JPS58114476A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS58114476A
JPS58114476A JP56209607A JP20960781A JPS58114476A JP S58114476 A JPS58114476 A JP S58114476A JP 56209607 A JP56209607 A JP 56209607A JP 20960781 A JP20960781 A JP 20960781A JP S58114476 A JPS58114476 A JP S58114476A
Authority
JP
Japan
Prior art keywords
region
layer
active layer
waveguide
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56209607A
Other languages
Japanese (ja)
Other versions
JPS6328520B2 (en
Inventor
Katsuyuki Uko
宇高 勝之
Kazuo Sakai
堺 和夫
Shigeyuki Akiba
重幸 秋葉
Yuichi Matsushima
松島 裕一
Yukitoshi Kushiro
久代 行俊
Yukio Noda
野田 行雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP56209607A priority Critical patent/JPS58114476A/en
Publication of JPS58114476A publication Critical patent/JPS58114476A/en
Publication of JPS6328520B2 publication Critical patent/JPS6328520B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/125Distributed Bragg reflector [DBR] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1028Coupling to elements in the cavity, e.g. coupling to waveguides adjacent the active region, e.g. forward coupled [DFC] structures
    • H01S5/1032Coupling to elements comprising an optical axis that is not aligned with the optical axis of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1053Comprising an active region having a varying composition or cross-section in a specific direction
    • H01S5/1064Comprising an active region having a varying composition or cross-section in a specific direction varying width along the optical axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain high coupling efficiency of a semiconductor laser by forming a tapered region by varying the width without varying the thickness of an active layer. CONSTITUTION:An n type Ga1-uInuAsvP1-v waveguide 12, non-added GaxIn1-x AsyP1-y active layer 13, a p type InP clad layer 14 and a buried layer 15, and a p type GaInAsP cap layer 16 are superposed on an n type InP substrate 11, x>u, y>v are established, the other surface is formed by the coupling side, and electrodes 16, 17 are attached. A region A is formed of the active layer 13 of the prescribed width and the waveguide 12 with intrinsic light distribution determined by the refractive index distribution, but in case of propagation, since the active layer width is uniformly reduced in the tapered region B, the light distribution is not almost scattered, but is propagated in the region C, and the regions A and C are coupled in high efficiency. On the contrary, in case of reverse propagation, similar operation occurs. When the width of the waveguide 12 is approx. 2mum, the length of the region B is approx. 50mum and the end is less than 0.5mum the advantages are remarkable. This configuration can be formed with good reproducibility in the planar process steps, and a resonator can be made available by forming rugged surface 19 on the region A or C.

Description

【発明の詳細な説明】 本発明は半導体レニザに係り、特に集積レーザに不可欠
な活性層と導波路層間において、高い結合効率を与える
構造を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor laser, and in particular provides a structure that provides high coupling efficiency between an active layer and a waveguide layer, which are essential for integrated lasers.

同一基板上に、半導体レーザなどの光素子を複数個集積
化させるためには、光活性素子に低損失な導波路が結合
した構造を成していることが必須でアリ、これらの素子
を高性能で動作させるためには、活性層と導波路の結合
が十分大きいことが重要である。これまで、とのよ・う
な集積レーザを目的とし、活性層と導波路層ρ高結合化
を目指した構造の1つとして、図1に示したテーパ結合
がある。図において、1は1nPの如き半導体基板、2
は導波路層、3は活性層、4はクラッド層、6はキャッ
プ層である。光は領域Aにおいて発生せしめられて領域
Cに結合されるが、上記領域A。
In order to integrate multiple optical devices such as semiconductor lasers on the same substrate, it is essential to have a structure in which a low-loss waveguide is coupled to a photoactive device. In order to operate at high performance, it is important that the coupling between the active layer and the waveguide is sufficiently large. Until now, one of the structures aimed at achieving high coupling between the active layer and the waveguide layer is the taper coupling shown in FIG. 1 for the purpose of integrated lasers such as Tono. In the figure, 1 is a semiconductor substrate such as 1nP, 2
3 is a waveguide layer, 3 is an active layer, 4 is a cladding layer, and 6 is a cap layer. Light is generated in region A and coupled into region C, where the light is generated in region A and coupled into region C.

