JPH01102983A - Light amplifier - Google Patents
Light amplifierInfo
- Publication number
- JPH01102983A JPH01102983A JP26084087A JP26084087A JPH01102983A JP H01102983 A JPH01102983 A JP H01102983A JP 26084087 A JP26084087 A JP 26084087A JP 26084087 A JP26084087 A JP 26084087A JP H01102983 A JPH01102983 A JP H01102983A
- Authority
- JP
- Japan
- Prior art keywords
- light
- amplifier
- signal
- rotator
- polarizing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 claims abstract description 17
- 230000003321 amplification Effects 0.000 claims abstract description 14
- 238000003199 nucleic acid amplification method Methods 0.000 claims abstract description 14
- 230000003287 optical effect Effects 0.000 claims description 53
- 230000010287 polarization Effects 0.000 claims description 42
- 239000013307 optical fiber Substances 0.000 abstract description 7
- 239000000463 material Substances 0.000 abstract description 5
- 230000008878 coupling Effects 0.000 abstract description 4
- 238000010168 coupling process Methods 0.000 abstract description 4
- 238000005859 coupling reaction Methods 0.000 abstract description 4
- 239000000758 substrate Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 239000002253 acid Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- 238000005253 cladding Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005693 optoelectronics Effects 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 101150110330 CRAT gene Proteins 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/50—Amplifier structures not provided for in groups H01S5/02 - H01S5/30
- H01S5/5009—Amplifier structures not provided for in groups H01S5/02 - H01S5/30 the arrangement being polarisation-insensitive
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は光増幅装置に関し、特に光通信、光交換等の分
野で使用する半導体レーザ型光増幅器を用いた光増幅装
置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical amplification device, and more particularly to an optical amplification device using a semiconductor laser type optical amplifier used in fields such as optical communication and optical switching.
従来、光増幅器は光通信の長距離化、大容量化。 Conventionally, optical amplifiers have been used to extend optical communications over long distances and increase capacity.
光交換システムの大規模化等の目的のために不可欠なデ
バイスである。かかる光増幅器としては、光フアイバ内
の非線形散乱を利用したものも可能であるが、小型、高
効率、他の半導体光デバイスと集積化可能性等の利点か
ら半導体レーザ(LD)型が用いられている。このLD
型光増幅器は内部利得として20〜39dB、入出力端
に光ファイバを接続した状態での光7アイパ間利得でも
20dB程度の値が得られている。また、近年端面への
無反射(AR)コート技術の進歩によシ、飽和光出力。It is an essential device for purposes such as increasing the scale of optical switching systems. Although it is possible to use such an optical amplifier that utilizes nonlinear scattering within an optical fiber, a semiconductor laser (LD) type is used because of its advantages such as small size, high efficiency, and possibility of integration with other semiconductor optical devices. ing. This LD
The optical amplifier has an internal gain of 20 to 39 dB, and a gain of about 20 dB between seven optical fibers when optical fibers are connected to the input and output ends. In addition, due to recent advances in anti-reflection (AR) coating technology on end faces, saturated light output has been improved.
利得波長帯域も大幅に拡大され、実用に近いデバイスと
なっている。The gain wavelength band has also been significantly expanded, making the device close to practical.
しかしながら、従来のLD光増幅器ではその特性が入射
光の偏光状態に大きく依存するという問題がある。すな
わち、通常の使用状態における長距離単一モード光ファ
イバ(8MF)では、入射光の偏光状態が保存されず、
しかも外部の温度や圧力等によシ伝搬光の偏光状態は大
きく変化する。However, conventional LD optical amplifiers have a problem in that their characteristics largely depend on the polarization state of incident light. In other words, in a long-distance single mode optical fiber (8MF) under normal usage conditions, the polarization state of the incident light is not preserved;
Furthermore, the polarization state of the propagating light changes greatly depending on external temperature, pressure, etc.
従って、LD光増幅器をSMFの途中に挿入する場合に
は、何らかの偏力制御手段を併用しないと、出力光強度
が大きく変動してしまう。Therefore, when inserting an LD optical amplifier in the middle of an SMF, the output light intensity will fluctuate greatly unless some kind of bias control means is used.
