JPS5810912A - Phase shifter - Google Patents

Phase shifter

Info

Publication number
JPS5810912A
JPS5810912A JP10815281A JP10815281A JPS5810912A JP S5810912 A JPS5810912 A JP S5810912A JP 10815281 A JP10815281 A JP 10815281A JP 10815281 A JP10815281 A JP 10815281A JP S5810912 A JPS5810912 A JP S5810912A
Authority
JP
Japan
Prior art keywords
signal
frequency
output
multiplier
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10815281A
Other languages
Japanese (ja)
Inventor
Susumu Otani
進 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP10815281A priority Critical patent/JPS5810912A/en
Publication of JPS5810912A publication Critical patent/JPS5810912A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/16Networks for phase shifting
    • H03H11/20Two-port phase shifters providing an adjustable phase shift

Abstract

PURPOSE:To increase the varying range for a phase control and to improve the linearity, by synthesizing an output of the 1st frequency multiplier via a 2-branch circuit and a phase shift means and an output of the 2nd multiplier multiplying the output of the branch circuit and connected in parallel with said circuits, with a multiplier and passing through only a specific frequency with a filter. CONSTITUTION:A signal applied to an input terminal 4 is branched into two; one is applied to a phase shift circuit 22 and subjected to a phase shift of theta=k vC with a control voltage vC from a terminal 5. This signal is multiplied by N for the frequency with a frequency N-multiplier 23. Another output signal of a signal branch circuit 21 is applied to frequency (N-1)-multiplier 24, where the frequency is multiplied by (N-1). The signal multiplied by N and that multiplied by (N-1) are applied to a multiplier 25 for multiplication and outputted via a band-pass filter 26. This output signal has a value of N-multiplication to the phase shift theta of the phase circuit 22.

Description

【発明の詳細な説明】 本発明は、各種通信機器に使用される位相制御用の位相
推移器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a phase shifter for phase control used in various communication devices.

従来、この種位相推移器の代表的な使用例として、先頭
部にクロック再生に適した前置語を持つ・ぐ−スト信号
用のクロック再生装置を挙げることができる。このクロ
ック再生装置は、第1図のブロック図に見られるように
構成されている。この図において、1は受信変調波入力
端子、2はサンプルホールド信号入力端子、3は再生ク
ロック出力端子、11はクロック成分抽出回路、12は
位相比較回路、13はサンゾルホールド回路、14はク
ロック周波数とほぼ等しい周波数で発振する発振回路、
15は位相推移器である。端子lに受信入力変調波が与
えられると、クロック成分抽出回路11において入力変
調波からクロック成分が抽出される。このクロック成分
と発振回路14の出力との位相差が位相比較回路12で
比較され。
Conventionally, a typical example of the use of this type of phase shifter is a clock regeneration device for a Gust signal having a prefix word suitable for clock regeneration at the beginning. This clock recovery device is constructed as shown in the block diagram of FIG. In this figure, 1 is a received modulated wave input terminal, 2 is a sample and hold signal input terminal, 3 is a reproduced clock output terminal, 11 is a clock component extraction circuit, 12 is a phase comparison circuit, 13 is a Sanzor hold circuit, and 14 is a clock An oscillation circuit that oscillates at a frequency approximately equal to the
15 is a phase shifter. When a received input modulated wave is applied to the terminal l, a clock component is extracted from the input modulated wave in the clock component extraction circuit 11. A phase comparison circuit 12 compares the phase difference between this clock component and the output of the oscillation circuit 14.

その位相差に対応する出力はサンプルホールド回路13
に加えられる。この加えられた入力は、サンプルホール
ド回路13において、信号対雑音電力比(SA)改善の
為に積分されるとともに、外部よ多端子2に印加される
サンプルホールドパルスによシ前置語の最後よシ少し前
でサンプルホールドされる。このサンプルホールドされ
た電圧は位相推移器15へ印加され1発振器14から与
えられた入力信号の位相をシフトさせた後再生信号とし
て端子3に導かれる。
The output corresponding to the phase difference is the sample hold circuit 13.
added to. This added input is integrated in the sample-and-hold circuit 13 to improve the signal-to-noise power ratio (SA), and is also applied to the sample-and-hold pulse applied to the multi-terminal 2 from the outside. The sample will be held a little while ago. This sampled and held voltage is applied to the phase shifter 15 to shift the phase of the input signal applied from the oscillator 14, and then guided to the terminal 3 as a reproduced signal.

