JPS6123383A - Semiconductor laser - Google Patents
Semiconductor laserInfo
- Publication number
- JPS6123383A JPS6123383A JP14531284A JP14531284A JPS6123383A JP S6123383 A JPS6123383 A JP S6123383A JP 14531284 A JP14531284 A JP 14531284A JP 14531284 A JP14531284 A JP 14531284A JP S6123383 A JPS6123383 A JP S6123383A
- Authority
- JP
- Japan
- Prior art keywords
- waveguide
- semiconductor laser
- diffraction grating
- active layer
- coupling coefficient
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
- H01S5/1228—DFB lasers with a complex coupled grating, e.g. gain or loss coupling
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
この発明は、単一縦モードで安定に発振し、かつ狭い発
振スペクトル幅を有する半導体レーザに関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor laser that stably oscillates in a single longitudinal mode and has a narrow oscillation spectrum width.
従来の半導体レーザでは共振器を構成するために、第1
図の方法がとられていた。この図において、1は基板、
2は活性層、3は閉じ込め層、4はへき開により作られ
た端面である。In conventional semiconductor lasers, the first
The method shown in the figure was used. In this figure, 1 is the substrate,
2 is an active layer, 3 is a confinement layer, and 4 is an end face formed by cleavage.
次に動作について説明する。Next, the operation will be explained.
この素子において光は両端面4によって反射され、この
間でレーザ発振が起こる。発振スペクトル幅Δf1/2
は理論的に。In this element, light is reflected by both end faces 4, and laser oscillation occurs between them. Oscillation spectrum width Δf1/2
is theoretically.
・・・・・・・・・(1)
で表される。ここで、vgは光の共振器中での群速度、
hνは光子のエネルギー、gはしきい値利得、nspは
自然放出係数と呼ばれるものでほとんど一定の値をとる
。また、Rは端面4のパワー反射率、Poは出力パワー
、Lは共振器長、そして、αは電子密度がわずかに変化
した時の屈折率の実部の変化量を虚部の変化量で割った
ものであり、はぼ定数とみなしてよい。・・・・・・・・・(1) It is expressed as follows. Here, vg is the group velocity of light in the resonator,
hν is photon energy, g is threshold gain, and nsp is called a spontaneous emission coefficient, which takes an almost constant value. In addition, R is the power reflectance of the end face 4, Po is the output power, L is the cavity length, and α is the amount of change in the real part of the refractive index when the electron density changes slightly, which is the amount of change in the imaginary part. It can be considered as a constant.
この第(1)式かられかる通り、共振器長りを増大させ
ればスペクトル幅Δf I72はそれに反比例して減少
する。As can be seen from this equation (1), if the resonator length is increased, the spectral width Δf I72 decreases in inverse proportion to it.
一方、縦モード間隔Δλ(入は波長)は、Δ入=2L/
neff
と表される。ここで、neff=n(1−人/n拳d
n / d入)は波長分散を含めた実行屈折率である。On the other hand, the longitudinal mode spacing Δλ (input is the wavelength) is Δin = 2L/
It is expressed as neff. Here, neff=n(1-person/n fistd
n/d) is the effective refractive index including wavelength dispersion.
従って、共振器長りを増大させると縦モード間隔Δ入は
減少し、媒質の利得が第2図の曲線■に示すように温度
の変化に対してゆるやかなのに対し、しきい値利得gが
曲線πに示すように温度の変化に対して大きく変化し、
モード選択性が悪化してモードホッピング等の不安定な
現象が起きやすくなるという欠点があった。Therefore, when the resonator length is increased, the longitudinal mode spacing Δin decreases, and while the gain of the medium is gradual with respect to temperature changes as shown in curve ■ in Figure 2, the threshold gain g is As shown in π, it changes greatly in response to changes in temperature,
This has the disadvantage that mode selectivity deteriorates and unstable phenomena such as mode hopping are more likely to occur.
この発明は、」−記のような従来のものの欠点を除去す
るためになされたもので、半導体レーザの導波路上に弱
い結合係数を持つ回折格子を作り共振器を長く形成する
ことによって、安定な単一縦モード発振をさせ、かつス
ペクトル幅をせばめることを目的としている。This invention was made in order to eliminate the drawbacks of the conventional ones as described in "-", and by creating a diffraction grating with a weak coupling coefficient on the waveguide of a semiconductor laser and forming a long resonator, it becomes stable. The purpose is to achieve single longitudinal mode oscillation and narrow the spectral width.
