JPH0245804B2 - - Google Patents

Info

Publication number
JPH0245804B2
JPH0245804B2 JP56208850A JP20885081A JPH0245804B2 JP H0245804 B2 JPH0245804 B2 JP H0245804B2 JP 56208850 A JP56208850 A JP 56208850A JP 20885081 A JP20885081 A JP 20885081A JP H0245804 B2 JPH0245804 B2 JP H0245804B2
Authority
JP
Japan
Prior art keywords
pulse
signal
output
rotation
reverse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56208850A
Other languages
Japanese (ja)
Other versions
JPS58109812A (en
Inventor
Katsuji Tsuruta
Riichi Abe
Seiji Tsujikado
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP20885081A priority Critical patent/JPS58109812A/en
Priority to US06/427,926 priority patent/US4578748A/en
Priority to DE19823237857 priority patent/DE3237857A1/en
Priority to SE8206032A priority patent/SE461119B/en
Publication of JPS58109812A publication Critical patent/JPS58109812A/en
Publication of JPH0245804B2 publication Critical patent/JPH0245804B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/21Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device
    • G05B19/23Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control
    • G05B19/231Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control the positional error is used to control continuously the servomotor according to its magnitude
    • G05B19/232Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control the positional error is used to control continuously the servomotor according to its magnitude with speed feedback only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/33Director till display
    • G05B2219/33083Clock for microprocessor synchronized with pulses from encoder
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/42Servomotor, servo controller kind till VSS
    • G05B2219/42213Position overshoot, axis still moves after stop
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50025Go to reference, switches and dog detect origin, combine with pulse from encoder

