JPH0150151B2 - - Google Patents

Info

Publication number
JPH0150151B2
JPH0150151B2 JP55171248A JP17124880A JPH0150151B2 JP H0150151 B2 JPH0150151 B2 JP H0150151B2 JP 55171248 A JP55171248 A JP 55171248A JP 17124880 A JP17124880 A JP 17124880A JP H0150151 B2 JPH0150151 B2 JP H0150151B2
Authority
JP
Japan
Prior art keywords
output
input signal
frequency
window function
angular frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55171248A
Other languages
Japanese (ja)
Other versions
JPS5795746A (en
Inventor
Kensaku Fujii
Shiro Kikuchi
Masaharu Kawaguchi
Akira Fukui
Kazuto Hirose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Hitachi Ltd
NEC Corp
Nippon Telegraph and Telephone Corp
Oki Electric Industry Co Ltd
Original Assignee
Fujitsu Ltd
Hitachi Ltd
Nippon Telegraph and Telephone Corp
Oki Electric Industry Co Ltd
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd, Hitachi Ltd, Nippon Telegraph and Telephone Corp, Oki Electric Industry Co Ltd, Nippon Electric Co Ltd filed Critical Fujitsu Ltd
Priority to JP55171248A priority Critical patent/JPS5795746A/en
Publication of JPS5795746A publication Critical patent/JPS5795746A/en
Publication of JPH0150151B2 publication Critical patent/JPH0150151B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q1/00Details of selecting apparatus or arrangements
    • H04Q1/18Electrical details
    • H04Q1/30Signalling arrangements; Manipulation of signalling currents
    • H04Q1/44Signalling arrangements; Manipulation of signalling currents using alternate current
    • H04Q1/444Signalling arrangements; Manipulation of signalling currents using alternate current with voice-band signalling frequencies
    • H04Q1/45Signalling arrangements; Manipulation of signalling currents using alternate current with voice-band signalling frequencies using multi-frequency signalling
    • H04Q1/457Signalling arrangements; Manipulation of signalling currents using alternate current with voice-band signalling frequencies using multi-frequency signalling with conversion of multifrequency signals into digital signals
    • H04Q1/4575Signalling arrangements; Manipulation of signalling currents using alternate current with voice-band signalling frequencies using multi-frequency signalling with conversion of multifrequency signals into digital signals which are transmitted in digital form

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

【発明の詳細な説明】 本発明は多周波信号受信器、特に離散的フーリ
エ変換を用いた多周波信号受信器に関す。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a multi-frequency signal receiver, and more particularly to a multi-frequency signal receiver using discrete Fourier transform.

電話交換機等の通話路が時分割化されるに伴
い、押しボタンダイヤル信号受信器(PB受信器)
あるいは局間で用いられる多周波信号を受信する
MF受信器等の多周波信号受信器も、通話路との
親和性を保つ様デイジタル化することが進められ
ている。これらの多周波信号受信器のデイジタル
化に当り、入力信号中に含まれる所定周波数の信
号を検出するために、離散的フーリエ変換を用い
ることが試みられている。
As telephone exchanges and other communication paths become time-divided, push-button dial signal receivers (PB receivers)
Or receive multi-frequency signals used between stations
Multi-frequency signal receivers such as MF receivers are also being digitized to maintain compatibility with communication channels. When digitizing these multi-frequency signal receivers, attempts have been made to use discrete Fourier transform in order to detect a signal of a predetermined frequency contained in an input signal.

第1図は従来ある多周波信号受信器の構成の一
例を示す図である。第1図において、端子1から
入力信号f(nT)(Tは標本化周期)が入力され
ると、窓関数発生器7から供給される方形窓関数
が乗算器30により乗じられ、時間T0の演算区
間のみが抽出される。該乗算器30の出力には乗
算器31および32により、窓関数発生器7から
供給される所要検出角周波数ωを有する核
cosnωTおよびsinnωTがそれぞれ乗じられる。
乗算器31および32の出力は、加算器41およ
び42並びに1標本化周期遅延レジスタ51およ
び52から成る累算器に入力され、前記演算区間
(時間T0)にわたり累算される。該累算器出力Fc
およびFsは(1)式により示される。
FIG. 1 is a diagram showing an example of the configuration of a conventional multi-frequency signal receiver. In FIG. 1, when the input signal f(nT) (T is the sampling period) is input from the terminal 1, it is multiplied by the rectangular window function supplied from the window function generator 7 by the multiplier 30, and the time T 0 Only the calculation interval of is extracted. The output of the multiplier 30 is supplied with a kernel having the required detection angular frequency ω supplied from the window function generator 7 by multipliers 31 and 32.
cosnωT and sinnωT are respectively multiplied.
The outputs of multipliers 31 and 32 are input to an accumulator consisting of adders 41 and 42 and one sampling period delay registers 51 and 52, and are accumulated over the operation interval (time T 0 ). The accumulator output Fc
and Fs are shown by equation (1).