以下、この発明を図面について説明する。Hereinafter, this invention will be explained with reference to the drawings.
第3図はこの発明の一実施例を示すものである。この図
において、1は基板、2は活性層、3は閉じ込め層、4
は端面であり、活性層2と閉じ込め層3との間には弱い
結合定数Kを持つ回折格子5が設けられており、また、
共振器長りは第1図の共振器長りに比べ十分大きくとら
れている。なお、第3図の実施例では回折格子5は活性
層2と閉じ込め層3の間に設けられているが、これは活
性層2と基板1の間であってもよい。FIG. 3 shows an embodiment of the present invention. In this figure, 1 is a substrate, 2 is an active layer, 3 is a confinement layer, and 4 is a confinement layer.
is an end face, a diffraction grating 5 having a weak coupling constant K is provided between the active layer 2 and the confinement layer 3, and
The resonator length is set to be sufficiently larger than the resonator length shown in FIG. In the embodiment shown in FIG. 3, the diffraction grating 5 is provided between the active layer 2 and the confinement layer 3, but it may also be provided between the active layer 2 and the substrate 1.
次に動作について説明する。Next, the operation will be explained.
第3図に示す半導体レーザにおいて、しきい値条件は以
下の方程式により決定される。In the semiconductor laser shown in FIG. 3, the threshold condition is determined by the following equation.
(δ+jg)=iβcot(βe L)ここで、
β”e = [(δ+jg)2−に2)碌ただし、iは
虚数単位、δは発振波数のブラッグ波数からのずれ9g
は利得、には定数である。(δ+jg)=iβcot(βe L) where, β”e = [(δ+jg)2−2) where i is an imaginary unit and δ is the deviation of the oscillation wave number from the Bragg wave number by 9g
is the gain, is a constant.
これを数値計算で求めたものが第4図である。Figure 4 shows this result obtained by numerical calculation.
ここで、横軸は正規化された共振器長KL、縦軸は正規
化されたしきい値利得gLである。この図よ゛りわかる
ように共振器長KLがある程度の大きさ以上であれば第
一次モード(model)のしきい値利得が他のモード
mode2.mode3、・・・に対して十分率さいの
で安定な単一モードで発振が起こる。Here, the horizontal axis is the normalized resonator length KL, and the vertical axis is the normalized threshold gain gL. As can be seen from this figure, if the resonator length KL is greater than a certain level, the threshold gain of the first mode (model) will be lower than that of the other modes, mode2. Since the ratio is sufficiently small for mode 3, . . . , oscillation occurs in a stable single mode.
また、この半導体レーザにおけるスペクトル幅について
の理論は明確には与えられていないが、従来型の半導体
レーザの理論から類推すると、共振器長りが長くなれば
スペクトル幅は狭くなる。Further, although a theory regarding the spectral width of this semiconductor laser has not been clearly given, it can be inferred from the theory of conventional semiconductor lasers that the longer the resonator length becomes, the narrower the spectral width becomes.
しかしながら、ある程度以上りを大きくしてもほとんど
の反射は中央付近で起こり、実効的な共振器長Left
は大きくならない。ここで、結合係数Kを小さくすれば
端面4付近からの反射も大きく寄与し実効的な共振器長
L effが増大しスペクトル幅も狭くなる。LとLe
ffの関係を模式的に示したのが第5図であり、また、
第6図(a)。However, even if it is increased beyond a certain level, most of the reflections occur near the center, and the effective cavity length Left
doesn't get bigger. Here, if the coupling coefficient K is made smaller, the reflection from the vicinity of the end face 4 will also contribute greatly, the effective resonator length L eff will increase, and the spectral width will also become narrower. L and Le
Figure 5 schematically shows the relationship between ff and
Figure 6(a).
(b)は結合係数にの大小による共振器内での反射の様
子を示す。(b) shows the state of reflection within the resonator depending on the magnitude of the coupling coefficient.
