waveform diagrams showing other examples of the force/ff pulse signal. 11.12--Liquid shape shaping circuit, 13.14, 16.1
7...Latch circuit, 15...ROM (read-only memory).

Claims (2)

【特許請求の範囲】[Claims] (1)  亙いに位相がずれかつ軸の正転時と逆転時に
おける互いの位相関係が逆転する同波形の2種sOパル
ス信号を軸の回転に対応して出方するパルスエンコー/
に接続され、軸の正転時には正転パルス信号のみ1,1
え軸の逆転時には逆転・譬ルスのみを出力するパルスエ
ンコーダの出力回路において、前記2種類の・中ルス信
号の位相差に対応する時間と前記2種類のパルス信号の
うち位相が遅れているパルス信号の立上がシ端から位相
が進んでいるパルス信号の立ち下がヤ端までの時間との
うち短い方の時間以下の周期の同期クロ、り信号により
て前記2種類のパルス信号を各別にツ。 チする第1のラッチ手段と、骸#11のう、チ手段O出
力を前記同期タロ、!信号によつてう、チする@!6ラ
ツチ手段と、予め正逆転データが記憶され、前記嬉1お
よび第2のラッチ手段の出方信号をアドレスデータとし
て受入して前記アドレスデータを形成する4つの信号の
位相関係が前記/臂ルスエンフー〆の正転を示唆する関
係となりているときに正転データを前記正@/譬ルス償
号として出力し、前記4つの信号の位相関係が前記/l
ルスエンコー〆の逆転を示唆する関係となりているとき
に逆転データを前記逆転パルス信号として出力する記憶
手段とを具え九ことを特徴としたパルスエンコーダの出
力回路。
(1) A pulse encoder/pulse encoder that outputs two types of sO pulse signals with the same waveform, which are greatly out of phase and whose phase relationship is reversed when the shaft rotates forward and backward, in response to the rotation of the shaft.
When the shaft rotates in the normal direction, only the normal rotation pulse signal is sent.
In the output circuit of a pulse encoder that outputs only a reverse/false pulse when the axis is reversed, the time corresponding to the phase difference between the two types of medium pulse signals and the pulse whose phase is delayed among the two types of pulse signals. The above two types of pulse signals are each controlled by a synchronized clock signal with a period less than the shorter of the time from which the rising edge of the pulse signal leads in phase from the A edge to the Y edge. Not really. The first latch means that outputs the output from the first latch means #11 and the output from the first latch means O to the synchronized taro,! I'm going to stop by the signal @! 6 latch means and forward/reverse data are stored in advance, and the output signals of the first and second latch means are accepted as address data to form the address data. When the relationship is such that the normal rotation of the final signal is established, the normal rotation data is outputted as the positive@/false sign, and the phase relationship of the four signals is the same as the /l.
9. An output circuit for a pulse encoder, comprising: storage means for outputting reversal data as the reversal pulse signal when the relationship indicates reversal of the pulse encoder.
(2)  互いに位相がずれかつ軸の正転時と逆転時に
おける互いの位相関係が逆転する同波形の2種類の/4
ルス信号を軸の回@に対応して出力するa4ルスエンフ
ー/に接続され、軸の正転時には正転パルス信号のみを
、また軸の逆転時には遊転パルスのみを出力するΔルス
エンX −/の出力回路において、前記2種類のパルス
信号の位相差に対応する時間と前記2種類のパルス信号
のうち位相が遷れているパルス信号の立上が)端から位
相が進んでいるパルス信号の立下−IIXD端までの時
間とOうち短い方の時間以下の周期の同期クロツタ信号
によって前記2種類のパルス信号を各別にラッチする第
10ラツチ手段と、該第1のラッチ手段の出力を前記同
期クロツタ信号によってラッチする第2のラッチ手段と
、予め正逆転データが記憶され、前記第1および第2の
ラッチ4段の出方信号をアドレスデータとして受入して
前記アドレスデータを形成する4つの信号の位相関係が
前記パルスエンコーダO正転を示唆する関係となってい
るときに正@データを前記正転パルス信号として出力し
、前記4つの信号の位相関係が前記Δルスエンコー〆の
逆転を示唆する関係と表りているときに逆転データを前
記逆転/豐ルス信号として出力する記憶手段とを具え、
前記記憶手段に記憶されている正転データと逆転データ
のうち、特定のデータを選択して出力する丸めのアドレ
スデータを前記アドレスデータに付加し九ことを特徴と
するパルスエンコーメo出力回路。
(2) Two types of /4 of the same waveform that are out of phase with each other and whose phase relationship is reversed when the shaft rotates forward and reverse.
It is connected to the a4 Lusenfu/ which outputs a Luss signal corresponding to the rotation of the shaft, and the ΔLusen In the output circuit, the time corresponding to the phase difference between the two types of pulse signals and the rising edge of the pulse signal whose phase is shifted among the two types of pulse signals are the same as the rising edge of the pulse signal whose phase is leading from the edge. A tenth latch means for latching each of the two types of pulse signals separately by a synchronization clock signal having a period less than the shorter of the time to the lower IIXD end and the time O, and the output of the first latch means is synchronized with the output of the first latch means. a second latch means that latches in response to a clock signal; and four signals that store forward/reverse data in advance and receive output signals from the four stages of the first and second latches as address data to form the address data. When the phase relationship of the pulse encoder O indicates normal rotation, positive @ data is output as the normal rotation pulse signal, and the phase relationship of the four signals suggests a reversal of the ∆ pulse encoder. storage means for outputting reversal data as the reversal/reversal signal when the relationship is expressed,
A pulse encoder output circuit characterized in that rounded address data is added to the address data to select and output specific data from among the forward rotation data and reverse rotation data stored in the storage means.
JP20885081A 1981-10-26 1981-12-23 Output circuit of pulse encoder Granted JPS58109812A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP20885081A JPS58109812A (en) 1981-12-23 1981-12-23 Output circuit of pulse encoder
US06/427,926 US4578748A (en) 1981-10-26 1982-09-29 Positioning control system
DE19823237857 DE3237857A1 (en) 1981-10-26 1982-10-13 POSITIONING CONTROL SYSTEM
SE8206032A SE461119B (en) 1981-10-26 1982-10-25 POSITIONING CONTROL DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20885081A JPS58109812A (en) 1981-12-23 1981-12-23 Output circuit of pulse encoder