上記の動作を第2図のタイムチャートを参照して説明す
ると、波形(、)は発振回路14の出力とクロック成分
抽出回路11によシ抽出された受信信号り、ロックとの
位相誤差が08を保っている状態を示している。(b)
は位相比較器12の出力信号であり、 kdθ。の電圧
(kdは位相比較器の検波感度)が出力として発生して
いる。(c)はサンプルホールド回路13において9位
相比較器12から与えられた出力を積分する状態を示し
たものである。この積分されたピーク付近における値は
、(d)の外部より供給されるサンプルホールドパルス
によシサンプルホールドされる。(e)は上記(d)の
サンプルホールドパルスによシサンプルホールドされた
電圧を示す。この電圧は位相推移器15へ印加され、入
力に加えられたクロックの位相を制御する。ここに+V
jは先行バースト信号のクロックに対する制御用電圧で
ある。このようにして得られた制御電圧v0によシ1位
相推移器15の位相がシフトされる一方1発振器14の
出力信号の位相も制御(図に見られない)さh+受信信
号クロックと同期した位相を有するクロックが再生され
る。一般に、受信信号クロックと発信器14との位相差
は±πに一様分布する為1位相推移器15の位相可変範
囲は少なくとも±π以上必要であるが、このような制御
方式においては、使用される位相推移器がリアクタンス
素子で構成される為、その位相可変範囲は最大90oで
あり、可変範囲を大きく取ることが難かしい。また1位
相の制御特性に対する直線性の補償が得られないという
欠点があった。
To explain the above operation with reference to the time chart in FIG. 2, the waveform (,) is the output of the oscillation circuit 14 and the received signal extracted by the clock component extraction circuit 11, and the phase error between the lock and the output is 08. It shows that the condition is maintained. (b)
is the output signal of the phase comparator 12, and kdθ. A voltage of (kd is the detection sensitivity of the phase comparator) is generated as an output. (c) shows the state in which the sample and hold circuit 13 integrates the outputs given from the nine phase comparators 12. The integrated value near the peak is sampled and held by the sample and hold pulse supplied from the outside (d). (e) shows the voltage sampled and held by the sample and hold pulse in (d) above. This voltage is applied to phase shifter 15 to control the phase of the clock applied to the input. +V here
j is a control voltage for the clock of the preceding burst signal. The control voltage v0 obtained in this way shifts the phase of the first phase shifter 15, while also controlling the phase of the output signal of the first oscillator 14 (not shown in the figure) so that it is synchronized with the received signal clock. A clock with phase is recovered. Generally, the phase difference between the received signal clock and the transmitter 14 is uniformly distributed within ±π, so the phase variable range of the single phase shifter 15 must be at least ±π. Since the phase shifter to be used is composed of a reactance element, its phase variable range is a maximum of 90 degrees, and it is difficult to obtain a large variable range. Another drawback is that linearity compensation for one-phase control characteristics cannot be obtained.

本発明の目的は、上記従来の欠点を除去し1位相制御の
可変範囲が大きく、かつ直線性のよい位相推移器を提供
するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a phase shifter that eliminates the above-mentioned conventional drawbacks, has a wide variable range for single-phase control, and has good linearity.

本発明によれば、入力信号を2分岐する信号分岐回路と
、該信号分岐回路の一方の出力をうけて。
According to the present invention, there is a signal branching circuit that branches an input signal into two, and a signal branching circuit that receives the output of one of the signal branching circuits.