第3図の実施例では導波路全体を活性層2としており、
例えば共振器長りはl O00Jj、m以上、回折格子
の結合係数は10cm’以下とする。In the embodiment shown in FIG. 3, the entire waveguide is used as the active layer 2,
For example, the resonator length is l O00Jj,m or more, and the coupling coefficient of the diffraction grating is 10 cm' or less.
上記第3図の実、施例では導波路全体を活性層2として
全面に回折格子5を設けたものを示したが第7図(a)
、(b)に示されるように活性層、2と導波路6のブラ
ッグ反射領域を分離したものでもよい。第7図(a)、
(b)の実施例では全長を1500gm以上とし1回折
格子5の結合効率を10cm’以下とする。この場合も
結合係数Kを小さくして実効共振器長L effを長く
とることが必要である。In the example shown in FIG. 3 above, the entire waveguide is used as the active layer 2 and a diffraction grating 5 is provided on the entire surface, but FIG. 7(a)
, (b), the active layer 2 and the Bragg reflection region of the waveguide 6 may be separated. Figure 7(a),
In the embodiment (b), the total length is set to be 1500 g or more, and the coupling efficiency of one diffraction grating 5 is set to 10 cm' or less. In this case as well, it is necessary to reduce the coupling coefficient K and increase the effective resonator length L eff.
また、第8図に示されるように導波路全体を活性層2と
して、中央付近の結合係数Kを弱くして端の方の結合係
数を強くした回折格子を設けたものでもよい。Alternatively, as shown in FIG. 8, the entire waveguide may be made into an active layer 2, and a diffraction grating may be provided in which the coupling coefficient K is weak near the center and the coupling coefficient is strong near the ends.
なお、」二記実施例において、上下方向にはDH(ダブ
ルへテロ結合)とし、横方向にはBH(埋込みストライ
ブ)構造、C3P(チャンネル基板ストライブ)構造、
TJS(横接合ストライブ)構造、酸化ストライブ構造
等にして、光とキャリアの閉じ込めを行うようにするこ
ともできる。In addition, in the second embodiment, DH (double heterojunction) is used in the vertical direction, BH (buried stripe) structure, C3P (channel substrate stripe) structure, and
It is also possible to confine light and carriers by using a TJS (lateral junction stripe) structure, an oxidized stripe structure, or the like.
以」二のように、この発明は導波路を長くとり、その一
部あるいは全体に結合係数の小さい回折格子を設けたの
で、狭い発振スペクトルが安定に得られる効果がある。As described above, in this invention, the waveguide is long and a diffraction grating with a small coupling coefficient is provided on a part or the whole of the waveguide, so that a narrow oscillation spectrum can be stably obtained.
第1図は従来の半導体レーザの断面側面図、第2図は従
来の半導体レーザで長い共振器長りを持つもののしきい
値利得と媒質の利得関係を示す図、第3図はこの発明の
一実施例の断面側面図、第4図は各モードに対する正規
化されたしきい値利得と正規化された共振器長の関係を
示す図、第5図は違った結合係数の値に対する共振器長
と実効共振器長の関係を表す図、第6図(a)、(b)
は結合係数が大きくなる時と小さくなる時の共振器内で
の光の反射の状態を示す図、第7図(a)。
(b)、第8図はこの発明の他の実施例をそれぞれ示す
側断面図である。
図中、1は基板、2は活性層、3は閉じ込め層、4はへ
き開した端面、5は回折格子、6は導波路である。
なお、図中の同一符号は同一または相当部分を示す。
代理人 大 岩 増 雄 (外2名)へ丁
第5図
第6図
第7図
第8図
手続補正書(自発)
昭和 年 月 日
1、事件の表示 特願昭59−145312号2、
発明の名称 半導体レーザ
3、補正をする者
事件との関係 特許出願人
代表者片山仁へ部
4、代理人
5、補正の対象
明細書の発明の詳細な説明の欄および図面6、補正の内
容
(1)明細書第2頁19行の第(1)式のr(Hα2)
」を、「(1+α″)」と補正する。
(2)同しく第5頁9行の「定数」を、「回折格子の強
さを示す結合定数」と補正する。
(3) 第3図を別紙のように補正する。