かかるLD光増幅器の特性が入射偏光依存性を有する原
因としては1次の3つが考えられる。−゛(1) 利
得自体の偏光依存性
(21活性層への閉じ込め係数の偏光による違い(3)
端面反竺率の偏光値!性
通常の二重へテロ構造のLD光増幅器において、(1)
のような利得自体には偏光依存性は生じない。There are three primary reasons why the characteristics of such an LD optical amplifier have dependence on incident polarization. −゛(1) Polarization dependence of gain itself (21 Difference in confinement coefficient in active layer depending on polarization (3)
Polarization value of end face ripple rate! In a normal double heterostructure LD optical amplifier, (1)
The gain itself does not exhibit polarization dependence.
また、原理的には活性層の導波構造の等方化、端面反射
率の低減によシ、+21 、131の問題を解決可能で
ある。しかしながら、かかる問題は、例えば1986年
7月東京で開催された第1回オプト・エレクトロニクス
・コンファレンス(FirstOpta?1ectro
nics Conference )における「ボスト
−デシドライン・ペーパズ・テクニカル・ダイジェスト
J (Po5t Deadline PapersT
echnical Digest ) B 11−2
、12−13頁にも記載されておシ、この掲載論文によ
れば、導波路構造を等方化した埋込みへテロ構造のLD
の両端面に、反射率孔=0.04% という極めて良質
なARコートを施した進行波型LD光増幅器に於ても、
水平偏波(TE)および垂直偏波(TM)の両側光の間
で最大10dB以上の利得差が観測され、ている。Further, in principle, the problems of +21 and 131 can be solved by making the waveguide structure of the active layer isotropic and reducing the end face reflectance. However, such problems were discussed, for example, at the First Optoelectronics Conference held in Tokyo in July 1986.
``Po5t Deadline Papers Technical Digest J (Po5t Deadline Papers T
mechanical Digest) B 11-2
, pages 12-13, and according to this published paper, an LD with a buried heterostructure with an isotropic waveguide structure.
Even in a traveling wave type LD optical amplifier, which has an extremely high quality AR coating with a reflectance hole of 0.04% on both end faces,
A maximum gain difference of 10 dB or more has been observed between horizontally polarized (TE) and vertically polarized (TM) light on both sides.
第3図は上述した通常の進行波型LD光増幅器のTE、
TM両両光光対する利得特性図である。FIG. 3 shows the TE of the above-mentioned normal traveling wave LD optical amplifier.
FIG. 3 is a gain characteristic diagram for both TM and TM lights.
第3図に示すように%従来のLD光増幅器の信号利得は
TEがTMよりも最大で1QdB以上も高くなっそいる
。As shown in FIG. 3, the signal gain of the conventional LD optical amplifier is likely to be higher in TE than in TM by more than 1 QdB at most.
すまわち、導波路構造の等方化、端面反射率の低減だけ
ではLD光増幅器の特性の偏光依存性を低減することは
困難で縁る。In short, it is difficult to reduce the polarization dependence of the characteristics of an LD optical amplifier only by making the waveguide structure isotropic and reducing the end face reflectance.
この問題を解決するための二つの方法は、偏光制御器を
組合せて用いることである。しかしながら、半導体材料
では小型、低電圧(低電流)の偏光制御器を実現するこ
とが難しいのでモノリシック集積化は困難になシ、した
がって複雑な最適制御系を用いなければならないという
問題がある。Two ways to solve this problem are to use polarization controllers in combination. However, since it is difficult to realize a small-sized, low-voltage (low-current) polarization controller using semiconductor materials, monolithic integration is difficult, and therefore a complicated optimal control system must be used.
本発明の目的は、このような問題点を除き、半導体材料
でモノリシックに構成でき、複雑な制御系を必要とせず
に且つ特性の入射偏光依存性のない光増幅装置を提供す
ることIcある。An object of the present invention is to eliminate such problems and provide an optical amplification device which can be monolithically constructed using semiconductor materials, does not require a complicated control system, and whose characteristics do not depend on incident polarization.
本発明の光増幅装置は、半導体レーザの利得機構を利用
した半導体レーザ光増幅器と、前記半導体レーザ光増幅
゛器への入力光の偏光状態を増幅すべき信号の速度に比
べて充分高い速度で変化させる手段とを含んで構成され
る。The optical amplification device of the present invention includes a semiconductor laser optical amplifier that utilizes the gain mechanism of a semiconductor laser, and a polarization state of input light to the semiconductor laser optical amplifier at a speed sufficiently higher than the speed of a signal to be amplified. and means for changing.
