JPS58105129A - Optical amplifying circuit - Google Patents

Optical amplifying circuit

Info

Publication number
JPS58105129A
JPS58105129A JP20403281A JP20403281A JPS58105129A JP S58105129 A JPS58105129 A JP S58105129A JP 20403281 A JP20403281 A JP 20403281A JP 20403281 A JP20403281 A JP 20403281A JP S58105129 A JPS58105129 A JP S58105129A
Authority
JP
Japan
Prior art keywords
polarization
light
output
circuit
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20403281A
Other languages
Japanese (ja)
Other versions
JPH0347482B2 (en
Inventor
Kenjiyu Otsuka
建樹 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP20403281A priority Critical patent/JPS58105129A/en
Publication of JPS58105129A publication Critical patent/JPS58105129A/en
Publication of JPH0347482B2 publication Critical patent/JPH0347482B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To carry out amplification stably without using a Fabry-P erot resonator, by arranging a two-way 90 deg. polarizing rotator between two two-way light traveling wave amplifiers which have nonlinear saturation characteristics and dependency upon a plane of polarization, and arranging two polarization splitters on both sides. CONSTITUTION:This circuit has two-way light traveling wave amplifiers 10L and 10R which has nonlinara saturation characteristics and dependency upon a plane of polarization such as a solid-state laser crystal and a coloring matter laser medium. A two-way 90 deg. polarizing rotator 11 is arranged with said ampli- fiers 10L and 10R. Light A1 having orthogonal planes of polarization by the 1st and the 2nd polarization is caused to strike upon a polarization splitter 15L; and the 1st polarized wave A2 is amplified nonlinearly and output light A6 is emitted from a polarization splitter 15R. Similarly, output light B6 for input light B1 is obtained. This circuit constitution functions as a comparing circuit, waveform shaping circuit, and bistable circuit.

Description

【発明の詳細な説明】 本発明は、光ホ変侠を伴うことなしに、元を非線形増幅
する光増幅回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an optical amplification circuit that nonlinearly amplifies an element without optical distortion.

斯種光増幅回路として、従来、爾1図に示す如き、相対
向するファブリペロ共振器11ノ及びI 8間に、oT
w>v光吸収体等でなる光非線形吸収媒質(例えばNa
蒸気)、光強度により屈折率が非線形に変化する分散性
媒質(例えばC82、In8b 、 GaAs等)等で
なる光非線形媒質1が配され、ファブリペロ共振器1L
への光L1の入射に基き、ファブリペロ共振器11(、
より光1.1の非線形増幅されてなる光L2を出射せし
める様になされた構成のものが提案されている。
Conventionally, as this kind of optical amplification circuit, as shown in Fig. 1, an oT
An optical nonlinear absorption medium such as w>v light absorber (e.g. Na
An optical nonlinear medium 1 made of a dispersive medium (such as C82, In8b, GaAs, etc.) whose refractive index nonlinearly changes depending on the light intensity is disposed, and a Fabry-Perot resonator 1L is disposed.
Based on the incidence of the light L1 on the Fabry-Perot resonator 11 (,
A configuration has been proposed in which light L2, which is a nonlinear amplification of light 1.1, is emitted.

然し乍ら、斯る光増幅回路の場合、ファブリペロ共振器
1L及びI R,を用いるを要していたと共に、それ等
ファブリペロ共振、・居間の長さ即ち共振器長が例えば
温度によって変化した場合、光L1の周波数が光非線形
媒質1に固有の周波数によって制限を受けているので、
光L1の非線形増幅されてなる光L2が、極めて不安定
にしか得られないという欠点を有していた。
However, in the case of such an optical amplification circuit, it is necessary to use Fabry-Perot resonators 1L and IR, and the optical Since the frequency of L1 is limited by the frequency specific to the optical nonlinear medium 1,
The disadvantage is that the light L2 obtained by nonlinearly amplifying the light L1 is extremely unstable.

