JPS58105683A - Digital multi-frequency signal receiving system - Google Patents

Digital multi-frequency signal receiving system

Info

Publication number
JPS58105683A
JPS58105683A JP56204919A JP20491981A JPS58105683A JP S58105683 A JPS58105683 A JP S58105683A JP 56204919 A JP56204919 A JP 56204919A JP 20491981 A JP20491981 A JP 20491981A JP S58105683 A JPS58105683 A JP S58105683A
Authority
JP
Japan
Prior art keywords
signal
added
input
circuit
discrete fourier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56204919A
Other languages
Japanese (ja)
Inventor
Takashi Hatano
畑野 隆司
Yasunori Ogawa
小川 保典
Ryoji Shimozono
下園 良二
Yasuo Tanaka
康夫 田中
Yoko Seki
洋子 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP56204919A priority Critical patent/JPS58105683A/en
Publication of JPS58105683A publication Critical patent/JPS58105683A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q1/00Details of selecting apparatus or arrangements
    • H04Q1/18Electrical details
    • H04Q1/30Signalling arrangements; Manipulation of signalling currents
    • H04Q1/44Signalling arrangements; Manipulation of signalling currents using alternate current
    • H04Q1/444Signalling arrangements; Manipulation of signalling currents using alternate current with voice-band signalling frequencies
    • H04Q1/45Signalling arrangements; Manipulation of signalling currents using alternate current with voice-band signalling frequencies using multi-frequency signalling
    • H04Q1/457Signalling arrangements; Manipulation of signalling currents using alternate current with voice-band signalling frequencies using multi-frequency signalling with conversion of multifrequency signals into digital signals
    • H04Q1/4575Signalling arrangements; Manipulation of signalling currents using alternate current with voice-band signalling frequencies using multi-frequency signalling with conversion of multifrequency signals into digital signals which are transmitted in digital form

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

PURPOSE:To change the integrated section of the Fourier conversion in accordance with an input signal and to highly accurately perform identification of a multi-frequency signal, by monitoring that the conversion output has reached a level higher than a prescribed threshold after the 1st time has passed from the starting of the discrete Fourier conversion of the input signal. CONSTITUTION:Input signals are converted into linear codes by an expander 2 and multiplied by the Cos and Sin from a sine wave generator 7 and a cosine wave generator 8 at multipliers 5 and 6. These multiplied values are at integrators 9 and 10, and the integrated values are squared at multipliers 11 and 12, and then, they are added to each other at an adder 13. This added power spectrum of an angular frequency omega is added to a signal detector 14 and an F1 detecting circuit 17 and an F2 detecting circuit 18, and the 2nd and 3rd largest spectra F1 and F2 are added to an arithmetic circuit 19 and monitored at the circuits 17 and 18. After a prescribed time has passed from the starting of the integration, spectra F1 and F2 are added to a judging circuit 20 and the circuit 20 judges whether a prescribed threshold has reached or not and changes the integrated section in accordance with the input signal by controlling the integrators 9 and 10.

Description

【発明の詳細な説明】 (l)1発明の技術分野 本発明はディジタル多周波信号受信方式、特に入力ディ
ジタル信号に離散的フーリエ変換を行うディジタル多周
波信号受信器におけるディジタル多周波信号受信方式に
関す。
Detailed Description of the Invention (l) 1 Technical Field of the Invention The present invention relates to a digital multi-frequency signal receiving system, particularly to a digital multi-frequency signal receiving system in a digital multi-frequency signal receiver that performs discrete Fourier transform on an input digital signal. about.

(2)、技術の背景 電話交換網内において、音声帯域内の複数の所定周波数
から選択した周波数の組合せにより、選択信号あるいは
監視信号を伝達する多周波信号方式が、加入者線におけ
る押しボタンダイヤル信号方式(PB信号)、あるいは
局間中継線における多周波信号方式(MF信号)の如く
多く採用されている。一方電話交換機等の通話路が時分
割化されるに伴い、前記多周波信号の受信手段にも、離
散的フーリエ変換等のディジタル技術が広く利用されて
いる。一般に離散的フーリエ変換は(1)式に示される
如く、未知信号x (nT)と既知信号exp (−j
a+nT)(−cog (a+nT)+jsin(ωn
T))との相関として定義される。
(2) Background of the technology Within the telephone exchange network, a multi-frequency signaling system that transmits a selection signal or a monitoring signal by a combination of frequencies selected from a plurality of predetermined frequencies within the voice band is used for push-button dialing on subscriber lines. It is widely used as a signal system (PB signal) or a multi-frequency signal system (MF signal) in inter-office relay lines. On the other hand, as the communication paths of telephone exchanges and the like are time-divided, digital techniques such as discrete Fourier transform are also widely used as means for receiving the multi-frequency signals. Generally, the discrete Fourier transform is performed using the unknown signal x (nT) and the known signal exp (-j
a+nT)(-cog (a+nT)+jsin(ωn
T))