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、位相のずれた同波形の2種類のパル
ス信号を軸の回転に対応して発生するパルスエン
コーダの出力回路に関する。 一般に、位置決め制御系の位置検出装置等に用
いられるパルスエンコーダは、第1図に示すよう
にその軸の回転に対応した、かつ、互いに位相が
90゜ずれた同波形の2種類のパルス信号PA,PB
発生し、それらのパルス信号はパルスエンコーダ
の軸の正転時と逆転時とで位相関係が逆転する。
すなわち、パルスエンコーダの軸が正転している
ときには、同図に示したようにした信号PAの位
相が信号PBの位相よりも90゜進み、軸が逆転して
いるときは、信号PBの位相が信号PAの位相より
90゜進む。 第2図は、このパルスエンコーダに付設される
出力回路の従来例を示すものである。この回路に
おいて、上記パルス信号PA,PBは波形整形回路
1,2によつて波形整形され、整形されたパルス
信号P′A,P′B(第3図b,c参照)は、後述する
方向判別回路Kに設けられたナンド回路Nd1
Nd2に加えられる。また、該パルス信号P′A,P′B
は微分回路3,4およびシユミツトトリガ回路
5,6によつて所定パルス幅のパルス信号P1
P2(第3図d参照)に変換され、該パルス信号
P1,P2は方向判別回路Kに設けられたTフリツ
プフロツプ7,8のクロツク入力CKに加えられ
る。 上記方向判別回路Kは、上記パルス信号P1
P2,P′A,P′Bに基づき、パルスエンコーダが正転
しているときにパルス信号Pfを、またパルスエン
コーダが逆転しているときにパルス信号Prを各々
形成するものであり、以下この方向判別回路Kの
作用を説明する。 パルス信号PA,PBが出力されないとき、つま
りエンコーダが停止状態にあるとき、初期設定用
のリセツト信号RSがノア回路Nr1,Nr2を介して
Tフリツプフロツプ7,8のリセツト入力Rに加
えられ、同時にインバータ回路IV1,IV2を介して
Dフリツプフロツプ9,10のリセツト入力Rに
上記リセツト信号が入力される。これによつて、
Tフリツプフロツプ7,8およびDフリツプフロ
ツプ9,10がリセツトされるのでそれらの出力
Qはいづれも“0”となる。なお、この初期設定
が終了するとリセツト信号RSは消失する。 かかる状態でパルスエンコーダが正転すると、
第3図dに示した前記パルス信号P2がTフリツ
プフロツプ8をトリガしてその出力信号S1
“1”にさせ、これによつてDフリツプフロツプ
10の入力Dが“1”となる。したがつて、その
後このDフリツプフロツプ10の入力CKに第3
図aに斜線を付して示したクロツク信号PCが入
力されると、該Dフリツプフロツプ10が反転し
てその出力信号S2が第3図fに示す如く“1”に
なる。 しかして、この信号S2はアンド回路Ad2に加え
られるので、該アンド回路Ad2は動作可能とな
り、したがつて、上記クロツク信号PCが立下が
るとインバータ回路IV4と上記アンド回路Ad2とを
介してノア回路Nr2の出力端Qが“0”におかれ
る。このため、Tフリツプフロツプ8がリセツト
されてその出力信号S1が“0”になるので次のク
ロツク信号PCの立上がりでDフリツプフロツプ
10は反転され、その出力信号S2は第3図fに示
したように“0”となる。このとき、パルス信号
P′Aは“1”の状態を継続しており、したがつて、
上記ナンド回路Nd2からは第3図gに示すような
上記クロツク信号PCに同期した信号Pfが出力され
る。 なお、方向判別回路Kに示す各要素Tフリツプ
フロツプ7、Dフリツプフロツプ9、ナンド回路
Nd1およびノア回路Nr1等は、前記シユミツトト
リガ回路5の出力信号P1に対し上記各要素Tフ
リツプフロツプ8、Dフリツプフロツプ10、ナ
ンド回路Nd2およびノア回路Nr2等と同様の作用
をなすものである。すなわち、これらの要素から
なる回路は、パルスエンコーダの軸が逆転した場
合に、上記クロツク信号PCに同期したパルス信
号Prをナンド回路Nd1より出力させる。 上記方向判別回路Kの出力信号Pf,Prは、図示
していない位置決め制御系の位置確認用カウンタ
のアツプ、ダウン入力信号等に使用される。しか
して、上記の例では、上記したクロツク信号PC
として上記位置確認用カウンタの同期クロツク信
号を用いている。 上記した従来の出力回路は、その構成が複雑で
部品数が多いという問題があり、また、パルスエ
ンコーダの出力パルス信号PA,PBの1周期の間
に複数個の出力パルス信号Pf(Pr)を必要とする
場合、全く適用することができないという欠点を
もつ。 本発明は、上述の問題を確決するためになされ
たものである。 本発明によれば、互いに位相がずれかつ軸の正
転時と逆転時において互いの位相関係が逆転する
同波形の2つのパルス信号を軸の回転に対応して
出力するパルスエンコーダの前記軸の最高回転時
における前記2つのパルス信号の位相差に対応す
る時間と前記2つのパルス信号のうち位相が遅れ
ているパルス信号の立上がり端から位相が進んで
いるパルス信号の立下がり端までの時間とのうち
短い時間以下の周期を持つ同期クロツク信号によ
つて前記パルスエンコーダから出力される2つの
パルス信号を各別にラツチする第1のラツチ手段
と、該第1のラツチ手段の出力を前記同期クロツ
ク信号によつて各別にラツチする第2のラツチ手
段と、前記第1および第2のラツチ手段の出力信
号をアドレス信号として受入してこのアドレス信
号の位相関係が前記パルスエンコーダの正転を示
す関係となつているときは前記軸の正転を示す正
転パルスを出力するための正転データ出力し、前
記信号の位相関係が前記パルスエンコーダの逆転
を示す関係となつているときは前記軸の逆転を示
す逆転パルスを出力するための逆転データを出力
するよう正転および逆転データを各アドレスに予
め記憶し、入力されたアドレス信号に対応して記
憶した正逆転データを出力する記憶手段とを具え
たパルスエンコーダの出力回路において、 前記パルスエンコーダから出力されるパルス信
号の1周期中における前記正転および逆転パルス
の個数を選択設定する選択信号を発生し、この選
択信号を前記記憶手段に前記アドレス信号の上位
アドレス信号として入力する選択信号発生手段を
具えるとともに、前記記憶手段は、前記上位アド
レス信号によつて記憶領域を前記選択信号発生手
段の選択設定数に対応した数に分割され、これら
分割された各記憶領域にはそれぞれ異なる個数の
正転および逆転パルスを発生する正逆転データを
記憶するようにして上記目的を達成している。 以下、本発明を添附図面の実施例に基づいて詳
細に説明する。 第4図は本発明に係るパルスエンコーダの出力
回路の一実施例を示すものである。 この回路において、第5図b,cに示した前記
パルスエンコーダの正転時における出力パルス信
号PA,PBは、各々波形整形回路11,12を介
して第1のラツチ手段としてのラツチ回路13,
14に加えられる。ラツチ回路13,14はラツ
チ入力Lに加わる同期クロツク信号PC(第5図a
参照)の立ち上がり端で上記パルス信号PA,PB
をラツチするものであり、第5図d,eに示した
それらの出力信号AD0,AD1は後述する記憶手段
としてのROM(読み出し専用メモリ)15のア
ドレス入力A0,A1および第2のラツチ手段とし
てのラツチ回路16,17に加えられる。ラツチ
回路16,17は、ラツチ入力Lに加わる上記同
期クロツク信号PCの立上がりで信号AD0,AD1
ラツチするものであり、その出力信号AD2,AD3
(第5図f,g参照)は上記ROM15のアドレ
ス入力端A2,A3に加えられる。なお、ROM15
のアドレス入力端A4,A5には、上記パルス信号
PA,PBの周期T間に出力する後述のパルス信号
Pf,Prの数を選択設定する図示しない選択信号発
生手段からアドレスデータAD4,AD5が加えられ
る。また、前記同期クロツク信号の周期はτはパ
ルスエンコーダが取付けられる軸が最高回転を行
つたときのパルス信号PA,PBの1/4周期より短く
設定している。 上記ROM15には、下記第1表に示すデータ
D1,D2が記憶されており、その各アドレス入力
端A0〜A5に加わる上記各アドレスデータAD0
AD5により選択される記憶データD1,D2がその
データ出力端O1,O2から出力される。
The present invention relates to an output circuit for a pulse encoder that generates two types of pulse signals having the same waveform but out of phase in response to rotation of a shaft. In general, pulse encoders used in position detection devices of positioning control systems, etc., correspond to the rotation of their shafts and are out of phase with each other, as shown in Figure 1.
Two types of pulse signals P A and P B with the same waveform shifted by 90 degrees are generated, and the phase relationship of these pulse signals is reversed when the shaft of the pulse encoder rotates forward and backward.
