JPH0246432A - Optical amplifier - Google Patents

Optical amplifier

Info

Publication number
JPH0246432A
JPH0246432A JP19759588A JP19759588A JPH0246432A JP H0246432 A JPH0246432 A JP H0246432A JP 19759588 A JP19759588 A JP 19759588A JP 19759588 A JP19759588 A JP 19759588A JP H0246432 A JPH0246432 A JP H0246432A
Authority
JP
Japan
Prior art keywords
polarization
beam splitter
optical amplifier
polarized wave
polarizing beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19759588A
Other languages
Japanese (ja)
Other versions
JP2612904B2 (en
Inventor
Katsuaki Kiyoku
克明 曲
Yuzo Yoshikuni
裕三 吉國
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP19759588A priority Critical patent/JP2612904B2/en
Publication of JPH0246432A publication Critical patent/JPH0246432A/en
Application granted granted Critical
Publication of JP2612904B2 publication Critical patent/JP2612904B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To amplify only the incident light from one direction and output the same with the characteristic having no dependency on planes of polarization by dividing the incident light to both longitudinally and transversely polarized waves by a polarizing beam splitter, converting these waves to specific polarization states in respectively separate optical paths and amplifying the same. CONSTITUTION:The polarizing beam splitter 1 allows the transmission of the transversely polarized wave and reflects the longitudinally polarized wave perpendicularly. First and second Faraday rotating elements 2 and 3 rotate the plane of polarization of the respective incident polarized waves in positive and negative directions. First and second polarizers 6 and 7 respectively allow the transmission of only these polarized waves and are, therefore, positioned at both ends of a progressive wave amplifier 5 to form the optical paths together with total reflecting mirrors 4, 8, 9. The excellent optical amplifier with which the longitudinally polarized wave of the light separated by the splitter 1 after the incidence from the port X is transmitted and amplified in the arrow A direction and the longitudinally polarized wave in the direction B and are outputted from the port Y without having the dependency on the plane of polarization but the incident light from the port Y is blocked by the polarizers 6 and 7 is, therefore, constituted.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、コヒーレント光伝送等に用いら゛れ、光信号
を光信号のままで増幅を行なう光増幅装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical amplification device used for coherent optical transmission and the like, which amplifies an optical signal as it is.

(従来の技術) 光増幅装置は、光装置増幅装置として用いることにより
、受光レベルの改善を行なうことができ、またコヒーレ
ント光伝送における中継器に採用する等、光フアイバ伝
送系の性能を向上することができる。
(Prior art) Optical amplifiers can be used as optical device amplifiers to improve the level of received light, and can also be used as repeaters in coherent optical transmission to improve the performance of optical fiber transmission systems. be able to.

このような光増幅装置としては、従来、ファブリ・ペロ
ー型半導体レーザ素子の両端面に反射防止膜を付加して
、両端面の反射率を著しく抑制することにより、高注入
電流においても発振することなく高利得を有する、いわ
ゆる進行波型光増幅器が知られている(齋藤、向弁、野
口「1.5μm帯Ga1nAsP進行波型光増幅器」電
子通信学会技術研究報告 0QE86−114参照)。
Conventionally, such optical amplification devices are capable of oscillating even at high injection currents by adding anti-reflection films to both end faces of a Fabry-Perot semiconductor laser element to significantly suppress the reflectance of both end faces. A so-called traveling wave optical amplifier is known which has a high gain without any interference (see Saito, Mukabe, and Noguchi, "1.5 μm Band Ga1nAsP Traveling Wave Optical Amplifier," Institute of Electronics and Communication Engineers Technical Research Report 0QE86-114).

(発明が解決しようとする課題) しかしながら、上記進行波型光増幅器を構成する半導体
レーサ増幅器は、横偏波と縦偏波とでは閉じ込め係数が
異なるため、縦偏波に比べて横偏波の方が信号利得か高
くなり、両部波間に利得差を生じてしまうという問題点
を有している。
(Problem to be Solved by the Invention) However, in the semiconductor laser amplifier constituting the traveling wave optical amplifier, the confinement coefficient is different for horizontally polarized waves and longitudinally polarized waves. However, the problem is that the signal gain is higher in the latter case, resulting in a gain difference between the two waves.