F (ω)−Σx (nT)  ・W (nT)・ex
p(jωnT)    (11 ここに、F:離散的フーリエ変換出力 ω:参照角周波数 W(nT):@関数の標本値 T:標本化周期 N:積分期間内の総標本数。
F (ω)−Σx (nT) ・W (nT)・ex
p(jωnT) (11 Where, F: Discrete Fourier transform output ω: Reference angular frequency W(nT): Sample value of @function T: Sampling period N: Total number of samples within the integration period.

(3)、従来技術と問題点 第1図は、この種離散的フーリエ変換を用いた従来ある
ディジタル多周波信号受信方式の一例を示す図である。
(3) Prior Art and Problems FIG. 1 is a diagram showing an example of a conventional digital multi-frequency signal receiving system using this type of discrete Fourier transform.

第1図において、入力端子1から入力されてディジタル
符号化され、所定の圧伸側により圧縮された入力信号x
 (nT)は、伸張器2により直線符号に変換され、更
に基準化が行われた後、窓関数発生14から供給される
窓関数の一本値W(nT)が乗算113により乗算され
る。
In FIG. 1, an input signal x is input from input terminal 1, digitally encoded, and compressed by a predetermined compander.
(nT) is converted into a linear code by the decompressor 2 and further scaled, and then multiplied by the single window function value W(nT) supplied from the window function generator 14 in the multiplication 113.

乗算a3の出力は更に二つの乗算器5および6に入力さ
れ、余弦波発生87から供給される核C03(ωnT)
および正弦波発生器8から供給される核5in(ωnT
)がそれぞれ乗算される。乗算I5および6の出力は積
分器9およびlOに入力され、前記積分期間(NT)に
渡り積分される。
The output of multiplication a3 is further input to two multipliers 5 and 6, and the kernel C03 (ωnT) supplied from cosine wave generator 87
and a kernel 5in(ωnT
) are respectively multiplied. The outputs of multipliers I5 and 6 are input to integrators 9 and 10 and are integrated over said integration period (NT).

積分器9および10の出力FcおよびFsは(2)式お
よび(3)式に示される。
Outputs Fc and Fs of integrators 9 and 10 are shown in equations (2) and (3).

Fc−Σx  (nT)  −c o s  (ωnT
)      (21彩 Fs−Σx  (nT)  ・s  i n  (a+
nT)      (3)積分19および10の出力F
cおよびFsは、乗算器11および12によりそれぞれ
自乗された後、加算器13に入力され、加算された結果
、(4)式に示される如き入力信号x (nT>の参照
角周波数ωにおける電カスベクトルFが出力される。
Fc−Σx (nT) −cos (ωnT
) (21 color Fs−Σx (nT) ・s in (a+
nT) (3) Output F of integrals 19 and 10
After c and Fs are squared by multipliers 11 and 12, respectively, they are input to adder 13, and as a result of the addition, the input signal x (nT>) is the voltage at the reference angular frequency ω as shown in equation (4). A dregs vector F is output.