第3図に示すように、通常の進行波型LD光増幅器のT
E、TM両両光光対する信号利得は、−般にTEモード
の方がTMモードよシも活性層内への光の閉じ込め係数
が高いため利得も高い。そこで、LD光増幅器のかかる
利得の入射偏光依存性が問題にな、るのは、先にも述べ
たように、通常のSMF内伝搬光の偏光状態が外部条件
によシ時間的に変動する可能性があシ、りれが出力光の
強度変動となるためで今る。第3図からもわかるように
、TM偏光に対しても可成シ大きな利得が得られる。従
って、入力光の偏光状態が必ずしも最大利得を与える偏
光状態(この場合TE)に一致していなくても1時間的
に変動さえしなければ出力光強度の変動は生じず、実用
上大きな問題は生じない。As shown in Figure 3, the T of a normal traveling wave LD optical amplifier is
The signal gains for both the E and TM lights are generally higher in the TE mode than in the TM mode because the light confinement coefficient within the active layer is higher. Therefore, the dependence of the gain of the LD optical amplifier on the incident polarization becomes a problem because, as mentioned earlier, the polarization state of the light propagating in the normal SMF fluctuates over time depending on the external conditions. There is a possibility that this is due to fluctuations in the intensity of the output light. As can be seen from FIG. 3, a considerably large gain can be obtained even for TM polarized light. Therefore, even if the polarization state of the input light does not necessarily match the polarization state that gives the maximum gain (TE in this case), as long as it does not fluctuate over an hour, the output light intensity will not fluctuate, and this is not a big problem in practice. Does not occur.
本発明の光増幅装置は、この事実を利用し、LD光増幅
器への入力光の偏光状態をTE、TM半々の状態に固定
するものである。このTE、TM酸成分それぞれ1/2
ずつといり偏光状態は、入力信号の信号速度に対して充
分速い速度で且つLD光増幅器の入力信号の偏光状態を
強制的に変動させることによシ得ることができる。しか
も、本発明の光増幅装置は通常の偏光制御器で必要な複
雑な帰還制御系は不要である。すなわち、このような偏
光状態を変化させる手段は半導体材料を用いて容易に作
ることができるため、LD光増幅器とのチノリシック化
も可能になる。従って、入力光の偏光状態をTE、TM
酸成分それぞれ1/2ずつにすることによ、9、LD光
増幅器において得られる利得は両側光状態に対する利得
・の平均値となるが、それでも充分高い値が得られる。The optical amplification device of the present invention takes advantage of this fact and fixes the polarization state of the input light to the LD optical amplifier to be half TE and half TM. This TE and TM acid components are each 1/2
The gradual polarization state can be obtained by forcibly changing the polarization state of the input signal of the LD optical amplifier at a speed sufficiently faster than the signal speed of the input signal. Moreover, the optical amplification device of the present invention does not require a complicated feedback control system that is required in a normal polarization controller. That is, since such a means for changing the polarization state can be easily made using a semiconductor material, it becomes possible to form a chinolithic structure with an LD optical amplifier. Therefore, the polarization state of the input light is TE, TM
By reducing each of the acid components to 1/2, the gain obtained in the 9.LD optical amplifier becomes the average value of the gain for the both-side optical state, but a sufficiently high value can still be obtained.
次に、本発明の実施例について図面を参照して説明する
。Next, embodiments of the present invention will be described with reference to the drawings.
第1図は本発明の一実施例を説明するための光増幅装置
の正面図である。FIG. 1 is a front view of an optical amplification device for explaining one embodiment of the present invention.
第1図に示すように、単一モード光ファイバ≠(aMF
)laから伝送された信号光2は結合手段(図示省略)
によシ偏光回転器3の導波路5に結合される。この偏光
回転器3は駆動信号に応じて偏光方向が回転するもので
あるが、この部分の詳細は後に説明する。偏光回転器3
の出力光はLD光増幅器4の導波路5へ結合され、この
LD光増幅器4を直流駆動することによシ入力信号光2
は増幅される。この増幅された信号光2は再び結合手段
によシ8MF 1トに結合され伝送される。ここで、伝
送されている信号速度(ここでは140Mb/8)に対
し充分速い速度(ここではl GHz )で偏光回転器
3を駆動すれば、LD光増幅器4への入力光の偏光状態
は平均的にはTEとTM酸成分をそれぞれ半分ずつ有す
るものになる。この状態はaMF l a内での伝送状
態が外乱によシ変化しても影響を受けることはない。従
りで、外乱による出力光強度の変動なしに安定な光増幅
が可′能になる。As shown in Figure 1, single mode optical fiber≠(aMF
) The signal light 2 transmitted from la is coupled to a coupling means (not shown)
It is then coupled to the waveguide 5 of the polarization rotator 3. This polarization rotator 3 rotates the polarization direction in accordance with a drive signal, and details of this part will be explained later. Polarization rotator 3
The output light is coupled to the waveguide 5 of the LD optical amplifier 4, and by driving the LD optical amplifier 4 with DC, the input signal light 2
is amplified. This amplified signal light 2 is again coupled to 8 MF 1 by the coupling means and transmitted. Here, if the polarization rotator 3 is driven at a sufficiently high speed (l GHz here) relative to the signal speed being transmitted (here 140 Mb/8), the polarization state of the input light to the LD optical amplifier 4 will be averaged. Generally speaking, it has half TE and half TM acid components. This state is not affected even if the transmission state within aMF l a changes due to disturbances. Therefore, stable optical amplification is possible without fluctuations in the output light intensity due to disturbances.