In other words, when the axis of the pulse encoder is rotating in the normal direction, the phase of the signal P A as shown in the figure leads the phase of the signal P B by 90 degrees, and when the axis is rotating in the reverse direction, the phase of the signal P A is 90 degrees ahead of the phase of the signal P B. The phase of B is less than the phase of signal P A.
Go 90 degrees. FIG. 2 shows a conventional example of an output circuit attached to this pulse encoder. In this circuit, the pulse signals P A and P B are waveform-shaped by waveform shaping circuits 1 and 2, and the shaped pulse signals P' A and P' B (see Fig. 3 b and c) are described later. A NAND circuit N d1 provided in the direction discriminating circuit K,
Added to N d2 . In addition, the pulse signals P′ A , P′ B
is a pulse signal P 1 of a predetermined pulse width by the differentiating circuits 3 and 4 and the Schmitt trigger circuits 5 and 6.
P 2 (see Figure 3d), and the pulse signal
P 1 and P 2 are applied to clock inputs CK of T flip-flops 7 and 8 provided in the direction determining circuit K. The direction discrimination circuit K receives the pulse signal P 1 ,
Based on P 2 , P′ A , and P′ B , a pulse signal P f is formed when the pulse encoder is rotating in the forward direction, and a pulse signal P r is formed when the pulse encoder is rotating in the reverse direction. The operation of this direction determining circuit K will be explained below. When the pulse signals P A and P B are not output, that is, when the encoder is in a stopped state, the reset signal RS for initial setting is added to the reset input R of the T flip-flops 7 and 8 via the NOR circuits N r1 and N r2 . At the same time, the reset signal is input to the reset inputs R of the D flip-flops 9 and 10 via the inverter circuits IV1 and IV2 . By this,
Since the T flip-flops 7 and 8 and the D flip-flops 9 and 10 are reset, their outputs Q become "0". Note that when this initial setting is completed, the reset signal RS disappears. If the pulse encoder rotates forward in this condition,
The pulse signal P 2 shown in FIG. 3d triggers the T flip-flop 8 to cause its output signal S 1 to go to "1", which causes the input D of the D flip-flop 10 to go to "1". Therefore, after that, the input CK of this D flip-flop 10 is
When the clock signal P C shown shaded in FIG. 3A is input, the D flip-flop 10 is inverted and its output signal S 2 becomes "1" as shown in FIG. 3F. Since this signal S 2 is applied to the AND circuit A d2 , the AND circuit A d2 becomes operational. Therefore, when the clock signal P C falls, the inverter circuit I V4 and the AND circuit A d2 The output terminal Q of the NOR circuit Nr2 is set to "0" via the NOR circuit Nr2 . Therefore, the T flip-flop 8 is reset and its output signal S1 becomes "0", so that the D flip-flop 10 is inverted at the next rising edge of the clock signal PC , and its output signal S2 is shown in FIG. 3f. It becomes “0” as shown in the figure. At this time, the pulse signal
P′ A continues to be in the “1” state, therefore,
The NAND circuit Nd2 outputs a signal Pf synchronized with the clock signal PC as shown in FIG. 3g. In addition, each element shown in the direction discrimination circuit K is a T flip-flop 7, a D flip-flop 9, and a NAND circuit.
The Nd1 , NOR circuit Nr1 , etc. have the same effect on the output signal P1 of the Schmitt trigger circuit 5 as the above-described elements T flip-flop 8, D flip-flop 10, NAND circuit Nd2 , NOR circuit Nr2 , etc. be. That is, the circuit made up of these elements causes the NAND circuit Nd1 to output a pulse signal Pr synchronized with the clock signal PC when the axis of the pulse encoder is reversed. The output signals P f and P r of the direction determining circuit K are used as up and down input signals for a position confirmation counter of a positioning control system (not shown). Therefore, in the above example, the clock signal P C