但しNは前記演算区間(時間T0)内に入力さ
れる入力信号標本数である。前記累算器は出力
FcおよびFsを送出後、ゲート61および62に
よりリセツトされる。累算器出力FcおよびFsは
乗算器33および34によりそれぞれ自乗された
のち、加算器43により加算され、所要検出角周
波数ω成分の振幅に比例する加算器出力Fを端子
2に送出する。
However, N is the number of input signal samples input within the calculation interval (time T 0 ). The accumulator outputs
After sending out Fc and Fs, it is reset by gates 61 and 62. The accumulator outputs Fc and Fs are squared by multipliers 33 and 34, respectively, and then added by an adder 43, and an adder output F proportional to the amplitude of the desired detected angular frequency ω component is sent to the terminal 2.

|F|2=Fc2+Fs2 (2) 該加算器出力Fの大小により、所要検出角周波
数ωを有する入力信号の有無が判定される。
|F| 2 =Fc 2 +Fs 2 (2) Based on the magnitude of the adder output F, it is determined whether there is an input signal having the required detection angular frequency ω.

以上の説明から明らかな如く、従来ある多周波
信号受信器において、所要検出角周波数ωを有す
る核cosnωTおよびSinnωTが各多周波信号(例
えばPB信号においては697ヘルツ乃至1633ヘルツ
の8周波、MF信号においては700ヘルツ乃至
1700ヘルツの6周波数)に対し必要となる。これ
らの核を得るには、従来多周波信号を構成する信
号周波数の最大公約数を周期Tにより標本化して
記憶装置に格納し、該記憶装置の番地を適当間隔
で指定して格納済みの標本値を読取ることによる
等の手段を要していた。例えば前記PB信号用格
を8キロヘルツ標本化により得るには、最大公約
数1ヘルツの標本を8キロ語の記憶装置に格納
し、該記憶装置から697番地乃至1633番地間隔で
読取ることが必要であり、大容量の記憶装置およ
び複数な制御回路を必要とする。
As is clear from the above explanation, in a conventional multifrequency signal receiver, the kernels cosnωT and SinnωT having the required detection angular frequency ω are used for each multifrequency signal (for example, for the PB signal, eight frequencies from 697 Hz to 1633 Hz, for the MF signal 700 hertz to
6 frequencies of 1700 Hz). Conventionally, in order to obtain these kernels, the greatest common divisor of signal frequencies constituting a multi-frequency signal is sampled with a period T and stored in a storage device, and addresses of the storage device are specified at appropriate intervals to retrieve the stored samples. This required methods such as reading the value. For example, to obtain the PB signal digit by 8 kHz sampling, it is necessary to store samples of the greatest common divisor, 1 Hz, in an 8 kHz storage device, and read them from the storage device at intervals of addresses 697 to 1633. It requires a large storage capacity and multiple control circuits.

本発明の目的は前述の如き従来ある多周波信号
受信器の欠点を除去し、大規模且つ複雑な核発生
手段を用いることなく、離散的フーリエ変換が実
行可能な多周波信号受信器の実現にある。
The purpose of the present invention is to eliminate the drawbacks of conventional multi-frequency signal receivers as described above, and to realize a multi-frequency signal receiver that can perform discrete Fourier transform without using large-scale and complicated nuclear generation means. be.