また、上記進行波型光増幅器は双方向に増幅特性を有す
るため、このような進行波型光増幅器を多段に接続した
場合、端面残留反射率による戻り光の影響で共振器を構
成してしまい、その結果、光増幅器が発振してしまうと
いう問題点を有している。
Furthermore, since the traveling wave optical amplifier described above has bidirectional amplification characteristics, when such traveling wave optical amplifiers are connected in multiple stages, a resonator is formed due to the influence of return light due to the residual reflectance of the end face. As a result, there is a problem in that the optical amplifier oscillates.

本発明の目的は、上記問題点に鑑み、利得の偏波面依存
性及び双方向増幅機能を有する進行波型光増幅器を採用
しても、偏波面に依存することなく所定の利得を得るこ
とかでき、かつ、一方向による入射光のみ増幅を行なえ
る光増幅装置を提供することにある。
In view of the above-mentioned problems, an object of the present invention is to obtain a predetermined gain without depending on the polarization plane even if a traveling wave optical amplifier having gain dependence on the polarization plane and a bidirectional amplification function is employed. It is an object of the present invention to provide an optical amplification device that can perform amplification of incident light in only one direction.

(課題を解決するための手段) 本発明は上記目的を達成するため、半導体レザ素子の両
端面に反射防止膜を付加してなる進行波型光増幅器と、
この光増幅器の両端面側にそれぞれ配設され、偏波面が
所定角度回転(7た偏波のみを透過する第1及び第2の
偏光子と、一の入出カポ−1・からの入射光の横偏波と
縦偏波のうちいずれか一方を透過し、他方を所定方向に
反射する偏光ビームスプリッタと、この偏光ビームスプ
リッタの前記入射光透過側と前記第コ、の偏光子との間
に配設され、偏波面を所定角度回転する第1のファラデ
ー回転素子と、前記偏光ビームスプリッタの前記入射光
反射側と前記第2の偏光子との間に配設され、偏波面を
前記第1のファラデー回転素子と逆方向に所定角度回転
する第2のファラデ回転素子とを備えた。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a traveling wave optical amplifier in which an antireflection film is added to both end faces of a semiconductor laser element;
First and second polarizers are disposed on both end faces of this optical amplifier, and transmit only polarized waves whose planes of polarization have been rotated by a predetermined angle (7). a polarizing beam splitter that transmits either the horizontally polarized wave or the vertically polarized wave and reflects the other in a predetermined direction; and between the incident light transmitting side of this polarizing beam splitter and the polarizer of a first Faraday rotation element arranged between the incident light reflecting side of the polarizing beam splitter and the second polarizer, which rotates the plane of polarization by a predetermined angle; The second Faraday rotation element rotates by a predetermined angle in the opposite direction.

(作 用) 本発明によれば、任意の偏波状態の光が一の入出力ボー
トを介して偏光ビームスプリッタに入射すると、入射光
の横偏波及び縦偏波のうち、いずれか一方の偏波、例え
ば横偏波は偏光ビームスプリッタを透過し、縦偏波は入
射方向とは異なる所定方向に反射される。偏光ビームス
プリッタを透過した横偏波は、第1のファラデー回転素
子に入射し、その偏波面を所定角度回転され、さらに第
1の偏光子を透過した後、進行波型光増幅器にその一端
面から入射する。光増幅器に入射した偏波は増幅作用を
受け、光増幅器の他端面から出射し、第2の偏光子を透
過した後、第2のファラデー回転素子に入射する。増幅
された偏波は、この第2のファラデー回転素子により、
第1のファラデ回転素子による回転方向とは逆方向に、
所定角度回転され、即ち、横偏波に戻されて偏光ビーム
スプリッタに帰還し、さらに偏光ビームスプリ・ツタを
透過して、当該光増幅装置から出力する。
(Function) According to the present invention, when light with an arbitrary polarization state enters the polarization beam splitter through one input/output port, one of the horizontal polarization and the vertical polarization of the incident light is generated. Polarized waves, for example horizontally polarized waves, are transmitted through the polarizing beam splitter, and longitudinally polarized waves are reflected in a predetermined direction different from the incident direction. The horizontally polarized wave that has passed through the polarizing beam splitter enters the first Faraday rotator, whose plane of polarization is rotated by a predetermined angle, and after further passing through the first polarizer, it is sent to a traveling wave optical amplifier at one end thereof. incident from The polarized wave incident on the optical amplifier is amplified, exits from the other end of the optical amplifier, passes through the second polarizer, and then enters the second Faraday rotation element. The amplified polarized wave is transmitted by this second Faraday rotation element,
In the opposite direction to the rotation direction by the first Faraday rotation element,
The light is rotated by a predetermined angle, that is, it is returned to horizontally polarized waves and returned to the polarizing beam splitter, and further transmitted through the polarizing beam splitter and outputted from the optical amplification device.