The synchronous clock signal of the position confirmation counter is used as the position confirmation counter. The conventional output circuit described above has a problem that its configuration is complicated and the number of parts is large. Also, a plurality of output pulse signals P f ( P r ), it has the disadvantage that it cannot be applied at all. The present invention has been made to solve the above-mentioned problem. According to the present invention, the shaft of the pulse encoder outputs two pulse signals having the same waveform, which are out of phase with each other and whose phase relationship is reversed when the shaft rotates forward and backward, in response to the rotation of the shaft. The time corresponding to the phase difference between the two pulse signals at the time of maximum rotation, and the time from the rising edge of the pulse signal whose phase is delayed to the falling edge of the pulse signal whose phase is leading among the two pulse signals. a first latch means for separately latching two pulse signals outputted from the pulse encoder using a synchronized clock signal having a cycle shorter than the shortest time; a second latch means for latching each latch individually according to a signal; and a phase relation between the address signals which receives the output signals of the first and second latch means as an address signal and indicates normal rotation of the pulse encoder. When it is, normal rotation data is output to output a normal rotation pulse indicating normal rotation of the axis, and when the phase relationship of the signal is such that the pulse encoder is in a reverse rotation, the rotation data of the axis is output. A storage means that stores forward and reverse rotation data in advance at each address so as to output reverse rotation data for outputting a reverse pulse indicating reverse rotation, and outputs the stored forward and reverse rotation data in response to an input address signal. In the output circuit of the pulse encoder comprising: generating a selection signal for selectively setting the number of the forward rotation and reverse rotation pulses in one cycle of the pulse signal output from the pulse encoder, and storing the selection signal in the storage means; The storage means includes a selection signal generation means inputted as an upper address signal of an address signal, and the storage means divides a storage area into a number corresponding to the number of selections set by the selection signal generation means by the upper address signal, The above object is achieved by storing forward and reverse data that generates different numbers of forward and reverse rotation pulses in each of these divided storage areas. Hereinafter, the present invention will be described in detail based on embodiments shown in the accompanying drawings. FIG. 4 shows an embodiment of an output circuit of a pulse encoder according to the present invention. In this circuit, the output pulse signals P A and P B during normal rotation of the pulse encoder shown in FIGS. 13,
Added to 14. The latch circuits 13 and 14 are connected to a synchronous clock signal P C (see Fig. 5a) applied to the latch input L.
The above pulse signals P A , P B are generated at the rising edge of
The output signals AD 0 and AD 1 shown in FIGS. The latch circuits 16 and 17 are added as latch means. The latch circuits 16 and 17 latch the signals AD 0 and AD 1 at the rising edge of the synchronous clock signal PC applied to the latch input L, and their output signals AD 2 and AD 3
(See FIGS. 5f and 5g) are applied to the address input terminals A 2 and A 3 of the ROM 15. In addition, ROM15
The above pulse signal is applied to address input terminals A 4 and A 5 of
Pulse signal (described later) output during period T of P A and P B
Address data AD 4 and AD 5 are applied from a selection signal generating means (not shown) that selects and sets the numbers of P f and P r . Further, the period τ of the synchronous clock signal is set to be shorter than 1/4 period of the pulse signals P A and PB when the shaft to which the pulse encoder is attached rotates at its maximum. The above ROM15 contains the data shown in Table 1 below.
D 1 and D 2 are stored, and each of the above address data AD 0 to A 5 is added to each address input terminal A 0 to A 5.
The stored data D 1 , D 2 selected by AD 5 are outputted from its data output terminals O 1 , O 2 .