以上Figure 1 is a cross-sectional side view of a conventional semiconductor laser, Figure 2 is a diagram showing the relationship between the threshold gain and medium gain of a conventional semiconductor laser with a long cavity length, and Figure 3 is a diagram showing the relationship between the threshold gain and the gain of the medium in a conventional semiconductor laser with a long cavity length. A cross-sectional side view of one embodiment, FIG. 4 is a diagram showing the relationship between normalized threshold gain and normalized cavity length for each mode, and FIG. 5 is a diagram showing the relationship between normalized threshold gain and normalized cavity length for each mode. Diagram showing the relationship between length and effective resonator length, Figure 6 (a), (b)
FIG. 7(a) is a diagram showing the state of light reflection within the resonator when the coupling coefficient becomes large and small. (b) and FIG. 8 are side sectional views showing other embodiments of the present invention. In the figure, 1 is a substrate, 2 is an active layer, 3 is a confinement layer, 4 is a cleaved end face, 5 is a diffraction grating, and 6 is a waveguide. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent: Masuo Oiwa (2 others) Figure 5, Figure 6, Figure 7, Figure 8 Procedural amendment (voluntary) Showa year month/day 1, case description Patent application No. 145312/1989 2,
Title of the invention Semiconductor laser 3, Relationship with the case of the person making the amendment Hitoshi Katayama, representative of the patent applicant, Department 4, Agent 5, Detailed description of the invention in the specification to be amended and Drawing 6, Contents of the amendment (1) r(Hα2) in formula (1) on page 2, line 19 of the specification
” is corrected to “(1+α″)”. (2) Similarly, "constant" on page 5, line 9 is corrected to "coupling constant indicating the strength of the diffraction grating." (3) Correct Figure 3 as shown in the attached sheet. that's all
Claims (4)
半導体レーザにおいて、安定した単一縦モードで、かつ
狭い発振スペクトル幅のレーザ光を発振させるための前
記導波路を長くとりその一部あるいは全体に結合係数の
小さい回折格子を設けたことを特徴とする半導体レーザ
。(1) In a semiconductor laser in which oscillation light generated in the active layer is extracted from a waveguide, the waveguide is made long in order to oscillate laser light in a stable single longitudinal mode and with a narrow oscillation spectrum width. Alternatively, a semiconductor laser is characterized in that a diffraction grating with a small coupling coefficient is provided throughout.
μm以上とし、結合効率が10cm^−^1以下である
回折格子を前記導波路全体に設けたことを特徴とする特
許請求の範囲第(1)項記載の半導体レーザ。(2) The cavity length is 1000 with the entire waveguide as the active region.
A semiconductor laser according to claim 1, characterized in that a diffraction grating having a diameter of .mu.m or more and a coupling efficiency of 10 cm^-^1 or less is provided over the entire waveguide.
のブラック反射領域のみに結合効率10cm^−^1以
下の回折格子を設け、全長を1500μm以上としたこ
とを特徴とする特許請求の範囲第(1)項記載の半導体
レーザ。(3) A claim characterized in that the waveguide is divided into an active region and a black reflective region, and a diffraction grating with a coupling efficiency of 10 cm^-^1 or less is provided only in the black reflective region, and the total length is 1500 μm or more. The semiconductor laser according to item (1).