6間の領域Bにおいて、活性層の層厚が一様に変化する
テーパ領域を有している。図2に図1の■−Ilail
i面及び光分布を示すが如く、領域Aにおける光分布に
散乱が生じないように、テーパ領域において光分布を一
様Kかっ徐々に変化させて領域Cにおける光分布に一致
させて高結合を図ろうというものでらり、通常90%程
度の高い結合効率が得られるという利点を有している0
しかし、上記テーバ結合溝造は、徐々に活性層3の厚み
を変化させる必要がらり、多くは液相成長にょシ作製さ
れるが、作製するためには装置に特別な工夫を必要とし
、かつ、作製されたテーパの形状の再現性に問題があっ
た。すなわち、液相成長にょるテーパ領域の作製方法は
図3に示すごとく導波路層2の上に活性層3を成長する
際に黒鉛ボート9中のメルト7が遮へい板8の下から流
出して成長することを利用している。従って、メルト7
の温度や粘度に応じて遮へい板8の設定高りを調整しな
ければならず、この作業が困難なためテーパ形状の再現
性に問題を残していた。さらに、図3かられかるように
、テーパ領域Bと領域Aの成長のための雰囲気が大きく
異なるため、それぞれの組成が異なってしまうという欠
点を有していた。
In region B between 6 and 6, there is a tapered region in which the layer thickness of the active layer changes uniformly. Figure 2 shows ■-Ilail in Figure 1.
As shown in the i-plane and light distribution, in order to prevent scattering in the light distribution in region A, the light distribution in the tapered region is uniformly changed gradually to match the light distribution in region C to achieve high coupling. It has the advantage of achieving high coupling efficiency, usually around 90%.
However, the above-mentioned Taper bond groove structure requires gradual changes in the thickness of the active layer 3, and although it is often fabricated by liquid phase growth, special ingenuity is required for the equipment in order to fabricate it, and There was a problem with the reproducibility of the manufactured taper shape. That is, as shown in FIG. 3, the method for manufacturing the tapered region by liquid phase growth is such that when growing the active layer 3 on the waveguide layer 2, the melt 7 in the graphite boat 9 flows out from under the shielding plate 8. It takes advantage of growth. Therefore, melt 7
The set height of the shielding plate 8 must be adjusted according to the temperature and viscosity of the shielding plate 8, and this work is difficult, resulting in problems with the reproducibility of the taper shape. Furthermore, as can be seen from FIG. 3, since the atmospheres for growing the tapered region B and the region A are greatly different, there is a drawback that the respective compositions are different.

本発明は、上述した従来技術の欠点を改善するもので、
活性層厚を変化させるのではなく、活性層幅を変化させ
ることにょシテーパ領域を形成し、高い結合効率を得る
ことができかつ平面プロセスにより作製できる構造を有
する半導体レーザを提供するものである。
The present invention improves the above-mentioned drawbacks of the prior art, and
The object of the present invention is to provide a semiconductor laser having a structure in which a tapered region is formed by changing the width of the active layer instead of changing the thickness of the active layer, and which can obtain high coupling efficiency and can be manufactured by a planar process.