その位相をシフトする移相手段と、該移相手段の出力の
周波数をN逓倍(Nは2以上の正の整数)する第1の周
波数逓倍器と、前記信号分岐回路の他方の出力の周波数
をN−1逓倍する第2の周波数逓倍器と、前記第1の周
波数逓倍器の出力と該第2の周波数逓倍器の出力とを周
波数混合する周波数混合器と、該周波数混合器の出力を
うけて前記入力信号の周波数成分のみを通過させる帯域
通過F波器とから成る位相推移器が得られる0次に9本
発明による位相推移器について実施例を挙げ9図面を参
照して説明する。
a first frequency multiplier that multiplies the frequency of the output of the phase shifter by N (N is a positive integer of 2 or more); and a frequency of the other output of the signal branch circuit. a second frequency multiplier that multiplies N-1, a frequency mixer that frequency mixes the output of the first frequency multiplier and the output of the second frequency multiplier, and the output of the frequency mixer In response to this, a phase shifter consisting of a band-pass F-wave filter that passes only the frequency components of the input signal is obtained.An embodiment of a phase shifter according to the present invention of zero-order nine will be described with reference to the drawings.

第3図は本発明による実施例の構成をブロック図によシ
示したものである。この図において、4は信号入力端子
、5は制御信号入力端子、6は再生クロック出力端子、
21は信号分岐回路、22は移相回路、23は周波数N
逓倍器、24は周波数(N−1)逓倍器、25は乗算器
、そして26は帯域F波器である。いま、入力端子4に
印加される受信信号を5(t)=自ωs1とする。ここ
にω8は入力信号の角周波数を表わす。この信号は信号
分岐回路21によシ2分岐され、一方は移相回路22に
印加される。移相回路22は、その感度をにθとした時
、制御電圧vcによりθ=にθveなる位相推移を入力
信号に与える。従って、移相回路22の出力信号g(t
)は。
FIG. 3 is a block diagram showing the configuration of an embodiment according to the present invention. In this figure, 4 is a signal input terminal, 5 is a control signal input terminal, 6 is a reproduced clock output terminal,
21 is a signal branch circuit, 22 is a phase shift circuit, and 23 is a frequency N.
24 is a frequency (N-1) multiplier, 25 is a multiplier, and 26 is a band F wave generator. Now, assume that the received signal applied to the input terminal 4 is 5(t)=selfωs1. Here, ω8 represents the angular frequency of the input signal. This signal is branched into two by a signal branching circuit 21, one of which is applied to a phase shift circuit 22. The phase shift circuit 22 applies a phase shift of θve to θ= to the input signal by the control voltage vc, when its sensitivity is set to θ. Therefore, the output signal g(t
)teeth.

g(t)=dn(ω3を十〇):θ=にθVc’・・−
(1)と表わされる。この信号は周波数N逓倍器23に
よシ周波数がN逓倍(Nは正の整数でN≧2)され、 
th(Nω8t+Nθ)となる。
g(t)=dn (ω3 is 10): θ= to θVc'...-
It is expressed as (1). The frequency of this signal is multiplied by N (N is a positive integer, N≧2) by a frequency N multiplier 23,
th(Nω8t+Nθ).

信号分岐回路21の他の1つの出力信号は1周波数(N
−1)逓倍器24に印加され、逓倍されて画((N−1
)ω、1)の信号となる。それから、上記N逓倍された
信号と(N−1)逓倍された信号とは乗算器25で乗算
され、出力信号v(t)として。
The other output signal of the signal branch circuit 21 has one frequency (N
-1) applied to the multiplier 24 and multiplied by the image ((N-1
) ω, 1) becomes the signal. Then, the signal multiplied by N and the signal multiplied by (N-1) are multiplied by a multiplier 25 to form an output signal v(t).

v(t)=龜(Nω、t+Nθ)・−((N−x)ω5
1)=−1〔ω5((2N−1)ω3を十Nθ)−co
s(ω8を十Nθ)〕 ・−・・・・・・・(2)が得
られる。この信号は従続する帯域p波器26に加えられ
、ここで(2N−1)ω33次が除去され。
v(t)=龜(Nω, t+Nθ)・−((N−x)ω5
1)=-1[ω5((2N-1)ω3 is 10Nθ)-co
s(ω8 is 10Nθ)] ・−・・・・・・・(2) is obtained. This signal is applied to a subsequent band p-wave generator 26, where the (2N-1)ω33rd order is removed.