依って不発明は斯る欠点のない新規な斯種光増幅回路を
提案せんさするもので、以下述べる所より明らかきなる
であろつ。
Therefore, it is our intention to propose a novel optical amplification circuit of this kind that does not have these drawbacks, and this will become clear from what will be described below.

第2図は本発明による元i1^幅回路の一例を示し、−
軸性又は二軸性の固体レーザ用結晶、色素レーザ用媒質
、反射防止の施されてなる半導体レーザ等を用いて構成
された、それ自体は公知の、光増幅利得係数に非線形飽
和特性を有しn個波面依存性を有する第1及び絹2の双
方向性光進行波増幅器(以下簡単の為光増幅器き称す)
10L及び10Rを有する。
FIG. 2 shows an example of an element i1^ width circuit according to the present invention, -
It is constructed using an axial or biaxial solid-state laser crystal, a dye laser medium, an antireflection-treated semiconductor laser, etc., and has a nonlinear saturation characteristic in the optical amplification gain coefficient, which is known per se. First and second bidirectional optical traveling wave amplifiers having wavefront dependence (hereinafter referred to as optical amplifiers for simplicity)
It has 10L and 10R.

而して光増幅器10L及び10R間に、そn自体は公知
の、双方向性90°偏光回転−a(以下簡単の為偏光回
転器と称す)11が配さB7ている。
Between the optical amplifiers 10L and 10R, a bidirectional 90° polarization rotator-a (hereinafter referred to as a polarization rotator for simplicity) 11, which itself is well known, is arranged B7.

又光増幅器10L及び10Rの偏光回転器11側とは反
対muに、それ自体は公知の、入力端12と出力端13
と入出力端14とを有する第1及び第2の偏光スプリッ
タ15L及び15凡がそれ等の入出力414を光増幅器
10L及び10Rとせる叩様を以って配さイ]、でいる
Also, on the opposite side of the polarization rotator 11 side of the optical amplifiers 10L and 10R, there are input terminals 12 and output terminals 13, which are known per se.
The first and second polarization splitters 15L and 15 having input and output terminals 14 are arranged in such a way that their inputs and outputs 414 are optical amplifiers 10L and 10R.

以上1′13本発明による光増幅回路の一例構成である
が、Jgiる構成によれば、互に直交する第1及び第2
の偏波面(垂直及び水平偏波面)を有する第1及び第2
の偏光でなる又は第1の偏波面を有する偏光でなる光A
1を偏光スプリッタ15Lの入力端12(こ入射光とし
て入射せしめれば、その偏光スプリッタ151の入出力
端14に第1の偏波面を有する偏光出力A2を裂ること
ができ、而してその偏光出力A2が光増幅器104、に
入射されて非線形増幅さ石1、その光増幅器10Lより
偏光出力A2:、r非線形増幅され。
The above is an example of the configuration of the optical amplifier circuit according to the present invention. According to the configuration according to Jgi, the first and second
first and second planes of polarization (vertical and horizontal planes) of
or having a first polarization plane.
1 to the input end 12 of the polarization splitter 15L (as incident light), the polarized light output A2 having the first polarization plane can be split into the input/output end 14 of the polarization splitter 151, and the The polarized light output A2 is input to the optical amplifier 104 and is nonlinearly amplified.The polarized light output A2 is nonlinearly amplified by the optical amplifier 10L.