以下、図面によシ本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

GaInAsP結晶を用いた本発明の実施例の斜視図ヲ
図4 (a) K、そ17) PJ −IVa断面図ヲ
図4 (b) K、i fc、ストライプ部分を露出さ
せたときの上面図を図4(e)に各々示す。図において
、11はn型InP基也、12はn型Ghu工n1−u
AsvPl−vかう成る導波路層、13はアンドープG
axIn、−XAsyPl−yから成る活性層、14は
p型InPり2ソド層、15はp型InP埋め込み層、
16はp型GaInAsPから成るキャップ層であり、
導波路層12と活性層13とはx)u、y)yなる関係
を持つ。なお、図には他端は明示していないが、図示し
たと同じ構成もしくは、へき開面であってもよく、どの
ような素子を結合するかによって決定される。これらの
半導体層は液相エピタキシャル法、気相エピタキシャル
法2分子線エピタキシャル法などにより形成することが
できる。17及び18は各々p側及びn側の電極である
。ここに、領域Aは幅が一定なストライプ状活性層13
と導波路層12からなり、領域Cはストライプ状導波路
12のみから成り、また、領域Bは本発明の特徴である
活性層13の幅が連続的に変化するテーパ領域である。
A perspective view of an embodiment of the present invention using GaInAsP crystal (a) K, 17) PJ-IVa cross-sectional view (b) K, i fc, top view when the stripe portion is exposed are shown in FIG. 4(e). In the figure, 11 is n-type InP Motoya, 12 is n-type Ghu n1-u
A waveguide layer consisting of AsvPl-v, 13 is an undoped G
an active layer consisting of axIn, -XAsyPl-y, 14 a p-type InP layer, 15 a p-type InP buried layer,
16 is a cap layer made of p-type GaInAsP;
The waveguide layer 12 and the active layer 13 have a relationship of x)u and y)y. Although the other end is not clearly shown in the figure, it may have the same configuration as shown or a cleavage plane, and is determined depending on what kind of elements are to be coupled. These semiconductor layers can be formed by liquid phase epitaxial method, vapor phase epitaxial method, bimolecular beam epitaxial method, or the like. 17 and 18 are p-side and n-side electrodes, respectively. Here, region A is a striped active layer 13 with a constant width.
and a waveguide layer 12, region C consists only of the striped waveguide 12, and region B is a tapered region in which the width of the active layer 13 changes continuously, which is a feature of the present invention.

領域Aで発生した光は、該領域Aの屈折率分布で決まる
固有の光分布を有するが、光が2方向に伝搬する際、領
域Bにおいて活性層幅が一様に減少するため、上記光分
布は代とんど散乱されることなく一様に変形し、領域C
と領域Bの境界においては、上記変形した光分布は領域
Cに固有の光分布に一致して領域C内を伝搬する。すな
わち、テーパ領域Bにおける光の散乱は極めて小さいた
め、高い効率で光を領域Aから領域Cに結合させること
ができる。上記は2方向に光が伝搬する例について述べ
たが、−2方向、すなわち光が領域Cから領域Aに伝搬
する場合も同様である。
The light generated in region A has a unique light distribution determined by the refractive index distribution of region A, but when the light propagates in two directions, the width of the active layer uniformly decreases in region B. The distribution is uniformly deformed without being scattered all the time, and the area C
At the boundary between region B and region B, the deformed light distribution propagates within region C in accordance with the light distribution specific to region C. That is, since the scattering of light in the tapered region B is extremely small, light can be coupled from the region A to the region C with high efficiency. Although an example in which light propagates in two directions has been described above, the same applies to the case in which light propagates in the -2 direction, that is, from region C to region A.

図5に光が伝搬する様子を示す。図5(b)は光結合部
分の拡大図であり、V−1、V−n 、 V−m 、 
%L−IV。
Figure 5 shows how light propagates. FIG. 5(b) is an enlarged view of the optical coupling part, where V-1, V-n, V-m,
%L-IV.