次に、偏光回転器3について詳しく述べる。Next, the polarization rotator 3 will be described in detail.
第2図は第1図に示す偏光回転器の断面図である。尚、
ここでは原理を中心に説明するので一午InGaAsP
系半導体で最も簡単なプレーナ構造を用いて説明する。FIG. 2 is a sectional view of the polarization rotator shown in FIG. 1. still,
Here, we will mainly explain the principle, so InGaAsP
This will be explained using a planar structure, which is the simplest type of semiconductor.
第2図に示すように、かかる偏光回転器3はn+−(t
lo)InP基版21上にn”−InPクラット層22
、 i −I nGaAs P導波層23.P−In
Pクラ、ド層24.p −InGaAsPキャップ層2
5を成長させたウェーハを用いて製作される。次に、n
およびpHにそれぞれオーム性電極26a、26bを形
成し、しかる後へき開によシ形成した端面に反射防止の
ためのARコート膜278.27bを成膜する。As shown in FIG. 2, such a polarization rotator 3 has n+-(t
lo) n”-InP crat layer 22 on the InP substrate 21
, i-InGaAsP waveguide layer 23. P-In
P class, de layer 24. p-InGaAsP cap layer 2
It is manufactured using a wafer on which 5 is grown. Next, n
Ohmic electrodes 26a and 26b are formed at the cleavage and pH points, respectively, and then AR coating films 278 and 27b for antireflection are formed on the cleaved end faces.
本構造はp −i −nダイオード構造になっておシ、
電極26a、26b間に逆バイアス電圧を印加すること
によシ導波層23に電界が加わシミ気光学効果が働く。This structure is a p-i-n diode structure.
By applying a reverse bias voltage between the electrodes 26a and 26b, an electric field is applied to the waveguide layer 23, causing a stain optical effect.
かかる電気光学効果のうち(110)≠面への垂直な方
向の電界の印加による電気光学効果については、例えば
雑誌「ジャーナル・オフ・アプライド・フィツク/C(
Journal of Ap−≠plied Phys
ics ) J 、第47巻(1976年刊行)206
9−2078頁に掲載の論文に詳しく論じられている。Among these electro-optic effects, the electro-optic effect due to the application of an electric field in the direction perpendicular to the (110)≠ plane is described, for example, in the magazine "Journal of Applied Fixtures/C (
Journal of Ap-≠plied Phys
ics ) J, Volume 47 (published in 1976) 206
This is discussed in detail in the paper published on pages 9-2078.
また、(110)方向の電界によ、9InP。Also, due to the electric field in the (110) direction, 9InP.
G a A sのような結晶点群(43m)K属する結
晶では位相変調ではなく偏光回転が生じる。この効果は
(43m)結晶の電気光学効果のうち最も高効率である
ことが知られておJp、GaAs系の2.2mm長の素
子でTE−+TM変換電圧5v以下という値が報告され
ている。In a crystal belonging to the crystal point group (43m) K, such as GaAs, polarization rotation occurs instead of phase modulation. This effect is known to be the most efficient of the electro-optical effects of (43m) crystals, and a value of TE-+TM conversion voltage of less than 5V has been reported for a 2.2mm long GaAs-based element. .
しかも、本構造は逆バイアス状態で使用するため素子応
答速度はキャリア寿命に制限されることなく、素子の容
量Cと直列抵抗RKよって決まるCR時定数によシ決定
される。従って、素子構造によシ容易にGHz以上の応
答帯域を得ることが可能であシ、それ故伝送される信号
速度に比し充分高速にLD光増幅器への入力光の偏光を
回転させることかできる。Moreover, since this structure is used in a reverse bias state, the element response speed is not limited by the carrier lifetime, but is determined by the CR time constant determined by the element capacitance C and series resistance RK. Therefore, it is possible to easily obtain a response band of GHz or more depending on the element structure, and therefore it is possible to rotate the polarization of the input light to the LD optical amplifier at a sufficiently high speed compared to the signal speed to be transmitted. can.