F’ −Fc’  +Fs’            
 (4)加算器13から出力される電カスベクトルFは
、離散的フーリエ変換を開始後前記積分期間(NT)経
過後に信号検出回路14により検出される。所定の参照
角周波数ω、に対する該電カスベクトルFの周波数特性
は、第2図に示される。かかる特性を利用して、例えば
700ヘルツ乃至1700ヘルツの6wR波の中の2周
波の組合せにより選択信号等を表示するMF信号用ディ
ジタル多周波信号受信器を構成するには、前記6周波を
参照角周波数ωとして順次離散的フーリエ変換を実施し
、それぞれ出力される電カスベクトルFを信号検出回路
14により検出し、検出された六つの電カスベクトルF
の中から大きい二つを信号判定回路15により判定し、
対応する周波数を求めることにより、受信したMP傷信
号識別することが出来る。
F' - Fc' + Fs'
(4) The electric scum vector F output from the adder 13 is detected by the signal detection circuit 14 after the integration period (NT) has elapsed after starting the discrete Fourier transform. The frequency characteristics of the electric flux vector F with respect to a predetermined reference angular frequency ω are shown in FIG. To configure a digital multi-frequency signal receiver for MF signals that displays a selection signal etc. by a combination of two frequencies among the 6wR waves of 700 Hz to 1700 Hz by utilizing such characteristics, refer to the above 6 frequencies. Discrete Fourier transform is performed sequentially with the angular frequency ω, and the output electric debris vectors F are detected by the signal detection circuit 14, and the six detected electric debris vectors F are detected by the signal detection circuit 14.
The signal determining circuit 15 determines the two largest ones among them,
By finding the corresponding frequency, the received MP flaw signal can be identified.

以上の説明から明らかな如く、従来あるディジタル多周
波信号受信方式においては、離散的フーリエ変換を実行
する為に一定の積分期間(NT)を必要とし、入力信号
x (nT)に前記MF倍信号未入力の場合にも前記積
分期間(NT)を必要とする。また雑音周波数の多く混
入したMF倍信号識別には、前記積分期間(NT)では
該MF倍信号構成する2周波を識別するには不十分であ
るにも拘らず該積分期間(NT)を延長することは不可
能であった。
As is clear from the above explanation, in the conventional digital multi-frequency signal receiving system, a certain integration period (NT) is required to perform the discrete Fourier transform, and the input signal x (nT) is The integration period (NT) is required even when there is no input. In addition, in order to identify the MF multiplied signal mixed with many noise frequencies, the integration period (NT) is extended even though the integration period (NT) is insufficient to identify the two frequencies that make up the MF multiplied signal. It was impossible to do so.

(4)1発明の目的 本発明の目的は、前述の如き従来あるディジタル多周波
信号受信方式の欠点を除去し、離散的フーリエ変換の積
分期間を入力信号により必要且つ充分な程度に変更可能
とすることに在る。
(4) 1. Purpose of the Invention The purpose of the present invention is to eliminate the drawbacks of the conventional digital multi-frequency signal reception system as described above, and to make it possible to change the integration period of the discrete Fourier transform to a necessary and sufficient degree depending on the input signal. It is in doing.

(6)0発明の構成 この目的は、入力ディジタル信号に離散的フーリエ変換
を行うディジタル多周波信号受信器において、前記入力
ディジタル信号に離散的フーリエ変換を開始してから予
め定められた第一の時間が経過後該離散的フーリエ変換
の出力が予め定められた閾値以上に達した時に該出力の
監視を開始し、該監視の結果、前記出力から所定のディ
ジタル多周波信号を検出した時、または前記出力から所
定のディジタル多周波信号を検出出来ずに予め定められ
た第二の時間が経過した時に、前記監視を終了するによ
り達成される。
(6) Structure of the Invention This object is to provide a digital multi-frequency signal receiver that performs discrete Fourier transform on an input digital signal. When the output of the discrete Fourier transform reaches a predetermined threshold or more after a period of time has elapsed, monitoring of the output is started, and as a result of the monitoring, a predetermined digital multifrequency signal is detected from the output, or This is achieved by terminating the monitoring when a predetermined second time period elapses without detecting a predetermined digital multi-frequency signal from the output.

(6)9発明の実施例 以下、本発明の一実施例を図面により説明する。(6) 9 Examples of the invention An embodiment of the present invention will be described below with reference to the drawings.