■−■は切断面を示し、図5(a)に各切断面に対応し
てその断面(1) 、 (II) 、(至)l (V)
 +(資)と光分布とを示している。光閉込め効果は層
の屈折率と断面積とにより決まる。活性層13の有する
屈折率は導波路層12の屈折率より大きい。従って、断
面V−1の位置においては光は主として活性層13内に
閉込められているが、活性層13の断面積が小さくなる
のに従って、光は導波路層12内に閉込められる量が多
くなシ、断面(V−V )の位置においては領域C固有
の光分布となっている。
■-■ indicates the cut plane, and the cross sections (1), (II), (to) l (V) corresponding to each cut plane are shown in Fig. 5(a).
+ (capital) and light distribution are shown. The light confinement effect depends on the refractive index and cross-sectional area of the layer. The refractive index of the active layer 13 is greater than the refractive index of the waveguide layer 12. Therefore, at the position of cross section V-1, light is mainly confined within the active layer 13, but as the cross-sectional area of the active layer 13 becomes smaller, the amount of light confined within the waveguide layer 12 decreases. In many positions of the cross section (V-V), the light distribution is unique to region C.

なお、図4においてテーパ領域Bの具体的な形状寸法例
として、導波路層12が2μm程度テーパ領域Bの長さ
は50μm程度であるとき、テーパ部の先端は0.5μ
m以下において本発明の効果が顕著である。
In addition, as a specific example of the shape and size of the tapered region B in FIG. 4, when the waveguide layer 12 is about 2 μm long and the length of the tapered region B is about 50 μm, the tip of the tapered portion is about 0.5 μm long.
The effect of the present invention is significant below m.

図4の実施例の作製行程の一例を図6に示す。An example of the manufacturing process of the embodiment shown in FIG. 4 is shown in FIG.

ウェハは2回の結晶成長によシ作製される。まず、第1
回目の成長により、InP基板11上に導波路層12、
活性層13.InPクラッド層14を順次成長する〔図
6 (aン)。次に、テーパ状を有するくさび形のスト
ライプが残るようにクラッド層14と活性層13をエツ
チングにより除去する〔図6 (b) )。さらに、上
記くさび形ストライプに重畳するように再度直線状スト
ライプマスクをほどこし、InP基板1までエツチング
を行なう〔図6 (C) )。次に、第2回月ノ成長に
よりテーパ形状を有するストライプをInPにより完全
に埋め込む〔図6 (d) )。このように、活性層1
3の幅をテーパ状にすることは、図1に示したように活
性層厚をテーパ状にするのと比べて、結晶成長装置に特
別な工夫なしに平面プロセス行程で作製が可能であシ、
その形状も再現性よく作製することができる。
The wafer is fabricated by two rounds of crystal growth. First, the first
By the second growth, a waveguide layer 12 is formed on the InP substrate 11,
Active layer 13. The InP cladding layer 14 is sequentially grown [FIG. 6(a)]. Next, the cladding layer 14 and the active layer 13 are removed by etching so that tapered wedge-shaped stripes remain [FIG. 6(b)]. Furthermore, a linear stripe mask is applied again so as to overlap the wedge-shaped stripes, and etching is performed up to the InP substrate 1 [FIG. 6(C)]. Next, the tapered stripes are completely filled with InP by the second moon growth [FIG. 6(d)]. In this way, active layer 1
Compared to tapering the active layer thickness as shown in FIG. ,
Its shape can also be produced with good reproducibility.

なお、共振器としては、図7(a)に示した領域Aに周
期的な凹凸19を設けたDFB(分布帰還)型、もしく
は、図7(b)に示した双対する領域Cに周期的凹凸1
9を設けたI)BR(分布反射)型とすることにより実
現することができる。
Note that the resonator may be a DFB (distributed feedback) type in which periodic unevenness 19 is provided in region A shown in FIG. Unevenness 1
This can be realized by using an I) BR (distributed reflection) type in which 9 is provided.

上記の実施例は、活性層13と導波路層12が直接接合
した構造を用いて示したが、活性層13と導波路層12
間にInPなどの低屈折率の層が介在する構造などにも
適用が可能である。また、GaInAsP/InP結晶
を用いた実施例(でついて示したがAlGaAs系の混
晶などについても適用可能である。
The above embodiment has been shown using a structure in which the active layer 13 and the waveguide layer 12 are directly bonded, but the active layer 13 and the waveguide layer 12 are
It can also be applied to a structure in which a low refractive index layer such as InP is interposed. Furthermore, the present invention is also applicable to an embodiment using GaInAsP/InP crystals (although this is shown above, it is also applicable to AlGaAs-based mixed crystals, etc.).

