JPS5810882A - Distributed feedback type semiconductor laser - Google Patents

Distributed feedback type semiconductor laser

Info

Publication number
JPS5810882A
JPS5810882A JP56108835A JP10883581A JPS5810882A JP S5810882 A JPS5810882 A JP S5810882A JP 56108835 A JP56108835 A JP 56108835A JP 10883581 A JP10883581 A JP 10883581A JP S5810882 A JPS5810882 A JP S5810882A
Authority
JP
Japan
Prior art keywords
mode
layer
angle
laser
oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56108835A
Other languages
Japanese (ja)
Inventor
Kazuo Sakai
堺 和夫
Yukio Noda
野田 行雄
Yuichi Matsushima
松島 裕一
Yukitoshi Kushiro
久代 行俊
Katsuyuki Uko
宇高 勝之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP56108835A priority Critical patent/JPS5810882A/en
Publication of JPS5810882A publication Critical patent/JPS5810882A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain stable single longitudinal mode oscillation, by the constitution wherein an optical waveguide is intersected with light emitting surfaces at an angle other than a right angle, and suppressing the oscillation in a Fabry- Perot resonating mode. CONSTITUTION:Grooves are formed in an N type InP substrate 11 in a stripe shape. On one surface of both sides of the groove, a diffraction grating made of periodic concave and convex parts is formed so as to cross the direction of the groove at a right angle. On said grating, an N type layer 12, a nondoped P1-z layer 13, a P type layer 14, a P type InP layer 15, and an SiO2 film 16 are provided. Said layers are held between metal electrodes 17 and 18. In this laser, the grooves formed on the substrate and the waveguide 19 are intersected with the light emitting surface 20 and 21 at an angle other than the right angle. In this constitution, the oscillation threshold value in the Fabry-Perot resonating mode is increased, and the operation in the Fabry-Perot resonating mode when the operation is performed in the distributed feedback oscillating mode can be suppressed.

Description

【発明の詳細な説明】 本発明は単−縦モードで発振する分布帰還形半導体レー
ザの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a distributed feedback semiconductor laser that oscillates in a single longitudinal mode.

半導体レーザを、特に光ファイバによる大容量。Large capacity semiconductor lasers, especially optical fibers.

長距離の光伝送用光源として用いる場合には、半導体レ
ーザは基本横モードかつ単−縦モー ドで発振すること
が望ましい。基本横モード発振の為の構造については今
まで数多くの提案がなされ、はぼ実用的に安定表発振が
得られている。例えば、活性領域を屈折率の低い他の物
質で取り囲む埋め込みへテロ構造や、基板に溝を形成し
、活性層又は活性層と隣接した層の厚さの分布を変え、
活性層に等価的な屈折率分布をつけて光導波路とした構
造(例えば平凸導波路構造や、channetlAds
ubatrate pIAnar構造等)等があげられ
る。これらの横モード制御レーザについては、例えば「
応用物理」第48巻、第5号第466〜470頁(19
79)、又はG、 H,B、 Thompson著”p
hyaica of Sem1conductorIa
ser Devices ”、 John VAtay
 or 5ona社刊(1980)第289〜304頁
等に詳細に述べられている。
When used as a light source for long-distance optical transmission, it is desirable that a semiconductor laser oscillate in a fundamental transverse mode and a single longitudinal mode. Many proposals have been made regarding structures for fundamental transverse mode oscillation, and stable transverse mode oscillation has been practically obtained. For example, buried heterostructures in which the active region is surrounded by another material with a low refractive index, grooves formed in the substrate to change the thickness distribution of the active layer or layers adjacent to the active layer,
A structure in which the active layer has an equivalent refractive index distribution to form an optical waveguide (e.g. plano-convex waveguide structure, channelAds
ubatrate pIAnar structure, etc.). For these transverse mode controlled lasers, e.g.
Applied Physics” Volume 48, No. 5, pp. 466-470 (19
79), or by G. H. B. Thompson” p.
hyaica of Sem1conductorIa
ser Devices”, John VAtay
or 5ona Publishing (1980), pp. 289-304.