第3図は本発明の一実施例によるディジタル多周波信号
受信方式を示す図である。なお、全図を通じて、同一符
号は同一対象物を示す、第3図において、入力端子1か
ら入力された入力信号x (nT)は、伸張器2により
直線符号に変換され、更に基準化が行われるが、第1図
におけるが如く窓関数の標本値W(nT)が乗算される
こと無く乗算器5および6に入力され、前述の如く核c
os(ωnT)および5in(ωnT)がそれぞれ乗算
された後、積分器9および10により積分される。
FIG. 3 is a diagram showing a digital multi-frequency signal receiving system according to an embodiment of the present invention. Note that the same reference numerals indicate the same objects throughout the figures. In Fig. 3, the input signal x (nT) input from the input terminal 1 is converted into a linear code by the expander 2, and further standardized. However, as shown in FIG. 1, the sample value W(nT) of the window function is input to multipliers 5 and 6 without being multiplied, and the kernel c
After being multiplied by os(ωnT) and 5in(ωnT), respectively, they are integrated by integrators 9 and 10.

積分開始後積分19および10の出力FcおよびF3は
、積分期間(NT)経過すること無く乗算器11および
12に逐次入力され、それぞれ自乗された後、加算器1
3により加算され、参照角周波数ωにおける電カスベク
トルFとして信号検出回路14、F1検出回路17およ
びF2検出回路18に入力される。F1検出回路17お
よびF2検出回路18は、前述と同様にMF倍信号構成
する前記6周波を参照角周波数ωとして出力される六つ
の電カスベクトルFの中から二番目および三番目に大き
い電カスベクトルF1およびF2をそれぞれ選択し、比
較演算回路19に入力する。該比較演算回路19は、積
分開始後予め定められた第一の時間To経過した後に入
力された電カスベクトルF1およびF2を判定回路加に
入力する0判定回路加は、入力される電カスベクトルF
1およびF2が所定の閾値に達したか否かを判定し、該
閾値以下であればMF倍信号未入力と判定して積分器9
および10を初期状態に戻し、再び積分を開始させ、以
後前記第一の時間TO経過毎に前記判定を繰り返す、該
判定の結果、電カスベクトルF1およびF2が前記閾値
に達すると、判定回路加はMF倍信号入力されていると
判定し、比較演算回路19に入力される電カスベクトル
F1およびF2の差ΔFを求めて判定回路加に入力させ
る0判定回路加は、入力された差ΔFが積分開始後、予
め定められた第二の時間T2が経過する以前に所定値に
達したと判定すると、信号検出回路14および信号判定
回路15が前述の如〈実施するMF倍信号識別が確定し
たと判定し、積分器9およびlOを初期状態に戻して離
散的フーリエ変換を再開させる。若し前記第二の時間1
2以内に電カスベクトルF1およびF2の差ΔFが前記
所定値に達しなかった場合には、判定回路加はMF信号
以外の入力信号x (nT)が入力されていると判定し
、信号検出回路14および信号判定回路15の出力結果
を破棄させると共に、積分器9および10を初期状態に
戻して離散的フーリエ変換を再開させる。
After the start of the integration, the outputs Fc and F3 of the integrators 19 and 10 are sequentially input to the multipliers 11 and 12 without elapse of the integration period (NT), and after being squared,
3 and inputted to the signal detection circuit 14, F1 detection circuit 17, and F2 detection circuit 18 as the electric scum vector F at the reference angular frequency ω. The F1 detection circuit 17 and the F2 detection circuit 18 use the six frequencies constituting the MF multiplied signal as the reference angular frequency ω to detect the second and third largest electrical flux vectors F from among the six electrical flux vectors F output as the reference angular frequency ω. Vectors F1 and F2 are each selected and input to the comparison calculation circuit 19. The comparison arithmetic circuit 19 inputs the electric debris vectors F1 and F2 inputted after a predetermined first time To has elapsed after the start of integration to a determination circuit. F
1 and F2 have reached a predetermined threshold, and if they are below the threshold, it is determined that the MF multiplied signal has not been input, and the integrator 9
and 10 are returned to their initial states, the integration is started again, and the determination is repeated every time the first time TO has elapsed. As a result of the determination, when the electric scum vectors F1 and F2 reach the threshold, the determination circuit is determines that the MF multiplied signal is input, and determines the difference ΔF between the electric waste vectors F1 and F2 input to the comparison calculation circuit 19 and inputs it to the determination circuit.The zero determination circuit determines that the input difference ΔF is If it is determined that the predetermined value has been reached before the elapse of the predetermined second time T2 after the start of the integration, the signal detection circuit 14 and the signal determination circuit 15 will perform the MF multiplication signal identification to be performed as described above. Then, the integrator 9 and lO are returned to their initial states and the discrete Fourier transform is restarted. If the second time 1
If the difference ΔF between the electric waste vectors F1 and F2 does not reach the predetermined value within 2, the determination circuit determines that an input signal x (nT) other than the MF signal is input, and the signal detection circuit 14 and the signal determination circuit 15 are discarded, the integrators 9 and 10 are returned to their initial states, and the discrete Fourier transform is restarted.