結果として、出力信号は移相回路220位相推移量0に
対してN逓倍の値をもった位相推移量を得たことになる
。このことは、換言すれば、必要とする位相推移量をθ
。とすると、移相回路22の位相推移範囲はθ。/Nで
よいことを意味する。この関係を第4図のグラフにより
説明すると9曲線(、)は移相回路22の単体の特性を
示し1曲線(b)は第3図の位相推移器特性を示したも
のである。これから判るように、移相回路22単体の制
御電圧対位相推移特性の直線性があまシ良くなくとも5
周波数逓倍器23の逓倍数Nを適当に選べば、十分に直
線性の良い位相推移器を実現することが出来る。
As a result, the output signal has a phase shift amount that is multiplied by N with respect to the phase shift amount 0 of the phase shift circuit 220. In other words, the required amount of phase shift is θ
. Then, the phase shift range of the phase shift circuit 22 is θ. /N means that it is sufficient. To explain this relationship using the graph of FIG. 4, curve 9 (,) shows the characteristics of the phase shift circuit 22 alone, and curve 1 (b) shows the characteristics of the phase shifter shown in FIG. As can be seen from this, the linearity of the control voltage vs. phase shift characteristic of the phase shift circuit 22 alone is not very good, but it is
By appropriately selecting the multiplication number N of the frequency multiplier 23, it is possible to realize a phase shifter with sufficiently good linearity.

なお、上記実施例の位相推移器を前述のクロック再生装
置に適用する場合は、第1図において。
In addition, when the phase shifter of the above embodiment is applied to the above-mentioned clock regeneration device, it is shown in FIG.

位相推移器15を除去し9発振器14の出力およびサン
プルホールド回路13の出力を第3図の入力信号端子4
および制御、信号端子5にそれぞれ与えることによって
可能となることは容易に理解できよう。
The phase shifter 15 is removed and the output of the 9 oscillator 14 and the output of the sample hold circuit 13 are input to the input signal terminal 4 in FIG.
It is easy to understand that this is possible by applying the signals to the control and signal terminals 5, respectively.

また、上記実施例においては、移相回路22としてリア
クタンス素子等で構成される電気的な制御回路を適用し
たが、これに限定されることなく。
Further, in the above embodiment, an electrical control circuit composed of a reactance element or the like is used as the phase shift circuit 22, but the present invention is not limited thereto.

例えば9機械的に制御されるものでもよいことは言うま
でもない。あるいは、使用目的によっては。
For example, it goes without saying that it may be mechanically controlled. Or depending on the purpose of use.

位相推移量を可変制御しない推移量の固定された移相回
路でもよいことは明らかである。
It is clear that a phase shift circuit with a fixed amount of phase shift that does not variably control the amount of phase shift may also be used.

以上の説明によシ明らかなように9本発明によれば9位
相推移量の可変範囲が大きく、かつ直線性のよい制御特
性が得られるから、特に、クロック信号、その他同期−
信号の再生回路に適用してその動作性能を向上すべく大
きな効果がある。
As is clear from the above description, according to the present invention, the variable range of the phase shift amount is wide and control characteristics with good linearity can be obtained.
It has great effects when applied to signal regeneration circuits to improve their operating performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の位相推移器を使用したクロック再生装置
の構成例を示すブロック図、第2図は。 第1図における動作を説明するためのタイムチャート、
第3図は本発明による実施例の構成を示すブロック図、
第4図は、第3図の実施例における移相制御の利点を説
明するためのグラフである。 図において、21は信号分岐回路、22は移相回路、2
3は周波数N逓倍器、24は周波数(N−1)逓倍器、
25は乗算器、26は帯域p波器である 厭 9    9     9       9^    
   ^       ^         へU+ 
    cs(1)′+X
FIG. 1 is a block diagram showing an example of the configuration of a clock recovery device using a conventional phase shifter, and FIG. 2 is a block diagram showing an example of the configuration of a clock recovery device using a conventional phase shifter. A time chart for explaining the operation in FIG.
FIG. 3 is a block diagram showing the configuration of an embodiment according to the present invention;
FIG. 4 is a graph for explaining the advantage of phase shift control in the embodiment of FIG. 3. In the figure, 21 is a signal branch circuit, 22 is a phase shift circuit, 2
3 is a frequency N multiplier, 24 is a frequency (N-1) multiplier,
25 is a multiplier, and 26 is a band p-wave unit.
^ ^ to U+
cs(1)′+X