一方、縦モードの単一化についてはまだ充分な安定度が
得られていない。従来最も優れていると考えられるもの
は、活性領域又は活性領域に近接して、光伝播方向に周
期的凹凸からなる回折格子を形成し、これと光を結合さ
せることにより回折格子のピッチと、光導波路内部での
光伝播速度により決まる一定の波長で発振させる構造で
ある。
On the other hand, sufficient stability has not yet been achieved in unifying the longitudinal mode. What is considered to be the best conventional method is to form a diffraction grating consisting of periodic irregularities in the light propagation direction in the active region or in the vicinity of the active region, and to couple light with this, the pitch of the diffraction grating can be adjusted. It has a structure that oscillates at a constant wavelength determined by the light propagation speed inside the optical waveguide.

この構造は、回折格子を特定の波長の光のみ反射する反
射器として用いる分布ブラッグ反射器形構造と、特定の
波長の光について帰還を得ようとする分布帰還形構造の
2つに大別される。本発明は、これらのうち後者の分布
帰還形レーザに関するものである。
This structure is roughly divided into two types: a distributed Bragg reflector structure that uses a diffraction grating as a reflector that reflects only light of a specific wavelength, and a distributed feedback structure that attempts to obtain feedback for light of a specific wavelength. Ru. The present invention relates to the latter type of distributed feedback laser.

この分布帰還形レーザにおいて縦モードを単一化するた
めには、回折格子から決まる波長以外で発振させない工
夫が必要である。
In order to unify the longitudinal mode in this distributed feedback laser, it is necessary to devise a method to prevent oscillation at wavelengths other than those determined by the diffraction grating.

ここで、従来の分布帰還形レーザの一例をInGaAs
 P系のレーザを用いて説明する。第1図。
Here, an example of a conventional distributed feedback laser is InGaAs.
This will be explained using a P-based laser. Figure 1.

第2図は従来の分布帰還形レーザの一例を示した斜視図
と平面図、第3図は第2図のA−A’断面図である。図
において、1は周期的凹凸(回折格子)を形成したn形
InP基板、2はノンドープIn1−、Ga、As8P
1−、層(0,42s≦r≦Q、50s、かつ0 (s
≦1)、3はp型InP層、4はn型Int−p Ga
p A8qP1−4層(0,42q≦p≦0.50q 
、かつ0(q≦1)、5゜6は金属電極、7はp型不純
物拡散領域、8,9はウェハーの骨間により形成された
端面を示す。
FIG. 2 is a perspective view and a plan view showing an example of a conventional distributed feedback laser, and FIG. 3 is a sectional view taken along line AA' in FIG. In the figure, 1 is an n-type InP substrate with periodic unevenness (diffraction grating), 2 is non-doped In1-, Ga, As8P.
1-, layer (0,42s≦r≦Q, 50s, and 0 (s
≦1), 3 is p-type InP layer, 4 is n-type Int-p Ga
p A8qP1-4 layer (0,42q≦p≦0.50q
, and 0 (q≦1), 5° 6 is a metal electrode, 7 is a p-type impurity diffusion region, and 8 and 9 are end faces formed by the interbones of the wafer.

この構造において、電極5に正電圧を加え6に負電圧を
加えると、電流は不純物が拡散された領域に集中して流
れ、その直下のIn1 r Gar A!ls Pl 
s層2が発光領域となる。
In this structure, when a positive voltage is applied to the electrode 5 and a negative voltage is applied to the electrode 6, the current flows concentrated in the region where the impurity is diffused, and the In1 r Gar A! ls Pl
The s layer 2 becomes a light emitting region.

この分布帰還形レーザは、発光領域となる導波路内に設
けられた回折格子が特定の波長の光だけを選択的に反射
することを利用して単−縦モード発振を得ようとするも
のである。すなわち、格子面に平行に光が入射された場
合、格子間隔をA。
This distributed feedback laser attempts to obtain single-longitudinal mode oscillation by utilizing the fact that a diffraction grating provided in a waveguide that serves as a light emitting region selectively reflects only light of a specific wavelength. be. That is, when light is incident parallel to the lattice plane, the lattice spacing is A.