た偏光出力A5つS得られ7、その偏光出力A3が、偏
光回転器11に入射さn1%その偏光回転器11より、
偏波面!Ji偏光出力Alの偏波面より90’回転せる
第2の偏波面(水平偏波面)を有する偏光出力A4う5
得らnl、その偏光出力A4カSS光幅器10 f(、
に入射さr+、て非線形増幅され、その光増幅器10L
1・より偏光出力A4の非線形増1鵬された偏光出力A
5が得られ、その偏光出力A 5 b”1m光スプリッ
タ15 B、の入出力端14に入射し、この為偏光出力
A5を偏光スプリッタ15Rの出力端13より出力光A
6として出射せしめることカ3できるものである。
5 polarized light outputs A are obtained 7, and the polarized light output A3 is incident on the polarization rotator 11 by n1% from the polarization rotator 11.
Polarization plane! Ji Polarized light output A4 U5 having a second polarization plane (horizontal polarization plane) rotated by 90' from the polarization plane of Al.
Obtained nl, its polarization output A4 Ka SS beam width filter 10 f (,
is incident on r+, and is nonlinearly amplified by the optical amplifier 10L.
1. Nonlinear increase of polarized light output A4 by 1. Increased polarized light output A
5 is obtained, and its polarized light output A 5 b" enters the input/output end 14 of the 1m optical splitter 15 B. Therefore, the polarized light output A5 is outputted from the output end 13 of the polarized light splitter 15R as the output light A.
It is possible to emit light as 6.

又上述せる元A1と同様の光B1を偏光スプリッタ15
Rの入力端12に入射光として入射せしめれば、その偏
光スプリッタ15Rの入出力端14に第1の偏波面を有
する偏光出力B2を得ることができ、而してその偏光出
力B2が光増幅器10Rに入射さnて非線形増幅され、
その光増幅器10Rより偏光出力B2の非線形増幅され
た偏光出力B5が得られ、その偏光出力B5f)S、偏
光回転器11に入射され、その偏光回転器11より、偏
波面が偏光出力B5の偏波面より90°回転せる第2の
偏波面(水平偏波面)を有する偏光出力B4が得られ、
その偏光出力B4が光増幅器10Lに入射されて非線形
増幅さn1%その光増幅器10Lより偏光出力B4の非
線形増幅された偏光出力B5が得られ、その偏光出力B
5が偏光スプリッタ15Lの入出力端14に入射し、こ
の為偏光出力B5を偏光スプリッタ15凡の出力端15
より出力光B6として出射せしめることができるもので
あるO 所で、光増幅器10L及び10Rは、光増幅利得係数に
非線形飽和特性を有しn個波面依存性を有するので、人
力光A1及びB1の強度の相対値を夫々SA1及びSB
1%出力光A6及びB6の強度の相対値を夫々SA6及
びSB6とせる入出力特性を、光増幅器10L及び10
Rの第1の偏波面を有する光増幅利得係数g1 と第2
の偏波面を有する光増幅利得係数g2とのgl / g
2で表わされるrをパラメータとして。
In addition, the light B1 similar to the source A1 mentioned above is sent to the polarization splitter 15.
If the input light is made to enter the input end 12 of the polarization splitter 15R as an incident light, a polarized light output B2 having the first polarization plane can be obtained at the input/output end 14 of the polarization splitter 15R. 10R and is nonlinearly amplified.
A nonlinearly amplified polarized light output B5 of the polarized light output B2 is obtained from the optical amplifier 10R, and the polarized light output B5f)S is input to the polarization rotator 11, and the polarization plane is changed from the polarized light output B5 by the polarization rotator 11. A polarized light output B4 having a second polarization plane (horizontal polarization plane) rotated by 90° from the wavefront is obtained,
The polarized light output B4 is input to the optical amplifier 10L and nonlinearly amplified by n1%, and the polarized light output B5 is obtained by nonlinearly amplifying the polarized light output B4 from the optical amplifier 10L.
5 enters the input/output end 14 of the polarization splitter 15L, and therefore the polarization output B5 is input to the output end 15 of the polarization splitter 15L.
Since the optical amplifiers 10L and 10R have a nonlinear saturation characteristic in the optical amplification gain coefficient and n-wavefront dependence, the output light A1 and B1 can be emitted as the output light B6. The relative values of intensity are SA1 and SB, respectively.
Optical amplifiers 10L and 10 have input/output characteristics that make the relative values of the intensities of 1% output lights A6 and B6 SA6 and SB6, respectively.
The optical amplification gain coefficient g1 having the first polarization plane of R and the second
The optical amplification gain coefficient g2 with a polarization plane of gl/g
2 with r expressed as a parameter.