以上、詳細に説明したように、本発明によれば簡単な平
面プロセスにより、再現性よく高い結合係数を有するテ
ーパ結合構造が作製でき、従って、低しきい値、高効率
な集積レーザの実現が期待できる。
As described above in detail, according to the present invention, a tapered coupling structure with a high coupling coefficient can be fabricated with good reproducibility through a simple planar process, and therefore a low threshold and highly efficient integrated laser can be realized. You can expect it.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は活性層厚が変化する従来のテーパ結合構造例を示
す斜視図、図2は図1のII −11a断面図及び光分
布の変化の様子を示し北回、図3は図1の従来例を形成
する方法を説明するための断面図、図4(a)は本発明
の実施例を示す斜視図、図4(b)はけ図4(a)のI
V−IVa断面図、図4(c)は図4(a)の■−−V
a断面の上面図、図5 (a) (b)は本発明装置に
おけ、  る光の伝搬を示す断面図及び斜視図、図6 
(a) (b)(c)(d)は本発明の実施例の作製行
程を示す斜視図、図7は本発明をDFB及びDBR構造
に適用した実施例である。 1−・InP基板、2 =−GauInl−uAsvP
l−v導波路層、3 ・・・Gax In H−xAs
 y P 1−y活性層、4 =−InPクラッド層、
5・・・InP埋め込み層、6・・・GaInAsPキ
ャノグ層、7,8・・・電極、9・・・周期的な凹凸、
11・・・n型InP基板、12−n型GauIn1−
uAsvPl−、導波路層、13 ・・・GaxIn 
1−XA5yP 1−y活性層、14−p型InPクラ
ッド層、15・・・p型InP埋め込み層、16・・・
p型GaInAsPキャップ層、17・・・p側電極、
18・・・n側電極。 特許出願人  国際電信電話株式会社 代理人 大板 学 外1名 聞 1 関 2 閃  3 圀 4 一−2 ■6 −A−−←BC門 う つ ) (0) (b) 図 6 図  7
FIG. 1 is a perspective view showing an example of a conventional tapered coupling structure in which the active layer thickness changes, FIG. 2 is a cross-sectional view taken along line II-11a in FIG. 1 and shows how the light distribution changes. 4(a) is a perspective view showing the embodiment of the present invention, FIG. 4(b) is a cross-sectional view for explaining the method of forming the example, FIG.
V-IVa sectional view, FIG. 4(c) is the ■--V in FIG. 4(a)
5 (a) (b) is a cross-sectional view and a perspective view showing the propagation of light in the device of the present invention, FIG.
(a), (b), (c), and (d) are perspective views showing the manufacturing process of an embodiment of the present invention, and FIG. 7 is an embodiment in which the present invention is applied to a DFB and DBR structure. 1- InP substrate, 2 =-GauInl-uAsvP
l-v waveguide layer, 3...Gax In H-xAs
y P 1-y active layer, 4 =-InP cladding layer,
5... InP buried layer, 6... GaInAsP canog layer, 7, 8... electrode, 9... periodic unevenness,
11...n-type InP substrate, 12-n-type GauIn1-
uAsvPl-, waveguide layer, 13...GaxIn
1-XA5yP 1-y active layer, 14-p-type InP cladding layer, 15... p-type InP buried layer, 16...
p-type GaInAsP cap layer, 17... p-side electrode,
18...n-side electrode. Patent Applicant International Telegraph and Telephone Corporation Agent Oita 1 person from outside the university 1 Seki 2 Sen 3 Kuni 4 1-2 ■6 -A--←BCmonutsu) (0) (b) Figure 6 Figure 7