導波路内波長をλ、とするとき、 A=、λp         ・・・・・・・・・・・
・・・・・・・(1)等しい波長のみを反射する(これ
をブラッグ反射という)。この反射された光が帰還作用
を生じ、その波長においてレーザ発振を起こすものであ
る。
When the wavelength in the waveguide is λ, A=, λp ・・・・・・・・・・・・
(1) Only the same wavelength is reflected (this is called Bragg reflection). This reflected light causes a feedback effect and causes laser oscillation at that wavelength.

しかしながら、p形不純物拡散領域7が端面8と9との
間の全域にわたって形成されているとすると、回折格子
により反射されない波長を有する不要な光は、端面8と
9の間で反射を繰り返えす、いわゆる、ファプリペロー
共振器を形成し、回折格子により決まる波長以外でも発
振することとなる。
However, if the p-type impurity diffusion region 7 is formed over the entire area between the end faces 8 and 9, unnecessary light having a wavelength that is not reflected by the diffraction grating will be repeatedly reflected between the end faces 8 and 9. This forms a so-called Fabry-Perot resonator, which oscillates at wavelengths other than those determined by the diffraction grating.

従来、上述したファプリペロー共振モードによる発振を
抑制するために、次の対策がと6れてきた。その1つは
、第1図、第2図良心第3図に示すように、端面8と9
の間に不純物を拡散しない領域10を形成する。こうす
ることによりIn1−rGarAsBP+−B層2の部
分領域10は電流が流れず、回折格子により反射されな
かった波長の光はこの領域10で減衰を受け、端面9に
より反射しないか、もしくは反射しても帰還作用を生じ
ない程に減衰を受ケ、ファブリペロ−共振モードによる
発振を防ぐことができる。また、別の例では、光出射面
と相対する面(例えば第1図、第2図及び第3図におい
て光出射面を8とすると、端面9)を骨間でなくて、ワ
イヤーカッターにより切断するとか、あるいは骨間後表
面を荒らすとかして、光を反射するための鏡面として働
かぬようにし、ファブリペロー共振モードによる発振を
抑制した報告もされている。
Conventionally, the following measures have been taken to suppress the oscillation due to the above-mentioned Fapry-Perot resonance mode. One of them is the end faces 8 and 9, as shown in Fig. 1, Fig. 2, and Fig. 3.
A region 10 in which impurities are not diffused is formed in between. By doing this, no current flows through the partial region 10 of the In1-rGarAsBP+-B layer 2, and light of wavelengths that are not reflected by the diffraction grating is attenuated in this region 10, and is not reflected by the end face 9 or is reflected. It is possible to prevent oscillation due to the Fabry-Perot resonance mode by receiving attenuation to such an extent that no feedback effect occurs even when the oscillation occurs. In another example, the surface facing the light exit surface (for example, if the light exit surface is 8 in FIGS. 1, 2, and 3, the end surface 9) is cut with a wire cutter instead of between the bones. There have also been reports of suppressing oscillation due to the Fabry-Perot resonance mode by roughening the posterior interosseous surface so that it does not function as a mirror surface for reflecting light.

しかしながら、前者の光吸収領域を形成するという構造
では、レーザチップを切出す際に発光領域と光吸収領域
の区別がつけにくく作業性に欠けること、また、光吸収
領域を余分に形成するため1枚のウェハーから素子のと
れる個数が減り歩留りが悪くなるなどの欠点がある。ま
た、後者の端面を荒らす構造では、この面からの格子欠
陥の導入を招く恐れがあり、高信頼度素子にこの手法を
用いるのは適当でない。  一 本発明は、上述の従来技術の欠点を解決するために、安
定した単−縦モード発振が得られるストライプ構造を有
する分布帰還形半導体レーザを提供するものであり、そ
の特徴は、先導波路と光出射面とが垂直以外の角度で交
わる構造とし、7アプリペロー共振モードによる発振を
抑制したことにある。
However, with the former structure in which a light absorption region is formed, it is difficult to distinguish between the light emitting region and the light absorption region when cutting out the laser chip, resulting in a lack of workability. There are drawbacks such as a decrease in the number of devices that can be obtained from a single wafer, resulting in poor yield. Furthermore, the latter structure in which the end face is roughened may introduce lattice defects from this face, and thus it is not appropriate to use this technique for high reliability devices. One object of the present invention is to provide a distributed feedback semiconductor laser having a stripe structure capable of obtaining stable single-longitudinal mode oscillation in order to solve the above-mentioned drawbacks of the prior art. The structure is such that the light exit surface intersects at an angle other than perpendicular to suppress oscillation due to the 7 appli-Perot resonance mode.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