この目的は、離散的フーリエ変換を用いた多周
波信号受信器において、入力信号に窓関数を乗ず
る第1手段と、フイルタ係数がejT(ωは所要検
出角周波数、Tは標本化周期)で与えられ、前記
窓関数により定まる周期でリセツトされる機能を
有し、前記第1手段の出力を入力する一次巡回型
デイジタルフイルタと、該一次巡回型デイジタル
フイルタの実数部出力と虚数部出力とから前記入
力信号の前記所要検出角周波数の振幅に比例する
出力を得る第2手段とから成り、該第2手段の出
力値により前記所要検出角周波数を有する入力信
号の有無を判定することにより達成される。
The purpose of this is to provide a first means of multiplying the input signal by a window function in a multi-frequency signal receiver using discrete Fourier transform, and a filter coefficient of e jT (ω is the required detection angular frequency, T is the sampling period ), which has a function of being reset at a period determined by the window function, and which inputs the output of the first means; and a real part output and an imaginary part output of the primary cyclic digital filter. and second means for obtaining an output proportional to the amplitude of the desired detection angular frequency of the input signal, and determining the presence or absence of an input signal having the desired detection angular frequency based on the output value of the second means. achieved.

以下本発明の一実施例を第2図および第3図に
より説明する。第2図は本発明の一実施例による
一次巡回型デイジタルフイルタの原理図であり、
第3図は本発明の一実施例による多周波信号受信
器の構成を示す図である。第2図において、端子
1から入力される入力信号f(nT)に対し、乗算
器30により方形窓関数が乗じられ、時間T0
演算区間のみが抽出され、加算器4に入力され
る。加算器4、1標本化周期遅延レジスタ5およ
びフイルタ係数ejT乗ずる乗算器3は一次巡回型
デイジタルフイルタを構成する。なお1標本化周
期遅延レジスタ5の初期値はゲート6により0に
リセツトされている。今乗算器30から標本点0
に入力信号f(0)が出力されると、端子21に
生ずるフイルタ出力Feは入力信号f(0)に等し
い。次標本点Tに乗算器30から入力信号f(T)
が入力されると、端子21に生ずるフイルタ出力
Feは(3)式により示される。
An embodiment of the present invention will be described below with reference to FIGS. 2 and 3. FIG. 2 is a principle diagram of a primary recursive digital filter according to an embodiment of the present invention.
FIG. 3 is a diagram showing the configuration of a multi-frequency signal receiver according to an embodiment of the present invention. In FIG. 2, the input signal f(nT) input from the terminal 1 is multiplied by a rectangular window function by the multiplier 30, and only the calculation interval of time T 0 is extracted and input to the adder 4. The adder 4, the one-sampling period delay register 5, and the multiplier 3 that multiplies the filter coefficient e jT constitute a primary cyclic digital filter. Note that the initial value of the one sampling period delay register 5 is reset to 0 by the gate 6. Now sample point 0 from multiplier 30
When an input signal f(0) is output at , the filter output Fe produced at the terminal 21 is equal to the input signal f(0). Input signal f(T) from multiplier 30 to next sampling point T
is input, the filter output produced at terminal 21
Fe is represented by formula (3).

Fe=f(0)ejT+f(T) (3) 同様にして標本点nT(nは0乃至N−1)に乗
算器30から入力信号f(nT)が順次入力される
と、標本点(N−1)Tに端子21に生ずるフイ
ルタ出力Feは(4)式により示される。
Fe=f(0)e jT +f(T) (3) Similarly, when the input signal f(nT) is sequentially input from the multiplier 30 to the sample points nT (n is 0 to N-1), The filter output Fe generated at the terminal 21 at the sampling point (N-1)T is expressed by equation (4).