第5図A、B、0及びDに示す如き、非線形飽和ヒステ
リシス特性を呈するものとして得ること6Sできるもの
である。但し第5図A−Dの入出力特性は、入力光B1
の強度の相対値SB、を一定とした場合で示されている
6S can be obtained as exhibiting nonlinear saturation hysteresis characteristics as shown in FIG. 5A, B, 0, and D. However, the input/output characteristics in FIG. 5A-D are for input light B1.
The case where the relative value of the intensity SB is constant is shown.

従って第2図に示す本発明による光増幅回路の構成によ
れば、入力光B1を、第4図Aに示す如き、強度の相対
値SB1カ一定値をきる繰返しのパルスであるものとし
、父入力光A1を、この場合の入力光B1と同期せる、
第4図Bに示す如き1強度の相対値5A1bS順次異な
る値をとる繰返しのパルスであるものとした場合、出出
力光A6を、第4図Cに示す如き、人力光A1の強度の
相対値SA、が、入力光B1の強度の相対値SB1に比
し犬であるときに於てその大いさに殆んど無関係に、強
度の相対値SA6が格段的に大なる略々一定の値を呈す
るものとして得ること13Sでき、又その逆のときに於
て、同様にその大いさに殆んど無関係に強度の相対値S
A6が格段的に小な゛る略々一定の値を呈するものとし
て得ることができ、更に出力光B6を、第4図りに示す
クロ<、強度の相対値SB6が出力光へ6の場合とは逆
の関係を呈するものとして得ることができるものである
。尚第4図C及びDは、前述するFの値を0.5とした
場合のときの結果を示している。
Therefore, according to the configuration of the optical amplifier circuit according to the present invention shown in FIG. 2, the input light B1 is a repetitive pulse whose relative intensity value SB1 is less than a constant value, as shown in FIG. Synchronize input light A1 with input light B1 in this case,
When it is assumed that the relative value 5A1bS of one intensity is a repetitive pulse that sequentially takes different values as shown in FIG. 4B, the output output light A6 is the relative value of the intensity of the human power light A1 as shown in FIG. When SA is smaller than the relative value SB1 of the intensity of the input light B1, the relative value SA6 of the intensity is a substantially constant value that is almost unrelated to the magnitude of the input light B1. 13S, and vice versa, the relative value S of the intensity can be obtained almost independently of its magnitude.
A6 can be obtained as having a significantly small and almost constant value, and the output light B6 can be obtained as shown in the fourth diagram, when the relative value of the intensity SB6 is 6 to the output light. can be obtained as exhibiting an inverse relationship. Incidentally, FIGS. 4C and 4D show the results when the above-mentioned value of F was set to 0.5.

従って第2図に示す本発明による光増幅回路の構成によ
れば、比較回路として機能を得ることができるものであ
る。
Therefore, the configuration of the optical amplifier circuit according to the present invention shown in FIG. 2 can function as a comparison circuit.

又第2図に示す本発明による光増幅回路の構成によれば
、第5図に示す卯<、入力光A1を。
Further, according to the configuration of the optical amplifier circuit according to the present invention shown in FIG. 2, the input light A1 shown in FIG.

緩やかな波形を有するものとした場合、出力光A6を、
急峻な波形を有するものとして得ることができ、又第6
図に示す如く、人力光A1を、幅狭な緩やかな波形を有
するものとした場合、出力光A6を、幅広な波形を有す
るものとして得ることができ、依って波形整形回路とし
ての機能を得ることができるものである。但し第5図及
び第6図は、前述せるFの値を0,5とし。
When the output light A6 is assumed to have a gentle waveform,
It can be obtained as having a steep waveform, and the sixth
As shown in the figure, when the human power light A1 has a narrow and gradual waveform, the output light A6 can be obtained as having a wide waveform, and thus functions as a waveform shaping circuit. It is something that can be done. However, in FIGS. 5 and 6, the value of F mentioned above is set to 0.5.