なお、本発明は横基本モードで発振する分布帰還形半導
体レーザであれば全てに適用できるものであるが、説明
に当っては回折格子を形成した溝何基板を用いるヘテロ
構造分布帰還形レーザの実施例を挙げて説明する。第4
図、第5図、第6図及び第7図は本発明の実施例を示す
図で、第4図は斜視図、第5図は平面図、第6図は第5
図のB−B’断面図、第7図は第5図のC−C’′−断
面図である0 これらの図において、11は(001)面上に、ストラ
イプ状に溝を形成したn型InP基板で、溝の両側には
一面に、周期的凹凸による回折格子が、溝の方向とは垂
直に交わるように形成されている。
Although the present invention can be applied to any distributed feedback semiconductor laser that oscillates in the transverse fundamental mode, the description will focus on a heterostructure distributed feedback laser using a grooved substrate on which a diffraction grating is formed. This will be explained by giving examples. Fourth
5, 6, and 7 are views showing embodiments of the present invention, in which FIG. 4 is a perspective view, FIG. 5 is a plan view, and FIG.
7 is a cross-sectional view taken along the line C-C'' in FIG. A diffraction grating made of periodic unevenness is formed on both sides of the groove in an InP type substrate so as to be perpendicular to the direction of the groove.

12はn型In l−7GazA8y Pl−y層(0
,42y≦X≦o、soy、  がつ0<y<1 )、
13はノンドープIn1−wGawAs2p、−z層(
0,42z≦W≦0.50z 、かつ0 (z層1)、
14はp型In1 uGauAsyPt y層(0,4
2v≦U≦Q、50v 、かっ0(v(1)、15はp
型InP層、16は5i02膜、17 、18は金属電
極である。層14は活性層であり、層13 、15の禁
制帯幅より小さい禁制帯幅を有する一〇基板の溝の真上
にあたる部分にはストライプ状に5i02膜が除去され
ており、電流が流れるようになっている。このレーザで
は基板11に形成された溝により、ストライブ内部と外
部での実効屈折率江差をつけ、光導波路として働くよう
にしている。
12 is an n-type In l-7GazA8y Pl-y layer (0
,42y≦X≦o, soy, 0<y<1),
13 is a non-doped In1-wGawAs2p, -z layer (
0,42z≦W≦0.50z, and 0 (z layer 1),
14 is a p-type In1 uGauAsyPty layer (0,4
2v≦U≦Q, 50v, 0 (v(1), 15 is p
16 is a 5i02 film, and 17 and 18 are metal electrodes. Layer 14 is an active layer, and has a forbidden band width smaller than that of layers 13 and 15. A 5i02 film is removed in a stripe pattern directly above the groove of the substrate, so that current can flow. It has become. In this laser, the grooves formed in the substrate 11 create a difference in effective refractive index between the inside and outside of the stripe, so that it functions as an optical waveguide.

本発明の特徴は、この光導波路19と光出射面20゜2
1とが垂直以外の角度で交るという点にある。即ち、通
常のファブリペロ−形レーザでは、光導波路と光出射面
を垂直に交わるように形成し、出射面で一部の光を反射
させることにより、相対した一組の光共振器を構成して
いた。しかし、光導波路と光出射面を第5図に示すよう
に垂直以外の角度で交わるようにすると、この端面での
実効的な反射率が変化する。−例として、波長1.55
μmで発振するInGaAsP系レーザを例にとり説明
する。光導波路の幅3μm1光導波路の内側と外側の等
側屈折率をそれぞれ3.33 : 3.32とすると、
このレーザは横基本モード条件を満足する。光出射面で
反射された光は、基本モードの光のほか、高次モードの
光にも変換されるが、この光導波路は横基本モードしか
伝播しない条件を満たしている為、基本モードについて
のみ反射率を検討すればよい。
The feature of the present invention is that the optical waveguide 19 and the light exit surface 20°2
1 intersects at an angle other than perpendicular. In other words, in a typical Fabry-Perot laser, the optical waveguide and the light exit surface are formed so as to intersect perpendicularly, and a part of the light is reflected at the exit surface, thereby forming a pair of opposing optical resonators. Ta. However, if the optical waveguide and the light exit surface are made to intersect at an angle other than perpendicular as shown in FIG. 5, the effective reflectance at this end surface changes. - As an example, wavelength 1.55
An example of an InGaAsP laser that oscillates at μm will be explained. Assuming that the width of the optical waveguide is 3 μm and the equal refractive index of the inner and outer sides of the optical waveguide is 3.33:3.32, respectively,
This laser satisfies the transverse fundamental mode condition. The light reflected by the light exit surface is converted into not only fundamental mode light but also higher-order mode light, but since this optical waveguide satisfies the condition that only the transverse fundamental mode propagates, only the fundamental mode is converted. All you have to do is consider the reflectance.