Publications (2)

Publication Number Publication Date
JPS58109812A true JPS58109812A (en) 1983-06-30
JPH0245804B2 JPH0245804B2 (en) 1990-10-11

Family

ID=16563136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20885081A Granted JPS58109812A (en) 1981-10-26 1981-12-23 Output circuit of pulse encoder

Country Status (1)

Country Link
JP (1) JPS58109812A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58210516A (en) * 1982-06-01 1983-12-07 Amada Co Ltd Direction discrimination circuit for output of pluse encoder
JPS59190617A (en) * 1983-04-13 1984-10-29 Hitachi Ltd Number-of-rotation detecting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7161967B2 (en) * 2019-04-08 2022-10-27 株式会社エー・アンド・デイ Rotation analyzer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5093737A (en) * 1973-12-20 1975-07-26

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5093737A (en) * 1973-12-20 1975-07-26

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58210516A (en) * 1982-06-01 1983-12-07 Amada Co Ltd Direction discrimination circuit for output of pluse encoder
JPH0252808B2 (en) * 1982-06-01 1990-11-14 Amada Co Ltd
JPS59190617A (en) * 1983-04-13 1984-10-29 Hitachi Ltd Number-of-rotation detecting device

Also Published As

Publication number Publication date
JPH0245804B2 (en) 1990-10-11

Similar Documents

Publication Publication Date Title
JPS58109812A (en) Output circuit of pulse encoder
US6107763A (en) Closed loop and open synchronization of the phase switchings in driving a DC motor
EP0310088B1 (en) Digital phase-locked loop system
JPS63253220A (en) Measuring instrument for angle of rotation
US5229843A (en) Circuit for increasing the resolution of a laser gyroscope with clock synchronization
US20240103480A1 (en) Controller for controlling electric motor module equipped with incremental encoder and operation method thereof
JPS58176556A (en) Rotation detector
US20020050939A1 (en) Apparatus and method for an encoder interface module
JPH07101846B2 (en) Digital phase lock loop device
JP2541161B2 (en) Control signal generation circuit for differential signal counter for pulse generator
JPH0750992B2 (en) Encoder for AC servo
JPS6161060A (en) Two-phase pulse directivity discriminating circuit
JPS59132308A (en) Position detecting method
JP2540803B2 (en) Absolute terrain multi-rotation position detector
Gannavarapu et al. Decoding Quadrature Signals using AT90CAN128
JPS638513A (en) Absolute type encoder
JPH03113611A (en) Reference voltage generation circuit
JPH0731630Y2 (en) External event count circuit
SU1541585A1 (en) Device for information delay
JP3045345B2 (en) AC servo encoder
KR890004858Y1 (en) Number of rotation counting circuit
JPH0445306Y2 (en)
SU1256140A1 (en) Digital phase-frequency discriminator
JPH07114362B2 (en) Digital phase lock loop device
JPH01238318A (en) Frequency divider circuit