尚、上記素子構造はここでは簡単のために水平横モード
制御構造のないプレーナ構造で説明したが、その他のリ
プち埋込み型等の横モード制御構造を導入することも勿
論可能である。Although the above element structure has been described here as a planar structure without a horizontal transverse mode control structure for simplicity, it is of course possible to introduce other transverse mode control structures such as a lip-embedded type.
次に、LD光増幅器について説明する。ここで用いたL
D光増幅器第1図の4は、ファブリ・ペロー型DC−P
BHLDの両端面KSiNg膜によるARコート(RC
1%)を施したものである。Next, the LD optical amplifier will be explained. L used here
D optical amplifier 4 in Figure 1 is a Fabry-Perot type DC-P
AR coating (RC
1%).
この構成としては、雑誌「エレクトロニクス・レターズ
J (Electronics Letters )第
21巻。This structure is the magazine "Electronics Letters J (Electronics Letters) Volume 21.
(1985年)、501〜502頁に掲載の論文に述べ
られているものと全く同じである。すなわち。(1985), pp. 501-502. Namely.
しきい値近傍の電流に於てTE偏光入力に対し〜3Qd
Bの利得とTE、T籟得差10dBが得られている。~3Qd for TE polarized input at current near threshold
A difference of 10 dB between the B gain, TE, and T gain was obtained.
以上のような偏光回転器3およびLD光増幅器4の構成
要素を用い、第1図に示した構成で140Mb/S
の信号に対する増幅試験を行ったところ、ファイバー間
利得は〜15dBが得られ、外乱による利得変動は全く
観測されなかった。Using the components of the polarization rotator 3 and the LD optical amplifier 4 as described above, the configuration shown in FIG.
When an amplification test was performed on the signal, an inter-fiber gain of ~15 dB was obtained, and no gain fluctuations due to disturbance were observed.
尚、上述した実施例において、偏光回転器3は(110
)基板の上に、またLD光増幅器4は(100)基板の
上に形成されたものを用いているため、そのままでは単
純にはモノリシック集積は難しい。In addition, in the embodiment described above, the polarization rotator 3 is (110
) substrate, and since the LD optical amplifier 4 is formed on a (100) substrate, simple monolithic integration is difficult as it is.
しかし、LD光増幅器は(110)基板上でも製作可能
であるので、(110)基板を用いることによシ偏光回
転器3とLD光増幅器4をモノリシックに集積化した光
増幅装置を得ることも可能である。However, since the LD optical amplifier can also be manufactured on a (110) substrate, it is also possible to obtain an optical amplification device in which the polarization rotator 3 and the LD optical amplifier 4 are monolithically integrated by using a (110) substrate. It is possible.
以上説明したように、本発明の光増幅装置は半導体材料
でモノリシックに構成でき、且つ複雑な制御系を必要と
せずに入射偏光依存性のない特性の光増幅装置が得られ
るという効果がある。As described above, the optical amplification device of the present invention can be monolithically constructed using semiconductor materials, and has the advantage that it can be obtained without requiring a complicated control system and with characteristics free from dependence on incident polarization.
第1図は本発明の一実施例を説明するための光増幅装置
の正面図、第2図は第1図における偏光回転器の断面図
、第3図は従来の光増幅器における利得の偏光依存性を
説明するための電流・利得特性図である。
la、lb・・・・・・単一モード光ファイバ、2・・
・・・・信号光、3・・・・・・偏光回転器、4・・・
・・・LD光増幅器、5・・・・・・導波路、21・・
・・・・n” (1110)InP基板、22・・・
・・・n”−InPクラッド層、23・・・・・・1−
InGaAsP導波層、24・・・・・・p −I n
Pクラッド層、25−・−p−InGaAsPキャッ
プ層、26a。
26b・・・・・・オーム性電極、27a、27b・・
・・・・ARコート膜。
代理人 弁理士 内 原 晋FIG. 1 is a front view of an optical amplification device for explaining an embodiment of the present invention, FIG. 2 is a cross-sectional view of the polarization rotator in FIG. 1, and FIG. 3 is a polarization dependence of gain in a conventional optical amplifier. FIG. 3 is a current/gain characteristic diagram for explaining the characteristics. la, lb...single mode optical fiber, 2...