反射面が傾いている場合の基本モードの反射率の計算に
ついては例えば、電子通信学会昭和56年度総合全国大
会予稿集ム870に述べられている。
Calculation of the fundamental mode reflectance when the reflecting surface is tilted is described, for example, in Proceedings of the 1981 National Conference of the Institute of Electronics and Communication Engineers, 870.

即ち、第8図に示すように横基本モードでZ軸に沿って
、−2の方向に伝播する光を uo((転)ej/l!         ・・・・・
・・・・・・・・・・・・・(2)とし、光出射面で反
射された後の光を aOuQ (x)e−’β8+Σbrvr(x)e ”
”  −−・(3)とおくoここにβ及びβ、は基本モ
ード、及び高次モードの伝播定数である。垂直端面に対
する反射率をrQとすると、第8図のように角度θだけ
傾いた面に対する反射直後の(2)式の光はz=Qでr
o−uoω、ej2β°−“)−x    ・・・・・
・・・・・・・・・・・・・(4)と表わせる。(3)
 、、 (4)式よりz=Qではrouo(かj・2β
・(−〇)・x= ao uo (x)+Σbr vf
i   (5)が導かれ、基本モード、高次モードの直
交性を用いて整理すれば、基本モードに対する相対反射
率R/ Roは R/Ro =(: (/J(x)am(2β(1=−θ
)x)dx)2+ (/ J(dgin(2β(−〇)
x)dx)21)/Cfu訂x)dx〕       
・・・・・・・・・・・・(6)で与えられる。
That is, as shown in Fig. 8, the light propagating in the -2 direction along the Z-axis in the transverse fundamental mode is expressed as uo((trans)ej/l!...
・・・・・・・・・・・・・・・(2), and the light after being reflected by the light exit surface is aOuQ (x)e−'β8+Σbrvr(x)e ”
” --・(3) Here, β and β are the propagation constants of the fundamental mode and higher-order mode.If the reflectance with respect to the vertical end face is rQ, then the angle θ is tilted as shown in Figure 8. The light in equation (2) immediately after reflection on the surface is z=Q and r
o−uoω, ej2β°−“)−x ・・・・・・
It can be expressed as (4). (3)
,, From equation (4), when z=Q, rouo(kaj・2β
・(-〇)・x= ao uo (x)+Σbr vf
i (5) is derived and rearranged using the orthogonality of the fundamental mode and higher-order mode, the relative reflectance R/Ro for the fundamental mode is R/Ro = (: (/J(x)am(2β( 1=-θ
)x)dx)2+ (/J(dgin(2β(-〇)
x) dx) 21)/Cfu revision x) dx]
It is given by (6).