【表】【table】

【表】 第4図に示した回路は、上記ROM15の出力
データD1またはD2により上記パルスエンコーダ
の出力パルス信号PA,PBの周期T間に、クロツ
クパルス信号PCに同期した最高4個の正転パル
ス信号Pfまたは逆転パルス信号Prを得ることがで
きる。以下、その作用をパルスエンコーダが正転
した場合のタイミングチヤートを示した第5図を
参照しながら説明する。 いま、上記周期T間に1個の正転パルスPfを得
るべくアドレスデータAD4,AD5を各々“0”、
“0”に設定すると、上記4個のアドレスデータ
AD0〜AD3の変化に対応して、前記表の領域Aに
示す16個のデータD1,D2のいづれかが上記クロ
ツク信号PCの発生周期で選択される。 上記パルスエンコーダの正転時における上記ア
ドレスデータAD0〜AD3は、第5図d〜gに示す
位相関係をもつので、上記アドレスデータAD0
AD1,AD2,AD3が“1”、“0”、“0”、“0”に
なつたときのみ、つまり同図に示すt1,t′1,t″1
点でのみ正転データD1が“0”に変化し(前記
表の領域Aに“正”で示す)、この状態は次のク
ロツク信号PCが発生してアドレスデータAD2
“1”になるまで継続される。この結果上記
ROM15の正転側出力端O1から同図hに示すよ
うにクロツク信号PCに同期した負極性のパルスPf
が上記周期T間1個出力される。 前記表の領域Aにおいて、上記アドレスデータ
AD0,AD1,AD2,AD3が“0”、“0”、“1”、
“0”となつた場合に上記ROM15の記憶デー
タD2が“0”に変化するが、第5図に示す上記
エンコーダの出力パルス信号PA,PBの位相関係
において、上記データAD0,AD1,AD2,AD3
“0、0、1、0”になることはなく、したがつ
て、ROM15の逆転側出力端O2の出力データD2
は、第5図iに示すごとく全く変化することなく
“1”状態におかれる。 つぎに、上記エンコーダが逆転するときには、
上記回路が第6図に示すタイミング動作をするの
で、上記アドレスデータAD0,AD1,AD2,AD3
が“0”、“0”、“1”、“0”になつたとき(前記
表の領域Aに“逆”で示す)のみ上記ROM15
の逆転出力端O2の出力データD2が“0”になる。
したがつて同図iに示したように、上記周期Tの
間にクロツク信号PCに同期した1個の負極性パ
ルス信号Prが上記ROM15より出力される。も
ちろんこの場合には上記アドレスデータAD0
AD1,AD2,AD3が“1”、“0”、“0”、“0”に
なることはないので、同図hに示したように、上
記ROM15の正転出力端O1の出力データD1
“1”の状態を保持する。 かくして、上記アドレスデータAD4,AD5
“0”、“0”に設定されている場合において、上
記エンコーダが正転または逆転するときには、そ
の出力パルス信号PA,PBの周期T間に1個の正
転パルス信号Pfまたは逆転パルス信号Prが各々上
記ROM15より出力される。 本発明の装置は、アドレスデータAD4,AD5
変化させることにより、上記パルスエンコーダ出
力PA,PBの一周期Tの間に2〜4個の出力パル
スを得ることができ、たとえば、前記表の領域B
に示すようにアドレスデータAD4,AD5を各々
“0”、“1”とした場合には、“正”および“逆”
で示す如くエンコーダの正転および逆転時に各々
2個のパルス信号PfおよびPrが上記周期T内に発
生する。そして、前記表の領域CおよびDに示す
ように、アドレスデータAD4,AD5が各々“1”、
“0”および“1”、“1”に設定されている場合
には、上記周期Tの間において3個および4個の
正逆転パルス信号Pf,Prが上記クロツク信号PC
同期して、上記ROM15より出力される。 上述の実施例においてはパルス信号PAとPB
の位相差を該パルス信号PA,PBの4分の1周期
として説明したが、この位相差は4分の1周期に
限るものではなく、第7図a,bに示したように
パルス信号P′AとP′Bとの位相差φ1が4分の1周期
よりも小さい場合、および、第7図c,dに示し
たようにパルス信号P″AとP″Bとの位相差φ′1が4
分の1周期よりも大きい場合にも、同様に適用す
ることができる。ただし、パルス信号P′AとP′B
の位相差φ1が4分の1周期よりも小さい場合も
上記クロツク信号としてパルスエンコーダが取付
けられる軸が最高回転を行つたときの位相差φ1
以下の周期のクロツク信号PCを用いる必要があ
り、また、パルス信号P″AとP″Bとの位相差φ′1
4分の1周期よりも大きい場合は上記クロツク信
号としてパルスエンコーダが取付けられる軸が最
高回転を行つたときのパルス信号P″Bの立上がり
端からパルス信号P″Aの立下がり端までの期間φ2
(第7図d参照)以下の周期のクロツク信号PC
用いる必要がある。なぜならば、第5図および第
6図のようにパルス信号PA,PBの位相差が90゜の
ときおよび第7図に示したような位相差φ1
φ1′のときのいずれの場合においても、これら位
相差よりクロツク信号PCの周期τが大きい場合
には、ラツチ回路13,14,16,17から出
力されるアドレスデータAD0〜AD3の周期性がく
ずれ、ROM15から軸の回転に対応する正転パ
ルス信号Pf逆転パルス信号Prを正確に出力し得な
くなるからである。 以上説明したように、本発明によればパルスエ
ンコーダの出力パルス信号の1周期間に複数個
(最大4個)の正逆転データを得ることができ、
パルスエンコーダの分解能を向上できる。また、
ROMに予め正逆転データを記憶させておき、そ
れらのデータをパルスエンコーダの出力パルスの
位相関係を示すアドレスデータで選択出力させる
ようにしているので回路の簡単化が計れる。
[Table] The circuit shown in FIG. 4 uses the output data D 1 or D 2 of the ROM 15 to generate up to 4 pulses synchronized with the clock pulse signal P C during the period T of the output pulse signals P A and P B of the pulse encoder. It is possible to obtain forward rotation pulse signals P f or reverse rotation pulse signals P r . The operation will be described below with reference to FIG. 5, which shows a timing chart when the pulse encoder rotates in the normal direction. Now, in order to obtain one forward rotation pulse P f during the above period T, address data AD 4 and AD 5 are set to "0", respectively.
When set to “0”, the above four address data