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に、第1の半導体層と、該第1の半導体層
より禁制帯幅が小にして導波路として供される第2の半
導体層と、前記第1.第2の半導体層よりさらに禁制帯
幅が小にして活性層として供される第3の半導体層と、
前記第1の半導体層と同程度の禁制帯幅を有する第4の
半導体層とが順次積層され、かつ、一部活性層が除去さ
れていることにより前記第1.第2.第3.第4の半導
体層から成る領域Aと、前記第1.第2.第4の半導体
層から成る領域Cとの両方にわたって光を伝搬させて発
振せしめるか、もしくは、領域Aのみにおいて発振せし
め、該発振光を前記領域Cに伝搬させるように構成され
た半導体レーザにおいて、前記領域Aと領域Cの中間に
前記活性層の接合面に平行方向の幅を連続的に減少させ
た領域Bを有することを特徴とする半導体レーザ。
On a semiconductor substrate, a first semiconductor layer, a second semiconductor layer having a smaller forbidden band width than the first semiconductor layer and serving as a waveguide, and the first semiconductor layer. a third semiconductor layer having a smaller forbidden band width than the second semiconductor layer and serving as an active layer;
A fourth semiconductor layer having a forbidden band width comparable to that of the first semiconductor layer is sequentially stacked, and a portion of the active layer is removed. Second. Third. Region A consisting of a fourth semiconductor layer; Second. In a semiconductor laser configured to oscillate by propagating light across both region C comprising a fourth semiconductor layer, or to oscillate only in region A and transmitting the oscillated light to region C, A semiconductor laser characterized by having a region B between the regions A and C, the width of which is continuously reduced in a direction parallel to the bonding surface of the active layer.
JP56209607A 1981-12-28 1981-12-28 Semiconductor laser Granted JPS58114476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56209607A JPS58114476A (en) 1981-12-28 1981-12-28 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56209607A JPS58114476A (en) 1981-12-28 1981-12-28 Semiconductor laser

Publications (2)

Publication Number Publication Date
JPS58114476A true JPS58114476A (en) 1983-07-07
JPS6328520B2 JPS6328520B2 (en) 1988-06-08

Family

ID=16575603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56209607A Granted JPS58114476A (en) 1981-12-28 1981-12-28 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS58114476A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0510883A2 (en) * 1991-04-25 1992-10-28 AT&T Corp. Planar optical device
FR2684823A1 (en) * 1991-12-04 1993-06-11 Alsthom Cge Alcatel SEMICONDUCTOR OPTICAL COMPONENT WITH ENLARGED OUTPUT MODE AND MANUFACTURING METHOD THEREOF.
WO1995023445A1 (en) * 1994-02-24 1995-08-31 British Telecommunications Public Limited Company Semiconductor device
US5574742A (en) * 1994-05-31 1996-11-12 Lucent Technologies Inc. Tapered beam expander waveguide integrated with a diode laser
US5985685A (en) * 1994-02-24 1999-11-16 British Telecommunications Public Limited Company Method for making optical device with composite passive and tapered active waveguide regions
JP2002519842A (en) * 1998-06-24 2002-07-02 ザ トラスティーズ オブ プリンストン ユニバーシテイ Design of a dual waveguide base for photonic integrated circuits
JP2009152605A (en) * 2007-12-18 2009-07-09 Korea Electronics Telecommun Optical amplifier-integrated super luminescent diode and external cavity laser using the same
JP2016146473A (en) * 2015-01-27 2016-08-12 華為技術有限公司Huawei Technologies Co.,Ltd. Tunable laser, and method for tuning laser
US20230275400A1 (en) * 2020-02-12 2023-08-31 Sumitomo Electric Industries, Ltd. Semiconductor optical device and method for producing semiconductor optical device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57183091A (en) * 1981-05-08 1982-11-11 Toshiba Corp Manufacture of optical integrated circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57183091A (en) * 1981-05-08 1982-11-11 Toshiba Corp Manufacture of optical integrated circuit