上に述べた半導体レーザの例について、(6)式にもと
づいて計算した結果として横基本モードに対する相対反
射率を傾角度θの関数として示したものが第9図である
0但し、光出射面と光導波路が垂直に交わった時をθ=
0としてあり、反射率はθ=0の時の値で正規化しであ
る。この図より相対反射率1%となる角度θ。よりも傾
角度を大きくとる。例えばθ=5°とすれば、基本モー
ドに対する反射率は、光導波路と光出射面が垂直に交わ
る場合の0.3%でしかない。こうすると、ファブリペ
ロー共振モードの発振閾値は増加し、回折格子によるブ
ラッグ反射を用いたレーザ発振の閾値より十分に大きく
することが可能であり、分布帰還形発振モードで動作し
ている時にファブリペロー発振モードで動作しないよう
にすることが可能である。この角度θは全反射角より小
さくする必要があるが、特にブリュースター角θ8に等
しくした場合には、pn接合に平行した偏光面を持つT
E波に対する反射が0となり、レーザ内部の光を有効に
取出せるという利点もある。なお、この構造では光出射
面が2つあるため、従来の分布帰還型レーザでは困難で
あった出力監視用光出力取出しが容易となる。
For the example of the semiconductor laser described above, Figure 9 shows the relative reflectance for the transverse fundamental mode as a function of the inclination angle θ as a result of calculation based on equation (6). The time when the optical waveguide intersects perpendicularly is θ=
0, and the reflectance is normalized to the value when θ=0. From this figure, the angle θ is the relative reflectance of 1%. Take a larger angle of inclination than For example, if θ=5°, the reflectance for the fundamental mode is only 0.3% of that when the optical waveguide and the light exit surface intersect perpendicularly. In this way, the oscillation threshold of the Fabry-Perot resonance mode increases and can be made sufficiently larger than the threshold of laser oscillation using Bragg reflection by the diffraction grating, and the Fabry-Perot resonance mode increases when operating in the distributed feedback oscillation mode. It is possible to prevent it from operating in oscillation mode. This angle θ needs to be smaller than the total reflection angle, but especially when it is made equal to the Brewster angle θ8, the T
There is also the advantage that the reflection of E waves becomes zero, and the light inside the laser can be extracted effectively. In addition, since this structure has two light emitting surfaces, it becomes easy to extract the optical output for output monitoring, which was difficult with conventional distributed feedback lasers.

以上溝付基板上に形成したレーザについて説明したが、
基本モードに対する反射率は、レーザの構造2寸法によ
り異なる。個々のレーザについて横基本モードに対する
反射率を求め、反射率1%となる角度θ。より大きな傾
角度をつければ、どのような構造のレーザにも適用可能
である。
The above explanation was about a laser formed on a grooved substrate.
The reflectivity for the fundamental mode varies depending on the two dimensions of the laser structure. Find the reflectance for the transverse fundamental mode for each laser, and find the angle θ at which the reflectance is 1%. If the angle of inclination is larger, it can be applied to any type of laser structure.

次に製造法について簡単に説明する。回折格子を形成し
た(001)面InP基板上に(110)方向又は(1
10)方向と角度θをなすように溝を形成し、この基板
上にエピタキシャル成長法により層12 、13 、1
4 、15を順次成長サセ、次KCVD法ニョリ5i0
2膜16を形成する。次にホト・エツチング技術を用い
て、基板11の溝の真上の部分の5i02膜をストライ
プ状に除去する。この後基板側を研磨してウェハーの厚
さ約100μmとし、金属電極17 、18を形成した
後、骨間によりレーザが作製される。
Next, the manufacturing method will be briefly explained. The (110) direction or (1
10) Grooves are formed so as to form an angle θ with the direction, and layers 12, 13, 1 are formed on this substrate by epitaxial growth.
4, 15 are grown sequentially, then KCVD method Nyori 5i0
Two films 16 are formed. Next, using photo-etching technology, the 5i02 film in the portion directly above the groove of the substrate 11 is removed in stripes. Thereafter, the substrate side is polished to a wafer thickness of about 100 μm, metal electrodes 17 and 18 are formed, and then a laser is produced by interosseous cutting.

この実施例では(001)面を用いたが、(111)面
或は(111)面等の、他の面指数を持つ基板を用いて
もよい。
In this embodiment, a (001) plane is used, but a substrate having another plane index such as a (111) plane or a (111) plane may also be used.

以上、InGaAsP系の溝付基板を用いたレーザを取
り上げて本発明を説明したが、本発明は横モード制御の
為のいかなる導波構造にも適用可能であり、又AtGa
As系、 AAGaSbAs系、 InGaAsSb系
等いかなる材料を用いたレーザにも適用可能である。
The present invention has been explained above by taking up a laser using an InGaAsP-based grooved substrate, but the present invention can be applied to any waveguide structure for transverse mode control.
It is applicable to lasers using any materials such as As-based, AAGaSbAs-based, InGaAsSb-based, etc.