3 又入力光B1の強度の相対値SB、を1×10としたと
きの結果を示している。
3 Also, the results are shown when the relative value SB of the intensity of the input light B1 is set to 1×10.

更に第2図に示す本発明による光増幅回路の構成によれ
ば、入力光A1を、第6図Aに示す如き、強度の相対値
SA1 ”大及び小なる2つの値開に交互に変化する繰
返しのパルスであるものとした場合、出力光A6を、第
6図Bに示す如き、強度の相対値SA、が小なる値とな
ったとき、次に最初に大なる値になる迄の間、強度の相
対値SA6カ格段的に小なる略々一定の値を呈するもの
として得ることができ、又強度の相対1直SA1 ”犬
なる値となったとき、次に最初に小なる値になる迄の間
、強度の相対値SA6が格段的に大なる略々一定の値を
呈するものとして得ることができ、更に出力光B6を、
第6図Oに示す如き、強度の相対値SB6が出力光A6
の場合とは逆の関係を呈するものとして得ることができ
、依って双安定回路と等価な機能を得ること亀できるも
のである。尚第6図B及びCは。
Further, according to the configuration of the optical amplification circuit according to the present invention shown in FIG. 2, the input light A1 is alternately changed into two relative intensity values SA1, large and small, as shown in FIG. 6A. When it is assumed that the pulse is a repetitive pulse, the output light A6 is changed as shown in FIG. , the relative value of the intensity SA6 can be obtained as a significantly smaller, almost constant value, and when the relative value of the intensity SA1 reaches a value of ``dog,'' the next value becomes the first smaller value. Until this happens, the relative value SA6 of the intensity can be obtained as a significantly large and approximately constant value, and furthermore, the output light B6 can be
As shown in FIG. 6 O, the relative value SB6 of the intensity is the output light A6.
It is possible to obtain a circuit that exhibits the opposite relationship to that in the case of , and therefore it is possible to obtain a function equivalent to a bistable circuit. In addition, Fig. 6 B and C are.

前述せるFの値を0.5とし、又入力光B1の強度の相
対値SBlを1×10 としたときの結果を示している
The results are shown when the value of F mentioned above is 0.5 and the relative value SB1 of the intensity of the input light B1 is 1×10 2 .