Corresponding to the changes in AD 0 to AD 3 , one of the 16 pieces of data D 1 and D 2 shown in area A of the table is selected at the generation cycle of the clock signal PC . The address data AD 0 to AD 3 during normal rotation of the pulse encoder have the phase relationships shown in FIG. 5 d to g, so that the address data AD 0 ,
Normal rotation occurs only when AD 1 , AD 2 , AD 3 become "1", "0", "0", "0", that is, only at time t 1 , t' 1 , t'' 1 shown in the same figure. Data D1 changes to "0" (indicated by "positive" in area A of the table above), and this state continues until the next clock signal P C is generated and address data AD2 becomes "1". As a result, the above
A negative polarity pulse P f synchronized with the clock signal P C is output from the normal rotation side output terminal O 1 of the ROM 15 as shown in h in the figure.
is output once during the period T. In area A of the table, the above address data
AD 0 , AD 1 , AD 2 , AD 3 are “0”, “0”, “1”,
When the data becomes "0", the data D2 stored in the ROM 15 changes to "0", but in the phase relationship of the output pulse signals P A and P B of the encoder shown in FIG. 5, the data AD0 , AD 1 , AD 2 , AD 3 will never become “0, 0, 1, 0”, therefore, the output data D 2 of the reverse side output terminal O 2 of the ROM 15
is kept in the "1" state without changing at all, as shown in FIG. 5i. Next, when the above encoder reverses,
Since the above circuit performs the timing operation shown in FIG. 6, the above address data AD 0 , AD 1 , AD 2 , AD 3
The above ROM 15 is activated only when the value becomes “0”, “0”, “1”, or “0” (indicated by “reverse” in area A of the table above).
The output data D2 of the reverse rotation output terminal O2 becomes "0".
Therefore, as shown in FIG. 1, one negative pulse signal P r synchronized with the clock signal P C is outputted from the ROM 15 during the period T. Of course, in this case, the above address data AD 0 ,
Since AD 1 , AD 2 , and AD 3 never become "1", "0", "0", or "0", as shown in Figure h, the normal output terminal O 1 of the ROM 15 is Output data D1 maintains the state of "1". Thus, when the address data AD 4 and AD 5 are set to "0" and "0", when the encoder rotates forward or reverse, the period T of the output pulse signals P A and P B is One forward rotation pulse signal P f or one reverse rotation pulse signal P r is outputted from the ROM 15, respectively. The device of the present invention can obtain 2 to 4 output pulses during one period T of the pulse encoder outputs P A and PB by changing the address data AD 4 and AD 5 , for example, Area B of the table above
As shown in the figure, when address data AD 4 and AD 5 are set to “0” and “1” respectively, “forward” and “reverse”
As shown in , two pulse signals P f and P r are generated within the period T when the encoder rotates forward and backward, respectively. Then, as shown in areas C and D of the table, address data AD 4 and AD 5 are "1" and "1", respectively.
When set to "0", "1", and "1", the three and four forward/reverse pulse signals P f and P r are synchronized with the clock signal P C during the period T. The data is output from the ROM 15. In the above embodiment, the phase difference between the pulse signals P A and P B was explained as being one-quarter period of the pulse signals P A and P B , but this phase difference is not limited to one-fourth period. In the case where the phase difference φ 1 between the pulse signals P′ A and P′ B is smaller than one-quarter period as shown in Fig. 7 a and b, and when the phase difference φ 1 between the pulse signals P′ A and P′ B is smaller than one-quarter period, As such, the phase difference φ′ 1 between pulse signals P″ A and P″ B is 4