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0510883A2 (en) * 1991-04-25 1992-10-28 AT&T Corp. Planar optical device
FR2684823A1 (en) * 1991-12-04 1993-06-11 Alsthom Cge Alcatel SEMICONDUCTOR OPTICAL COMPONENT WITH ENLARGED OUTPUT MODE AND MANUFACTURING METHOD THEREOF.
US5278926A (en) * 1991-12-04 1994-01-11 Alcatel Alsthom Compagnie Generale Widened output mode semiconductor optical component and method of fabricating it
AU692840B2 (en) * 1994-02-24 1998-06-18 Ipg Photonics Corporation Semiconductor device
WO1995023445A1 (en) * 1994-02-24 1995-08-31 British Telecommunications Public Limited Company Semiconductor device
US5985685A (en) * 1994-02-24 1999-11-16 British Telecommunications Public Limited Company Method for making optical device with composite passive and tapered active waveguide regions
US5574742A (en) * 1994-05-31 1996-11-12 Lucent Technologies Inc. Tapered beam expander waveguide integrated with a diode laser
US5720893A (en) * 1994-05-31 1998-02-24 Lucent Technologies Inc. Tapered beam expander waveguide integrated with a diode lasesr
JP2002519842A (en) * 1998-06-24 2002-07-02 ザ トラスティーズ オブ プリンストン ユニバーシテイ Design of a dual waveguide base for photonic integrated circuits
JP2009152605A (en) * 2007-12-18 2009-07-09 Korea Electronics Telecommun Optical amplifier-integrated super luminescent diode and external cavity laser using the same
JP2016146473A (en) * 2015-01-27 2016-08-12 華為技術有限公司Huawei Technologies Co.,Ltd. Tunable laser, and method for tuning laser
US9570886B2 (en) 2015-01-27 2017-02-14 Huawei Technologies Co., Ltd. Tunable laser and method of tuning a laser
US20230275400A1 (en) * 2020-02-12 2023-08-31 Sumitomo Electric Industries, Ltd. Semiconductor optical device and method for producing semiconductor optical device

Also Published As

Publication number Publication date
JPS6328520B2 (en) 1988-06-08

Similar Documents

Publication Publication Date Title
US10534131B2 (en) Semiconductor optical integrated device having buried hetero structure waveguide and deep ridge waveguide
US4665528A (en) Distributed-feedback semiconductor laser device
CA1100216A (en) Mode control of heterojunction injection lasers and method of fabrication
US6198863B1 (en) Optical filters
JP2008113041A (en) Waveguide
JPH08248248A (en) Segment-type optical waveguide especially suitable for being built in semiconductor element
JPH0348476A (en) Semiconductor light emitting element
JP3284994B2 (en) Semiconductor optical integrated device and method of manufacturing the same
JPS58114476A (en) Semiconductor laser
US4618959A (en) Double heterostructure semiconductor laser with periodic structure formed in guide layer
JPH01134430A (en) Distributed coupling type optical switch
JP2950302B2 (en) Semiconductor laser
US5084897A (en) Optical filter device
US4520485A (en) Semiconductor device
US5784398A (en) Optoelectronic component having codirectional mode coupling
JPH04221872A (en) Semiconductor wavelength varying device
JP7308948B2 (en) LASER DEVICE AND MANUFACTURING METHOD THEREOF
JPS5911690A (en) Semiconductor laser device
CN117981186A (en) Semiconductor laser device
JPH07325328A (en) Semiconductor optical modulator
JPS62176184A (en) Semiconductor light emitting device having modulator
JPH07202316A (en) Selectively grown waveguide optical control element
JP2687404B2 (en) Distributed feedback semiconductor laser
JPS61212082A (en) Integrated semiconductor laser
JPS5858783A (en) Semiconductor laser