従って第2図に示す本発明による光増幅回路の構成によ
nば、上述せる比較回路、波形整形回路、双安定回路と
しての機能を得ることができると共に、前述せる所より
明らかさなるであろうので詳細説明はこれを省略するも
、前述せるrの値を変えることにより、又偏光スプリッ
タ15L及び15ftの何れか一方又は双方に上述せる
入力光A1及びB1以外の光をバイアス光として入射せ
しめることにより、リミッタ、論理回路等の種々の非線
形増幅回路としての機能を得ることができる大なる特徴
をM才るもの(0) である。又斯る機能hS、単に2つの光増幅器IDL及
び10几と、1つの偏光回転器11と、2つの偏光スプ
リッタ15L及び15Rを用いた極めて簡単な構成で、
しかも第1図にて上述せる従来の場合の如くに相対向す
るファブリペロ共振器を用いることなしに従って共振器
長が変化することによって動作りべ不安定化するが如き
ことなしに、安定に得られるという犬なる特徴を有する
ものである。
Therefore, according to the configuration of the optical amplifier circuit according to the present invention shown in FIG. 2, it is possible to obtain the functions as the comparison circuit, waveform shaping circuit, and bistable circuit described above, and it will be clear from the above. Although a detailed explanation will be omitted for the sake of clarity, by changing the value of r described above, light other than the input lights A1 and B1 described above can be made to enter either or both of the polarization splitters 15L and 15ft as bias light. This device (0) has the great feature of being able to function as various nonlinear amplifier circuits such as limiters and logic circuits. Moreover, such a function hS has an extremely simple configuration using only two optical amplifiers IDL and 10, one polarization rotator 11, and two polarization splitters 15L and 15R.
In addition, unlike the conventional case shown in FIG. 1, it is possible to obtain stable operation without using Fabry-Perot resonators facing each other, and without causing unstable operation due to changes in the resonator length. It has the characteristics of a dog.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光垢1幅回路を示す系統図、第2図は本
発明による光増幅回路の一例を示す系統図、第6図はぞ
の入出力特性を示す曲線図、第4図A−0.第5図、第
6図、第7図A、0は本発明の説明に供する波形図であ
る。 図中、10L及び101(は双方向性光進行波増幅器、
11は双方向性90°偏光回転器、12は入力端、13
は出力端、14は入出力端、15L及び15Rは偏光ス
プリッタを夫々示す。 (10) 第3図A =SA。 第31゛・<A f3 A1 第3図C 第4し 第 :;41″、初D A1 手続補正書(方式) 昭和57年4月30日 特許庁長官 島田春樹 殿  (:、。 )1− 1、事件の表示 昭和56年 特許 願第204032号2、発明の名称
 光堆−回路 3、 補正をする者 事件との関係 特許出願人 8 補正の内容 (1)1イβ細書中、第10頁14行に[第41ンIA
−0,Jとあるを「第4図A−D、Jと訂正する。 以上 (2)
Fig. 1 is a system diagram showing a conventional optical 1-width circuit, Fig. 2 is a system diagram showing an example of an optical amplification circuit according to the present invention, Fig. 6 is a curve diagram showing input/output characteristics, and Fig. 4 A-0. FIG. 5, FIG. 6, and FIG. 7 A, 0 are waveform diagrams for explaining the present invention. In the figure, 10L and 101 (represent bidirectional optical traveling wave amplifiers,
11 is a bidirectional 90° polarization rotator, 12 is an input end, 13
14 is an output end, 14 is an input/output end, and 15L and 15R are polarization splitters, respectively. (10) Figure 3 A = SA. No. 31゛・<A f3 A1 Figure 3C No. 4 :;41″, First D A1 Procedural Amendment (Method) April 30, 1980 Mr. Haruki Shimada, Commissioner of the Patent Office (:,.) 1- 1. Indication of the case 1982 Patent Application No. 204032 2. Name of the invention Optical deck circuit 3. Person making the amendment Relationship to the case Patent applicant 8. Contents of the amendment (1) 1.β Specification, No. 10 On page 14 line [41st IA]
-0, J should be corrected as “Figure 4 A-D, J. Above (2)

Claims (1)

【特許請求の範囲】[Claims] 光増幅利得係数に非線形飽和特性を有しn個波面依存性
を有する第1及び第2の双方向性光進行波増幅器を有し
、該第1及び第2の双方向性光進行波増幅器間に双方向
性90°偏光回転器f’s配され、上記第1及び第2の
双方向性光進行波増幅器の上記双方向性90°偏光回転
器側とは反対側に、入力端と出力端と入出力端とを有す
る第1及び第2の偏光スプリッタが、それ等の上記入出
力端を夫々上記第1及び第2の双方向性光進行波増幅器
側とせる態様を以って配されてなる事を特徴とする光増
幅回路。
first and second bidirectional optical traveling wave amplifiers having a nonlinear saturation characteristic and n-wavefront dependence in the optical amplification gain coefficient; A bidirectional 90° polarization rotator f's is disposed on the side opposite to the bidirectional 90° polarization rotator side of the first and second bidirectional optical traveling wave amplifiers. first and second polarization splitters having an end and an input/output end are disposed in such a manner that the input/output ends thereof are on the side of the first and second bidirectional optical traveling wave amplifiers, respectively; An optical amplification circuit characterized by:
JP20403281A 1981-12-17 1981-12-17 Optical amplifying circuit Granted JPS58105129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20403281A JPS58105129A (en) 1981-12-17 1981-12-17 Optical amplifying circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20403281A JPS58105129A (en) 1981-12-17 1981-12-17 Optical amplifying circuit