The same can be applied to cases where the period is larger than one-quarter period. However, even if the phase difference φ 1 between the pulse signals P' A and P' B is smaller than 1/4 period, the phase difference φ 1 when the shaft to which the pulse encoder is attached rotates to its maximum is used as the above clock signal.
It is necessary to use a clock signal P C with the following period, and if the phase difference φ' 1 between the pulse signals P''A and P''B is larger than 1/4 period, the pulse encoder is used as the clock signal. Period from the rising edge of pulse signal P″ B to the falling edge of pulse signal P″ A when the attached shaft rotates at maximum speed φ2
(See Figure 7d) It is necessary to use a clock signal P C with the following period. This is because when the phase difference between the pulse signals P A and P B is 90° as shown in FIGS. 5 and 6, and when the phase difference φ 1 as shown in FIG.
In any case when φ 1 ', if the period τ of the clock signal P C is larger than these phase differences, the address data AD 0 to AD 3 output from the latch circuits 13, 14, 16, and 17 This is because the periodicity is disrupted and the ROM 15 cannot accurately output the forward rotation pulse signal P f and the reverse rotation pulse signal P r corresponding to the rotation of the shaft. As explained above, according to the present invention, it is possible to obtain a plurality of pieces (up to 4 pieces) of forward/reverse data during one period of the output pulse signal of the pulse encoder.
The resolution of the pulse encoder can be improved. Also,
Forward/reverse data is stored in the ROM in advance, and these data are selectively output using address data indicating the phase relationship of the output pulses of the pulse encoder, thereby simplifying the circuit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a,bは、パルスエンコーダの出力パル
ス信号の一例を示す波形図、第2図は、パルスエ
ンコーダの出力回路の従来例を示すブロツク図、
第3図a〜gは、第2図に示した回路の動作を示
したタイミングチヤート、第4図は、本発明に係
るパルスエンコーダの出力回路の一実施例を示す
ブロツク図、第5図a〜iおよび第6図a〜i
は、第4図に示した実施例の動作の一例を示すタ
イミングチヤート、第7図a〜dは、パルスエン
コーダの出力パルス信号の他の例を示す波形図で
ある。 11,12……波形整形回路、13,14,1
6,17……ラツチ回路、15……ROM(読み
出し専用メモリ)。
1A and 1B are waveform diagrams showing an example of an output pulse signal of a pulse encoder, and FIG. 2 is a block diagram showing a conventional example of an output circuit of a pulse encoder.
3a to 3g are timing charts showing the operation of the circuit shown in FIG. 2, FIG. 4 is a block diagram showing an embodiment of the output circuit of the pulse encoder according to the present invention, and FIG. 5a -i and Figure 6 a-i
7 is a timing chart showing an example of the operation of the embodiment shown in FIG. 4, and FIGS. 7a to 7d are waveform charts showing other examples of output pulse signals of the pulse encoder. 11, 12... Waveform shaping circuit, 13, 14, 1
6, 17...Latch circuit, 15...ROM (read-only memory).