以上の説明から明らかな如く、本実施例によれば、前記
第一の時間TOを必要最小限に選定し、また前記第二の
時間T2を必要最大限に選定すれば、MF倍信号未入力
は短時間(TO)で検出され、また雑音周波数の混入し
たMF倍信号充分な検出時間(最大T2)を掛けること
が可能となる。
As is clear from the above explanation, according to this embodiment, if the first time TO is selected to be the minimum necessary time and the second time T2 is selected to be the maximum necessary, it is possible to prevent the MF multiplied signal from being input. is detected in a short time (TO), and it is possible to multiply the MF multiplied signal mixed with noise frequency with a sufficient detection time (maximum T2).

然もMF信号識別の為に繰り返し実施される離散的フー
リエ変換の積分期間は判定回路加がMF倍信号識別が確
定したと判定し次第終了させられるので、MF信号織識
別要時間は第1図におけるが如く積分期間(NT)に固
定されることは無く、前記第一の時間TOおよび第二の
時間T2の範囲内で必要最小限に維持される。
However, the integration period of the discrete Fourier transform, which is repeatedly performed for MF signal identification, is terminated as soon as the judgment circuit determines that the MF multiplied signal identification is confirmed, so the time required for MF signal texture identification is as shown in Figure 1. The integration period (NT) is not fixed as in , but is maintained at the necessary minimum within the range of the first time TO and the second time T2.

なお、第3図はあく迄本発明の一実施例に過ぎず、例え
ばMF倍信号入力を判定する手段は、図示されるものに
限定されることは無く、他に幾多の変形が考慮されるが
、何れの場合にも本発明の効果は変らない、また識別対
象とするディジタル多周波信号は前記MF倍信号限定さ
れることは無く、例えばPB倍信号如く他に幾多のディ
ジタル多周波信号が考慮されるが、何れの場合にも本発
明の効果は変らない。
Note that FIG. 3 is only one embodiment of the present invention, and the means for determining the MF multiplied signal input, for example, is not limited to what is shown in the figure, and many other modifications may be considered. However, in any case, the effect of the present invention remains the same, and the digital multifrequency signal to be identified is not limited to the MF multiplied signal, but may include many other digital multifrequency signals such as the PB multiplied signal. However, the effects of the present invention do not change in either case.

(7)0発明の効果 以上、本発明によれば、前記ディジタル多周波信号受信
器において、離散的フーリエ変換における積分区間が入
力信号に応じて変更可能となり、多周波信号識別所要時
間が必要最小限に短縮され、また雑音周波数が混入した
多周波信号も充分な時間を掛けて識別可能となる。
(7) Effects of the Invention According to the present invention, in the digital multifrequency signal receiver, the integral interval in the discrete Fourier transform can be changed according to the input signal, and the time required for multifrequency signal identification is minimized. In addition, multi-frequency signals mixed with noise frequencies can be identified over a sufficient period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は離散的フーリエ炙換を用いた従来あるディジタ
ル多周波信号受信方式の一例を示す図、第2図は電カス
ベクトルの周波数特性の一例を示す図、第3図は本発明
の一実施例によるディジタル多周波信号受信方式を示す
図である。 図において、1は入力端子、2は伸張器、3.5.6.
11および12は乗算器、4は窓関数発生器、7は余弦
波発生器、8は正弦波発生器、9および10は積分器、
13は加算器、14は信号検出回路、15は信号判定回
路、16は出力端子、17はFl検出回路、18はF2
検出回路、19は比較演算回路、20は判定側1を示す
。 第 2 図
Fig. 1 is a diagram showing an example of a conventional digital multi-frequency signal reception system using discrete Fourier transform, Fig. 2 is a diagram showing an example of frequency characteristics of an electric scum vector, and Fig. 3 is a diagram showing an example of the present invention. FIG. 2 is a diagram showing a digital multi-frequency signal reception method according to an embodiment. In the figure, 1 is an input terminal, 2 is an expander, 3.5.6.
11 and 12 are multipliers, 4 is a window function generator, 7 is a cosine wave generator, 8 is a sine wave generator, 9 and 10 are integrators,
13 is an adder, 14 is a signal detection circuit, 15 is a signal judgment circuit, 16 is an output terminal, 17 is a Fl detection circuit, 18 is F2
A detection circuit, 19 a comparison arithmetic circuit, and 20 a judgment side 1. Figure 2