...Signal light, 3...Polarization rotator, 4...
...LD optical amplifier, 5... Waveguide, 21...
...n" (1110) InP substrate, 22...
...n''-InP cladding layer, 23...1-
InGaAsP waveguide layer, 24...p-I n
P cladding layer, 25-.-p-InGaAsP capping layer, 26a. 26b...Ohmic electrode, 27a, 27b...
...AR coat film. Agent Patent Attorney Susumu Uchihara
Claims (1)
器と、前記半導体レーザ光増幅器への入力光の偏光状態
を増幅すべき信号の速度に比べて充分高い速度で変化さ
せる手段とを含むことを特徴とする光増幅装置。The present invention is characterized by comprising a semiconductor laser optical amplifier that utilizes a gain mechanism of a semiconductor laser, and means for changing the polarization state of input light to the semiconductor laser optical amplifier at a speed sufficiently higher than the speed of the signal to be amplified. optical amplification device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26084087A JPH06103776B2 (en) | 1987-10-16 | 1987-10-16 | Optical amplifier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26084087A JPH06103776B2 (en) | 1987-10-16 | 1987-10-16 | Optical amplifier |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01102983A true JPH01102983A (en) | 1989-04-20 |
JPH06103776B2 JPH06103776B2 (en) | 1994-12-14 |
Family
ID=17353487
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26084087A Expired - Lifetime JPH06103776B2 (en) | 1987-10-16 | 1987-10-16 | Optical amplifier |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06103776B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5223972A (en) * | 1990-06-01 | 1993-06-29 | Canon Kabushiki Kaisha | Optical amplifiers, optical communication systems networks using the amplifier and integrated optical nodes including the amplifier |
US5309275A (en) * | 1990-06-21 | 1994-05-03 | Canon Kabushiki Kaisha | Semiconductor optical amplifying apparatus |
-
1987
- 1987-10-16 JP JP26084087A patent/JPH06103776B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5223972A (en) * | 1990-06-01 | 1993-06-29 | Canon Kabushiki Kaisha | Optical amplifiers, optical communication systems networks using the amplifier and integrated optical nodes including the amplifier |
US5309275A (en) * | 1990-06-21 | 1994-05-03 | Canon Kabushiki Kaisha | Semiconductor optical amplifying apparatus |
US5414549A (en) * | 1990-06-21 | 1995-05-09 | Canon Kabushiki Kaisha | Semiconductor optical amplifying apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPH06103776B2 (en) | 1994-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6281030B1 (en) | Fabrication of semiconductor Mach-Zehnder modulator | |
US4923291A (en) | Optical amplification | |
Yamamoto | Characteristics of AlGaAs Fabry-Perot cavity type laser amplifiers | |
Joma et al. | Polarization insensitive semiconductor laser amplifiers with tensile strained InGaAsP/InGaAsP multiple quantum well structure | |
US5463647A (en) | Broadband multi-wavelength narrow linewidth laser source using an electro-optic modulator | |
JPH04254380A (en) | Monolithic integrated photoamplifier and photodetector | |
JPH1039264A (en) | Device and method for single port modulator accompanied with amplification | |
CA2165711C (en) | Semiconductor light source having a spectrally broad, high power optical output | |
JP3306892B2 (en) | Semiconductor optical integrated device and method of manufacturing the same | |
JPH08288541A (en) | Semiconductor optical integrated element and optical gyro | |
JPH01102983A (en) | Light amplifier | |
US5119039A (en) | Semiconductor optical amplifier with wideband electrical response | |
JP2808562B2 (en) | Semiconductor optical amplifier | |
JP2004287116A (en) | Optical transmitter | |
JPH09293927A (en) | Optical semiconductor laser | |
US5999298A (en) | Electroabsorption optical intesity modulator having a plurality of absorption edge wavelengths | |
US4922497A (en) | Optical logic circuit | |
WO2020221434A1 (en) | Interferometric enhancement of an electroabsorptive modulated laser | |
Souli et al. | 20 Gbit/s high-performance integrated MQW TANDEM modulators and amplifier for soliton generation and coding | |
US6498885B1 (en) | Semiconductor nonlinear waveguide and optical switch | |
JP4653940B2 (en) | Light controller for communication | |
JPH0831656B2 (en) | Optical amplifier | |
Brenot et al. | High modulation bandwidth reflective SOA for optical access networks | |
JP2900567B2 (en) | Semiconductor optical amplifier | |
Takeuchi | Ultra-fast electroabsorption modulator integrated DFB lasers |