以上詳細に説明したように、本発明の分布帰還型レーザ
では光導波路と光出射面を垂直以外の角度で交わるよう
に構成して、ファブリベロー共振を抑制することにより
、骨間による出射面の作製が可能となり、又光吸収領域
を形成する必要がなくなる。このため、従来のものに比
べて作業性が良く、又一枚のウェハーから取出せるレー
ザ・チンプの数が多いこと、更に出力監視用の光出力が
容易に取出せること等の利点があり、その工業的価値は
極めて犬である。
As explained in detail above, in the distributed feedback laser of the present invention, the optical waveguide and the light output surface are configured to intersect at an angle other than perpendicular to suppress Fabry-Bello resonance, thereby suppressing the output surface due to the inter-bone space. It becomes possible to fabricate the structure, and there is no need to form a light absorption region. For this reason, it has the advantages of better workability compared to conventional ones, as well as the ability to extract a large number of laser chimps from a single wafer, and the ability to easily extract optical output for output monitoring. Its industrial value is extremely poor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は従来の分布帰還型レーザの斜視図と平
面図、第3図は第2図のA−A’断面図、第4図、第5
図は本発明実施例の斜視図と平面図、第6図、第7図は
それぞれ第5図のB−B’、C−C’に沿う断面図、第
8図は基本モードの反射率の計算例を説明するだめの模
式図、第9図は光導波路の傾角度を変えた時の横基本モ
ードに対する相対的反射率を示す特性図である。 1 ・= n型InP基板、2・・・ノンドープInl
 、GarAs!P1−8層、3−p型InP層、4−
 n型In1−pGapAsqPl−9層、5,6・・
・金属電極、7・・・p型不純物拡散領域、8.9・・
・(110)面又は(ITo)面に沿う端面、10・・
・光吸収領域、11・・・n型InP基板、12−n型
In1 xGaxI’hBy Pl −y 層、13 
・・・ノンドープInl−WGawAs2Pt−z層、
14−p型In1−u GauAsv Pl v層、1
5−・−p型InP層、16 =−5i02膜、17 
、18・・・金属電極、19・・・光導波路、20 、
21・・・光出射面。 特許出願人  国際電信電話株式会社 代 理 人   犬  塚     学外1名 第1口 浄3図 寿4図 第5図 ′( 第6図 +7図 十8図
Figures 1 and 2 are a perspective view and a plan view of a conventional distributed feedback laser, Figure 3 is a sectional view taken along line AA' in Figure 2, Figures 4 and 5.
The figures are a perspective view and a plan view of an embodiment of the present invention, FIGS. 6 and 7 are cross-sectional views taken along lines B-B' and C-C' in FIG. FIG. 9, which is a schematic diagram for explaining a calculation example, is a characteristic diagram showing the relative reflectance for the transverse fundamental mode when the inclination angle of the optical waveguide is changed. 1.=n-type InP substrate, 2...non-doped Inl
, GarAs! P1-8 layer, 3-p-type InP layer, 4-
n-type In1-pGapAsqPl-9 layer, 5,6...
・Metal electrode, 7...p-type impurity diffusion region, 8.9...
・End face along the (110) plane or (ITo) plane, 10...
- Light absorption region, 11... n-type InP substrate, 12-n-type In1 xGaxI'hBy Pl -y layer, 13
...Non-doped Inl-WGawAs2Pt-z layer,
14-p type In1-u GauAsv Pl v layer, 1
5--p-type InP layer, 16 =-5i02 film, 17
, 18... Metal electrode, 19... Optical waveguide, 20,
21...Light exit surface. Patent Applicant: International Telegraph and Telephone Corporation Representative: Inuzuka, 1 external person, 1st mouth wash, 3rd figure, 4th figure, figure 5' (Figure 6 + Figure 7, Figure 18)

Claims (1)