率を高くした回折格子を設けたことを特徴とする特許請
求の範囲第(1)項記載の半導体レーザ。(4) A semiconductor laser according to claim (1), characterized in that the entire waveguide is used as an active region, and a diffraction grating is provided in which the coupling efficiency is increased near the center.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14531284A JPS6123383A (en) | 1984-07-11 | 1984-07-11 | Semiconductor laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14531284A JPS6123383A (en) | 1984-07-11 | 1984-07-11 | Semiconductor laser |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6123383A true JPS6123383A (en) | 1986-01-31 |
Family
ID=15382240
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14531284A Pending JPS6123383A (en) | 1984-07-11 | 1984-07-11 | Semiconductor laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6123383A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4867510A (en) * | 1986-03-07 | 1989-09-19 | U.S. Philips Corp. | Device and method for doubling the frequency of elecromagnetic radiation of a given frequency |
JPH02280394A (en) * | 1989-04-20 | 1990-11-16 | Mitsubishi Electric Corp | Distributed feedback semiconductor laser |
EP1089407A1 (en) * | 1999-09-30 | 2001-04-04 | The Furukawa Electric Co., Ltd. | Gain-coupled distributed-feedback semiconductor laser device |
EP1283571A1 (en) * | 2001-08-06 | 2003-02-12 | nanoplus GmbH Nanosystems and Technologies | Laser with weakly coupled grating |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5086287A (en) * | 1973-11-30 | 1975-07-11 | ||
JPS58137284A (en) * | 1982-02-09 | 1983-08-15 | Nippon Telegr & Teleph Corp <Ntt> | Distribution reflection type semiconductor laser device |
JPS58143595A (en) * | 1982-02-19 | 1983-08-26 | Sanyo Electric Co Ltd | Semiconductor laser |
JPS5967683A (en) * | 1982-10-12 | 1984-04-17 | Nec Corp | Distributed reflection type semiconductor laser |
JPS5972787A (en) * | 1982-10-19 | 1984-04-24 | Nec Corp | Semiconductor laser |
-
1984
- 1984-07-11 JP JP14531284A patent/JPS6123383A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5086287A (en) * | 1973-11-30 | 1975-07-11 | ||
JPS58137284A (en) * | 1982-02-09 | 1983-08-15 | Nippon Telegr & Teleph Corp <Ntt> | Distribution reflection type semiconductor laser device |
JPS58143595A (en) * | 1982-02-19 | 1983-08-26 | Sanyo Electric Co Ltd | Semiconductor laser |
JPS5967683A (en) * | 1982-10-12 | 1984-04-17 | Nec Corp | Distributed reflection type semiconductor laser |
JPS5972787A (en) * | 1982-10-19 | 1984-04-24 | Nec Corp | Semiconductor laser |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4867510A (en) * | 1986-03-07 | 1989-09-19 | U.S. Philips Corp. | Device and method for doubling the frequency of elecromagnetic radiation of a given frequency |
JPH02280394A (en) * | 1989-04-20 | 1990-11-16 | Mitsubishi Electric Corp | Distributed feedback semiconductor laser |
EP1089407A1 (en) * | 1999-09-30 | 2001-04-04 | The Furukawa Electric Co., Ltd. | Gain-coupled distributed-feedback semiconductor laser device |
EP1283571A1 (en) * | 2001-08-06 | 2003-02-12 | nanoplus GmbH Nanosystems and Technologies | Laser with weakly coupled grating |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2768940B2 (en) | Single wavelength oscillation semiconductor laser device | |
US6445722B2 (en) | Single-transverse-mode laser diode with multi-mode waveguide region and manufacturing method of the same | |
JP3180725B2 (en) | Distributed feedback semiconductor laser | |
JP3186705B2 (en) | Distributed feedback semiconductor laser | |
JPS63205984A (en) | Surface emitting type semiconductor laser | |
JPH1168242A (en) | Semiconductor laser | |
US5805627A (en) | Laser diode and optical communications system using such laser diode | |
JPH0335581A (en) | Semiconductor laser and manufacture thereof | |
US6937780B2 (en) | Multi-pass, arcuate bent waveguide, high power super luminescent diode | |
US20020037024A1 (en) | Distributed feedback semiconductor laser | |
US5914977A (en) | Semiconductor laser having a high-reflectivity reflector on the laser facets thereof, an optical integrated device provided with the semiconductor laser, and a manufacturing method therefor | |
JPS6123383A (en) | Semiconductor laser | |
JP2000349394A (en) | Semiconductor laser device | |
JPS6250075B2 (en) | ||
JP2002064245A (en) | Semiconductor laser, and system and method of digital optical communication using the same | |
JPH0319292A (en) | Semiconductor laser | |
JP3527061B2 (en) | Distributed feedback semiconductor laser | |
JPS5810882A (en) | Distributed feedback type semiconductor laser | |
JPH0555689A (en) | Distributed reflection type semiconductor laser provided with wavelength control function | |
JPH01105589A (en) | Semiconductor raman laser | |
JPH0147031B2 (en) | ||
JPS63269592A (en) | Semiconductor laser | |
JP2894285B2 (en) | Distributed feedback semiconductor laser and method of manufacturing the same | |
JPH0837342A (en) | Distributed feedback semiconductor laser and semiconductor laser array | |
JPS5911690A (en) | Semiconductor laser device |