Fe=N-1n=0 f(nT)ej(N-n-1)T(4) (4)式は(1)式における核cosnωTおよびsinnωT
の順序を逆にし、複素表現したものに他ならな
い。核の順序逆転は演算結果に影響を与えないか
ら、(4)式は所望の離散的フーリエ変換の演算結果
と見做される。以上の原理に基づき、第3図に示
す多周波信号受信器が構成される。第3図におい
て、加算器43,44および45、乗算器35,
36,37および38、並びに1標本化周期遅延
レジスタ50および51は第2図と同等の一次巡
回型デイジタルフイルタを構成し、端子21rお
よび21iに実数部出力F′cおよび虚数部出力F′s
をそれぞれ出力する。第3図において端子1から
入力信号f(nT)が入力されると、窓関数発生器
70から供給される方形窓関数が乗算器30によ
り乗じられ、時間T0の演算区間のみが抽出され
る。該乗算器30の出力f(nT)(nは0乃至N
−1)が加算器43に入力されると、前記一次巡
回型デイジタルフイルタにより、第2図の原理に
基づく離散的フーリエ変換が実行され、標本点
(N−1)Tに(5)式により示される実数部出力F′c
および虚数部出力F′sが端子21rおよび21i
に出力される。
Fe= N-1n=0 f(nT)e j(Nn-1)T (4) Equation (4) is the kernel cosnωT and sinnωT in equation (1)
It is nothing but a complex representation of , with the order reversed. Since reversing the order of the kernels does not affect the calculation result, equation (4) can be regarded as the calculation result of the desired discrete Fourier transform. Based on the above principle, the multi-frequency signal receiver shown in FIG. 3 is constructed. In FIG. 3, adders 43, 44 and 45, multiplier 35,
36, 37 and 38 and one sampling period delay registers 50 and 51 constitute a primary cyclic digital filter similar to that shown in FIG.
Output each. In FIG. 3, when the input signal f(nT) is input from terminal 1, it is multiplied by the rectangular window function supplied from the window function generator 70 by the multiplier 30, and only the calculation interval of time T 0 is extracted. . The output f(nT) of the multiplier 30 (n is 0 to N
-1) is input to the adder 43, the first-order recursive digital filter executes a discrete Fourier transform based on the principle shown in FIG. The indicated real part output F′c
and the imaginary part output F's is at terminals 21r and 21i
is output to.

これら実数部出力F′cおよび虚数部出力F′sは第
1図同様、乗算器33および34によりそれぞれ
自乗されたのち、加算器42により加算され、所
要検出角周波数ω成分の振幅に比例する加算器出
力F′を端子2に送出する。
These real part output F'c and imaginary part output F's are squared by multipliers 33 and 34, respectively, as in FIG. The adder output F' is sent to terminal 2.

|F′|2=F′c2+F′s2 (6) 該加算器出力F′の大小により、所要検出角周波
数ωを有する入力信号の有無が判定される。
|F′| 2 =F′c 2 +F′s 2 (6) The presence or absence of an input signal having the required detection angular frequency ω is determined based on the magnitude of the adder output F′.

以上の説明から明らかな如く、本実施例によれ
ば核cosnωTおよびsinnωTの発生は一次巡回型
デイジタルフイルタにより等価的に実行され、特
別に核の発生回路を必要としない。
As is clear from the above description, according to this embodiment, the kernels cosnωT and sinnωT are generated equivalently by a first-order cyclic digital filter, and no special kernel generation circuit is required.

なお第3図はあく迄本発明の一実施例に過ぎ
ず、例えば窓関数発生器70から供給される窓関
数は方形に限定されることは無く、他の形式の窓
関数の場合にも本発明の効果は変らない。
Note that FIG. 3 is only one embodiment of the present invention, and the window function supplied from the window function generator 70 is not limited to a rectangular shape, and the present invention can also be applied to other types of window functions. The effect of the invention remains the same.

以上、本発明によれば、離散的フーリエ変換を
用いた多周波信号受信器において、核の発生は一
次巡回型デイジタルフイルタで等価的に実行さ
れ、大規模且つ複雑な核発生手段が不要となり、
前記多周波信号受信器の経済化および小形化を促
進する。
As described above, according to the present invention, in a multi-frequency signal receiver using discrete Fourier transform, kernel generation is equivalently performed by a first-order recursive digital filter, eliminating the need for large-scale and complicated kernel generation means.
The multi-frequency signal receiver is made economical and compact.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来ある多周波信号受信器の構成の一
例を示す図、第2図は本発明の一実施例による一
次巡回型デイジタルフイルタの原理図、第3図は
本発明の一実施例による多周波信号受信器の構成
を示す図である。 図において1,2,21,21rおよび21i
は端子、7および70は窓関数発生器、5,50
および51は1標本化周期遅延レジスタ、3,3
0,31,32,33,34,35,36,37
および38は乗算器、4,40,41,42,4
3,44および45は加算器を示す。
FIG. 1 is a diagram showing an example of the configuration of a conventional multi-frequency signal receiver, FIG. 2 is a principle diagram of a primary recursive digital filter according to an embodiment of the present invention, and FIG. 3 is a diagram according to an embodiment of the present invention. FIG. 3 is a diagram showing the configuration of a multifrequency signal receiver. 1, 2, 21, 21r and 21i in the figure
is a terminal, 7 and 70 are window function generators, 5, 50
and 51 are one sampling period delay registers, 3, 3
0, 31, 32, 33, 34, 35, 36, 37
and 38 is a multiplier, 4, 40, 41, 42, 4
3, 44 and 45 indicate adders.