【特許請求の範囲】[Claims] 光導波路と垂直な方向に周期的凹凸による回折格子が形
成され、光出射面が77プリペロー共振器を形成しない
ように該光導波路と該光出射面とが垂直以外の角度で交
わるように構成されたことを特徴とする分布帰還形半導
体レーザ。
A diffraction grating is formed with periodic unevenness in a direction perpendicular to the optical waveguide, and the optical waveguide and the light exit surface are configured to intersect at an angle other than perpendicular so that the light exit surface does not form a 77 Preperot resonator. A distributed feedback semiconductor laser characterized by:
JP56108835A 1981-07-14 1981-07-14 Distributed feedback type semiconductor laser Pending JPS5810882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56108835A JPS5810882A (en) 1981-07-14 1981-07-14 Distributed feedback type semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56108835A JPS5810882A (en) 1981-07-14 1981-07-14 Distributed feedback type semiconductor laser

Publications (1)

Publication Number Publication Date
JPS5810882A true JPS5810882A (en) 1983-01-21

Family

ID=14494757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56108835A Pending JPS5810882A (en) 1981-07-14 1981-07-14 Distributed feedback type semiconductor laser

Country Status (1)

Country Link
JP (1) JPS5810882A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0141420A2 (en) * 1983-11-08 1985-05-15 Sharp Kabushiki Kaisha Semiconductor laser device
EP0263690A2 (en) * 1986-10-08 1988-04-13 Sharp Kabushiki Kaisha A distributed feedback semiconductor laser device
US4931878A (en) * 1985-02-12 1990-06-05 Canon Kabushiki Kaisha Recording apparatus which is capable of recording two kinds of signals by operation of a single member
EP0447983A2 (en) * 1990-03-16 1991-09-25 Kabushiki Kaisha Toshiba Semiconductor laser chip and method of making the same
US5337328A (en) * 1992-05-08 1994-08-09 Sdl, Inc. Semiconductor laser with broad-area intra-cavity angled grating
GB2431288A (en) * 2005-10-15 2007-04-18 Bookham Technology Plc Semiconductor optical Device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0141420A2 (en) * 1983-11-08 1985-05-15 Sharp Kabushiki Kaisha Semiconductor laser device
US4931878A (en) * 1985-02-12 1990-06-05 Canon Kabushiki Kaisha Recording apparatus which is capable of recording two kinds of signals by operation of a single member
EP0263690A2 (en) * 1986-10-08 1988-04-13 Sharp Kabushiki Kaisha A distributed feedback semiconductor laser device
EP0447983A2 (en) * 1990-03-16 1991-09-25 Kabushiki Kaisha Toshiba Semiconductor laser chip and method of making the same
US5337328A (en) * 1992-05-08 1994-08-09 Sdl, Inc. Semiconductor laser with broad-area intra-cavity angled grating
GB2431288A (en) * 2005-10-15 2007-04-18 Bookham Technology Plc Semiconductor optical Device

Similar Documents

Publication Publication Date Title
US4426702A (en) Semiconductor laser device
JPS60101990A (en) Semiconductor laser element
JPH0335581A (en) Semiconductor laser and manufacture thereof
JPS6362390A (en) Distributed feedback semiconductor laser
JPS5810882A (en) Distributed feedback type semiconductor laser
JPH03163891A (en) Light amplifier, super-luminescent diode and optical integrated circuit and their manufacture
JPWO2005074047A1 (en) Optical semiconductor device and manufacturing method thereof
US4644552A (en) Semiconductor laser
CN107819270B (en) Wide semiconductor laser element
US6259718B1 (en) Distributed feedback laser device high in coupling efficiency with optical fiber
JPS58114476A (en) Semiconductor laser
JPS5878487A (en) Distributed feedback type semiconductor laser
CN110178275B (en) Semiconductor laser element and method for manufacturing semiconductor laser element
JP2917950B2 (en) Tunable semiconductor laser and method of manufacturing the same
JPS63228795A (en) Distributed feedback type semiconductor laser
US4520485A (en) Semiconductor device
JPS62291192A (en) Surface emission laser
JPH0555689A (en) Distributed reflection type semiconductor laser provided with wavelength control function
JPH03195076A (en) External resonator type variable wavelength semiconductor laser
JP2002014247A (en) Distributed reflection optical waveguide and optical device containing the same
JP2001308452A (en) Semiconductor laser device
JPH09129955A (en) Optoelectronics device
JPS6123383A (en) Semiconductor laser
JPS5992588A (en) Mono-axial mode semiconductor laser
JPS5911690A (en) Semiconductor laser device