Claims (1)

【特許請求の範囲】[Claims] 人力ディジタル信号に離散的フーリエ変換を行うディジ
タル多周波信号受信器において、前記入力ディジタル信
号に離散的フーリエ変換を開始してから予め定められた
第一の時間が経過後該離散的フーリエ変換の出力が予め
定められた閾値以上に達した時に該出力の監視を開始し
、該監視の結果、前記出力から所定のディジタル多周波
信号を検出した時、または前記出力から所定のディジタ
ル多周波信号を検出出来ずに予め定められた第二の時間
が経過した時に、前記監視を終了することを特徴とする
ディジタル多周波信号受信方式。
In a digital multi-frequency signal receiver that performs discrete Fourier transform on a human-powered digital signal, the discrete Fourier transform is output after a predetermined first time has elapsed after starting the discrete Fourier transform on the input digital signal. starts monitoring the output when the output reaches a predetermined threshold, and as a result of the monitoring, when a predetermined digital multifrequency signal is detected from the output, or when a predetermined digital multifrequency signal is detected from the output. A digital multi-frequency signal receiving system characterized in that the monitoring is terminated when a predetermined second time period has elapsed without any failure.
JP56204919A 1981-12-18 1981-12-18 Digital multi-frequency signal receiving system Pending JPS58105683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56204919A JPS58105683A (en) 1981-12-18 1981-12-18 Digital multi-frequency signal receiving system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56204919A JPS58105683A (en) 1981-12-18 1981-12-18 Digital multi-frequency signal receiving system

Publications (1)

Publication Number Publication Date
JPS58105683A true JPS58105683A (en) 1983-06-23

Family

ID=16498539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56204919A Pending JPS58105683A (en) 1981-12-18 1981-12-18 Digital multi-frequency signal receiving system

Country Status (1)

Country Link
JP (1) JPS58105683A (en)

Similar Documents

Publication Publication Date Title
CA2094412C (en) Multi-frequency signal detector and classifier
CA1126865A (en) Programmable digital tone detector
JPH05252545A (en) Dual-tone multifrequency detection circuit and method therefor
US8457301B2 (en) Multi-frequency tone detector
JP2721498B2 (en) Surveillance Voice Tone Detection on Wireless Channel
RU2117404C1 (en) Two-tone multiple-frequency detector and method for detection of two-tone signal of multiple frequency
WO1999029084A3 (en) Method and apparatus for performing spectral processing in tone detection
CA2112767A1 (en) Tone-Detecting Method for Detecting at Least one Tone in a Dual-Tone Multifrequency Signal, Call-Progress Method Using the Same
EP0116555B1 (en) Adaptive signal receiving method and apparatus
JPS58105683A (en) Digital multi-frequency signal receiving system
JP4312782B2 (en) AC voltage pulse evaluation circuit
ES8404130A1 (en) Apparatus for identifying digital multi-frequency signals
EP0683940B1 (en) Process and device for the detection of disabling tone of the echo canceller in a telephone switching exchange
US6259750B1 (en) Digital phase reversal detector
Park et al. Signal detection and analysis of DTMF receiver with quick Fourier transform
EP0589595A2 (en) Method and apparatus for detecting a supervisory audio tone
KR930006544B1 (en) Method of dtmf receiving in use digital signal processor
US20020018555A1 (en) Method of detecting a frequency or a combination of frequencies in a signal and telecommunication equipment using the method
US4860239A (en) Correlator with variably normalized input signals
JPH02183617A (en) Limiter interpolation type dft arithmetic system
JPS58151188A (en) Digital multi-frequency receiver
JPS5939955B2 (en) Integrated function digital signal receiver
JP2853842B2 (en) DTMF signal judgment circuit
JPH0150151B2 (en)
JPS5936463A (en) Receiver of single frequency signal