Claims (1)

【特許請求の範囲】 1 人力信号を2分岐する信号分岐回路と、該信号分岐
回路の一方の出力をうけて、その位相をシフトする移相
手段と、該移相手段の出力の周波数をN逓倍(Nは2以
上の正の整数)する第1の周波数逓倍器と、前記信号分
岐回路の他方の出力の周波数をN−1逓倍する第2の周
波数逓倍器と。 前記第1の周波数逓倍器の出力と該第2の周波数逓倍器
の出力とを周波数混合する周波数混合器と。 該周波数混合器の出力をうけて前記入力信号の周波数成
分のみを通過させる帯域通過F波器とから成る位相推移
器。
[Claims] 1. A signal branch circuit that branches a human signal into two, a phase shifter that receives the output of one of the signal branchers and shifts its phase, and a frequency of the output of the phase shifter that is N. a first frequency multiplier that multiplies (N is a positive integer of 2 or more); and a second frequency multiplier that multiplies the frequency of the other output of the signal branching circuit by N-1. a frequency mixer that frequency-mixes the output of the first frequency multiplier and the output of the second frequency multiplier; and a bandpass F-wave filter that receives the output of the frequency mixer and passes only the frequency components of the input signal.
JP10815281A 1981-07-13 1981-07-13 Phase shifter Pending JPS5810912A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10815281A JPS5810912A (en) 1981-07-13 1981-07-13 Phase shifter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10815281A JPS5810912A (en) 1981-07-13 1981-07-13 Phase shifter

Publications (1)

Publication Number Publication Date
JPS5810912A true JPS5810912A (en) 1983-01-21

Family

ID=14477259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10815281A Pending JPS5810912A (en) 1981-07-13 1981-07-13 Phase shifter

Country Status (1)

Country Link
JP (1) JPS5810912A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59191918A (en) * 1983-04-15 1984-10-31 Hitachi Ltd Phase regulator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59191918A (en) * 1983-04-15 1984-10-31 Hitachi Ltd Phase regulator

Similar Documents

Publication Publication Date Title
US4855894A (en) Frequency converting apparatus
JP2765600B2 (en) Demodulation circuit
US5212825A (en) Synthetic heterodyne demodulator circuit
JPS62269446A (en) Phase transfer keying modulator
US4891598A (en) Variable bit rate clock recovery circuit
JPH07162383A (en) Fm stereo broadcasting equipment
JPS58112979U (en) A device that controls the phase of the carrier wave and sideband waves generated by a transmitter.
JPS5810912A (en) Phase shifter
JPS5890856A (en) Sampling phase synchronizing circuit
KR920015752A (en) Method and apparatus for generating clock signal from biphasic modulation digital signal
JPS6115610B2 (en)
JP3259100B2 (en) Modulator
SU1185567A1 (en) Frequency converter with sinusoidal oscillator voltage
JPS5838018B2 (en) Phase continuous FSK signal modulation circuit
RU2038703C1 (en) Digital receiver of digital signals with rotating phase
JP2876847B2 (en) Phase locked loop
SU1019580A1 (en) Noise generator
SU1424110A1 (en) Phase-frequency converter
SU758527A1 (en) Method of automatic tuning of reference signal generator frequency
SU660296A1 (en) Apparatus for transmitting four-position frequency-manipulated signal with continuous phase
SU1083400A1 (en) Device for demodulating signals with phase-difference-shift modulation
JP2710876B2 (en) MSK modulator
JPH0220942A (en) On/off keying modulating circuit
JPH0129341B2 (en)
JP3229991B2 (en) PSK modulator