Claims (1)

【特許請求の範囲】 1 互いに位相がずれかつ軸の正転時と逆転時に
おいて互いの位相関係が逆転する同波形の2つの
パルス信号を軸の回転に対応して出力するパルス
エンコーダの前記軸の最高回転時における前記2
つのパルス信号の位相差に対応する時間と前記2
つのパルス信号のうち位相が遅れているパルス信
号の立上がり端から位相が進んでいるパルス信号
の立下がり端までの時間とのうち短い時間以下の
周期を持つ同期クロツク信号によつて前記パルス
エンコーダから出力される2つのパルス信号を各
別にラツチする第1のラツチ手段と、 該第1のラツチ手段の出力を前記同期クロツク
信号によつて各別にラツチする第2のラツチ手段
と、 前記第1および第2のラツチ手段の出力信号を
アドレス信号として受入してこのアドレス信号の
位相関係が前記パルスエンコーダの正転を示す関
係となつているときは前記軸の正転を示す正転パ
ルスを出力するための正転データ出力し、前記信
号の位相関係が前記パルスエンコーダの逆転を示
す関係となつているときは前記軸の逆転を示す逆
転パルスを出力するための逆転データを出力する
よう正転および逆転データを各アドレスに予め記
憶し、入力されたアドレス信号に対応して記憶し
た正逆転データを出力する記憶手段とを具えたパ
ルスエンコーダの出力回路において、 前記パルスエンコーダから出力されるパルス信
号の1周期中における前記正転および逆転パルス
の個数を選択設定する選択信号を発生し、この選
択信号を前記記憶手段に前記アドレス信号の上位
アドレス信号として入力する選択信号発生手段を
具えるとともに、 前記記憶手段は、前記上位アドレス信号によつ
て記憶領域を前記選択信号発生手段の選択設定数
に対応した数に分割され、これら分割された各記
憶領域にはそれぞれ異なる個数の正転および逆転
パルスを発生する正逆転データを記憶するように
したことを特徴とするパルスエンコーダの出力回
路。
[Scope of Claims] 1. The shaft of a pulse encoder that outputs two pulse signals of the same waveform that are out of phase with each other and whose phase relationship is reversed when the shaft rotates forward and backward, in response to rotation of the shaft. 2 above at the maximum rotation of
The time corresponding to the phase difference between the two pulse signals and the time corresponding to the phase difference between the two pulse signals.
The clock signal is transmitted from the pulse encoder by a synchronous clock signal having a period shorter than the time from the rising edge of the pulse signal whose phase is delayed to the falling edge of the pulse signal whose phase is leading among the two pulse signals. a first latch means for individually latching the two output pulse signals; a second latch means for separately latching the output of the first latch means by the synchronous clock signal; The output signal of the second latch means is received as an address signal, and when the phase relationship of the address signal indicates normal rotation of the pulse encoder, a normal rotation pulse indicating normal rotation of the shaft is outputted. When the phase relationship of the signals is such that the pulse encoder indicates a reverse rotation, outputs reverse rotation data for outputting a reverse pulse indicating a reverse rotation of the shaft. In an output circuit of a pulse encoder, the output circuit includes a memory means for storing reverse data in each address in advance and outputting forward and reverse data stored in correspondence with an input address signal, further comprising a selection signal generating means for generating a selection signal for selectively setting the number of the forward rotation and reverse rotation pulses in one cycle, and inputting the selection signal to the storage means as an upper address signal of the address signal; The storage means divides the storage area into a number corresponding to the selection setting number of the selection signal generation means according to the upper address signal, and each of these divided storage areas receives a different number of forward and reverse rotation pulses. An output circuit for a pulse encoder, characterized in that forward/reverse data generated is stored.
JP20885081A 1981-10-26 1981-12-23 Output circuit of pulse encoder Granted JPS58109812A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP20885081A JPS58109812A (en) 1981-12-23 1981-12-23 Output circuit of pulse encoder
US06/427,926 US4578748A (en) 1981-10-26 1982-09-29 Positioning control system
DE19823237857 DE3237857A1 (en) 1981-10-26 1982-10-13 POSITIONING CONTROL SYSTEM
SE8206032A SE461119B (en) 1981-10-26 1982-10-25 POSITIONING CONTROL DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20885081A JPS58109812A (en) 1981-12-23 1981-12-23 Output circuit of pulse encoder

Publications (2)

Publication Number Publication Date
JPS58109812A JPS58109812A (en) 1983-06-30
JPH0245804B2 true JPH0245804B2 (en) 1990-10-11

Family

ID=16563136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20885081A Granted JPS58109812A (en) 1981-10-26 1981-12-23 Output circuit of pulse encoder

Country Status (1)

Country Link
JP (1) JPS58109812A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020173093A (en) * 2019-04-08 2020-10-22 株式会社エー・アンド・デイ Rotation analysis device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58210516A (en) * 1982-06-01 1983-12-07 Amada Co Ltd Direction discrimination circuit for output of pluse encoder
JPS59190617A (en) * 1983-04-13 1984-10-29 Hitachi Ltd Number-of-rotation detecting device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5093737A (en) * 1973-12-20 1975-07-26

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5093737A (en) * 1973-12-20 1975-07-26

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020173093A (en) * 2019-04-08 2020-10-22 株式会社エー・アンド・デイ Rotation analysis device

Also Published As

Publication number Publication date
JPS58109812A (en) 1983-06-30

Similar Documents

Publication Publication Date Title
US4308500A (en) Incremental encoder for measuring positions of objects such as rotating shafts
US4328463A (en) Encoder for recording incremental changes
JPH0245804B2 (en)
JPS59161915A (en) Synchronization decoding circuit
US4300039A (en) Incremental encoder
JPS63253220A (en) Measuring instrument for angle of rotation
US4408118A (en) Control network for use in knitting machines and the like
US3831170A (en) Position indicating apparatus and digital circuitry for it
JPH0442606B2 (en)
JP2528965B2 (en) Clock phase control circuit
JPS6118818A (en) Rotary encoder apparatus
JPH0370314A (en) Clock interrupt detection circuit
JPS5831675B2 (en) Memory control method
JP2579551B2 (en) Bit buffer circuit
SU455373A1 (en) Dynamic memory device with phase impulse information representation
SU1758846A1 (en) Reference frequency generator
JPH035946Y2 (en)
JPH0625061Y2 (en) Time generation circuit
JP2693798B2 (en) Control signal generation circuit
JPS63316924A (en) Count pulse generation circuit
JPH0552760U (en) Forward / reverse rotation discrimination circuit
JPH0543544Y2 (en)
SU1231610A1 (en) Shaft turn angle-to-digital converter
JPS6124938Y2 (en)
SU1714520A1 (en) Device for determining sense of shaft rotation