Claims (1)

【特許請求の範囲】[Claims] 1 離散的フーリエ変換を用いた多周波信号受信
器において、入力信号に窓関数を乗ずる第1手段
と、フイルタ係数がejT(ωは所要検出角周波数、
Tは標本化周期)で与えられ、前記窓関数により
定まる周期でリセツトされる機能を有し、前記第
1手段の出力を入力する一次巡回型デイジタルフ
イルタと、該一次巡回型デイジタルフイルタの実
数部出力と虚数部出力とから前記入力信号の前記
所要検出角周波数の振幅に比例する出力を得る第
2手段とから成り、該第2手段の出力値により前
記所要検出角周波数を有する入力信号の有無を判
定することを特徴とする多周波信号受信器。
1 In a multi-frequency signal receiver using discrete Fourier transform, the first means of multiplying the input signal by a window function and the filter coefficient e jT (ω is the required detection angular frequency,
a first-order recursive digital filter having a function of being reset at a period determined by the window function and inputting the output of the first means; and a real number part of the first-order recursive digital filter. and a second means for obtaining an output proportional to the amplitude of the desired detection angular frequency of the input signal from the output and the imaginary part output, and the presence or absence of an input signal having the desired detection angular frequency is determined by the output value of the second means. A multi-frequency signal receiver characterized by determining.
JP55171248A 1980-12-04 1980-12-04 Receiver for multifrequency signal Granted JPS5795746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55171248A JPS5795746A (en) 1980-12-04 1980-12-04 Receiver for multifrequency signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55171248A JPS5795746A (en) 1980-12-04 1980-12-04 Receiver for multifrequency signal

Publications (2)

Publication Number Publication Date
JPS5795746A JPS5795746A (en) 1982-06-14
JPH0150151B2 true JPH0150151B2 (en) 1989-10-27

Family

ID=15919790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55171248A Granted JPS5795746A (en) 1980-12-04 1980-12-04 Receiver for multifrequency signal

Country Status (1)

Country Link
JP (1) JPS5795746A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0440028A3 (en) * 1990-01-29 1992-07-22 Dialogic Corporation Multifrequency tone signal detector
DE59209341D1 (en) * 1991-02-01 1998-07-02 Blaupunkt Werke Gmbh Method for bridging audio signal interruptions
US5442696A (en) * 1991-12-31 1995-08-15 At&T Corp. Method and apparatus for detecting control signals

Also Published As

Publication number Publication date
JPS5795746A (en) 1982-06-14

Similar Documents

Publication Publication Date Title
US4232192A (en) Moving-average notch filter
Oppenheim et al. Digital signal processing(Book)
US4216463A (en) Programmable digital tone detector
US4623980A (en) Method of processing electrical signals by means of Fourier transformations
GB2135149A (en) Apparatus for generating scaled weighting coefficients for sampled data filters
EP0211865B1 (en) Supervisory tone detection
JPH0150151B2 (en)
US3935437A (en) Signal processor
US3715509A (en) Method and means for providing resolution level selection in a spectrum analyzer
EP0037130B1 (en) Arrangement for calculating the discrete fourier transform by means of two circular convolutions
JPH0775303B2 (en) Distributed arithmetic digital signal processor
JPH0150152B2 (en)
Hewes et al. Applications of CCD and switched capacitor filter technology
Reddy et al. Realization of first-order two-dimensional all-pass digital filters
Bogner Frequency sampling filters—Hilbert transformers and resonators
SU1149274A1 (en) Digital spectrum analyser
Özhan The Fourier Transform
SU1672559A1 (en) Digital filter
Borsuk et al. CCD filter and transform techniques for interference excision
JPS5858625B2 (en) signal processing device
Yamada et al. A new cost function allowing parallel processing of adaptive filters
JPS5915559B2 (en) Signal detection method
JPH073705Y2 (en) Delay detection circuit
KR100201280B1 (en) Tone detecting circuit
JPS59160393A (en) Digital multifrequency receiver