Publications (2)

Publication Number Publication Date
JPS58105129A true JPS58105129A (en) 1983-06-22
JPH0347482B2 JPH0347482B2 (en) 1991-07-19

Family

ID=16483621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20403281A Granted JPS58105129A (en) 1981-12-17 1981-12-17 Optical amplifying circuit

Country Status (1)

Country Link
JP (1) JPS58105129A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4923291A (en) * 1987-07-23 1990-05-08 Kokusai Denshin Denwa Kabushiki Kaisha Optical amplification
US4941738A (en) * 1988-07-29 1990-07-17 American Telephone And Telegraph Company Polarization independent optical amplifier apparatus
JPH0310164A (en) * 1989-06-08 1991-01-17 Honda Motor Co Ltd Semiconductor sensor
EP0622915A1 (en) * 1993-04-30 1994-11-02 AT&T Corp. Technique utilizing a rotating waveplate for reducing polarization dependent hole-burning in an amplified optical transmission system
GB2386777A (en) * 2002-03-19 2003-09-24 Bookham Technology Plc Polarisation insensitive optical amplifier

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4923291A (en) * 1987-07-23 1990-05-08 Kokusai Denshin Denwa Kabushiki Kaisha Optical amplification
US4941738A (en) * 1988-07-29 1990-07-17 American Telephone And Telegraph Company Polarization independent optical amplifier apparatus
JPH0310164A (en) * 1989-06-08 1991-01-17 Honda Motor Co Ltd Semiconductor sensor
EP0622915A1 (en) * 1993-04-30 1994-11-02 AT&T Corp. Technique utilizing a rotating waveplate for reducing polarization dependent hole-burning in an amplified optical transmission system
GB2386777A (en) * 2002-03-19 2003-09-24 Bookham Technology Plc Polarisation insensitive optical amplifier

Also Published As

Publication number Publication date
JPH0347482B2 (en) 1991-07-19

Similar Documents

Publication Publication Date Title
US7388710B2 (en) Optical parametric amplifier
JPH0664277B2 (en) Combination optical logic device
JPS63500057A (en) optical coupling assembly
US6822591B2 (en) Logic element employing saturable absorber
JPS58105129A (en) Optical amplifying circuit
JPH03242619A (en) Waveguide type polarization rotating element subjected to color correction
CN109031853A (en) A kind of phase sensitive optical parametric amplifier and its operation method
US7130109B2 (en) Optical signal amplification device
CN107872740B (en) All-optical data routing device
US6374017B1 (en) Phase dependent splitter/combiner 4-port coupler device
JPH0246432A (en) Optical amplifier
US20070098413A1 (en) Optical logic element
US11652330B1 (en) Integrated silicon optical amplifier with reduced residual pump
JP2612912B2 (en) Optical amplifier
JPH09244073A (en) Light waveform shaping circuit
JPH02278232A (en) Optical amplifier
JP3006023B2 (en) Optical fiber communication method
JPH06308560A (en) Optical semiconductor element utilizing polarization
CN112636184A (en) Mixed high-power single-frequency laser
JP3288700B2 (en) Optical switch
JP2735168B2 (en) Multi-stage depolarization circuit
JP2935298B2 (en) Optical amplifier
JPS6261411A (en) Amplifier circuit
CN117200747A (en) Optical two-dimensional finite impulse response filter
JPH01102983A (en) Light amplifier