一方、偏光ビームスプリッタで反射された縦偏波は、第
2のファラデー回転素子に入射し、その偏波面が第1の
ファラデー回転素子による回転方向とは逆方向に所定角
度回転され、第2の偏光子を透過した後、光増幅器にそ
の他端面から入射する。光増幅器に入射した偏波は増幅
作用を受け、光増幅器の一端面から出射し、第1の偏光
子を透過した後、第1のファラデー回転素子に入射する
On the other hand, the longitudinally polarized wave reflected by the polarizing beam splitter enters the second Faraday rotation element, and its plane of polarization is rotated by a predetermined angle in the direction opposite to the direction of rotation by the first Faraday rotation element. After passing through the polarizer, the light enters the optical amplifier from the other end face. The polarized wave incident on the optical amplifier is amplified, exits from one end face of the optical amplifier, passes through the first polarizer, and then enters the first Faraday rotation element.

増幅された偏波は、この第1のファラデー回転素子によ
り所定角度回転され、即ち縦偏波に戻されて、偏光ビー
ムスプリッタに帰還し、さらに偏光ビームスプリッタで
反射されて、当該光増幅装置から出力する。
The amplified polarized wave is rotated by a predetermined angle by this first Faraday rotation element, that is, returned to a longitudinally polarized wave, returns to the polarizing beam splitter, is further reflected by the polarizing beam splitter, and is transmitted from the optical amplification device. Output.

また、この状態で前述した横偏波及び縦偏波の出力方向
から任意の偏波面を有する光が偏光ビムスプリツタに入
射すると、横偏波は偏光ビームスプリッタを透過して、
第2のファラデー回転素子に入射し、第1のファラデー
回転素子による回転方向とは逆方向に偏波面が所定角度
回転された後、第2の偏光子に入射するか、この第2の
偏光子を透過することができない。同様に、縦偏波は、
偏光ビームスプリッタで反射され、第1のファラデー回
転素子で偏波面が所定角度回転された後、第1の偏光子
に入射するが、この第1の偏光子を透過することができ
ない。従って、当該光増幅装置の出射側から入射した光
の、横偏波及び縦偏波共、光増幅器で増幅作用を受ける
ことはなく、当該光増幅装置から出力されることはない
In addition, in this state, when light having an arbitrary plane of polarization enters the polarization beam splitter from the output direction of the horizontally polarized wave and the vertically polarized wave described above, the horizontally polarized wave passes through the polarized beam splitter.
After entering the second Faraday rotation element and having its plane of polarization rotated by a predetermined angle in the direction opposite to the direction of rotation by the first Faraday rotation element, the wave enters the second polarizer or cannot be passed through. Similarly, the longitudinal polarization is
After being reflected by the polarizing beam splitter and having its plane of polarization rotated by a predetermined angle by the first Faraday rotator, it enters the first polarizer, but cannot pass through the first polarizer. Therefore, neither the horizontally polarized wave nor the vertically polarized wave of the light incident from the output side of the optical amplifier is amplified by the optical amplifier and is not output from the optical amplifier.

(実施例) 第1図は、本発明による光増幅装置の一実施例を示す簡
略構成図である。第1図において、X及びYは互いに直
交する入出力ポート、1は偏光ビムスプリツタで、入射
光の横偏波は透過し、縦偏波は入射方向とは直交する方
向に反射する。2は第1のファラデー回転素子で、入射
した偏波の偏波面を(+)45°回転し、ポートXとは
対向する偏光ビームスプリッタ1への光路途中に配設さ
れている。3は第2のファラデー回転素子で、入射した
偏波の偏波面を(−)45°回転し、ポートYとは対向
する偏光ビームスプリッタ1への光路途中に設けた全反
射ミラー4による反射光路途中に配設されている。5は
入射光の増幅を行なう進行波型光増幅器で、半導体レー
ザ素子の両端面に反射防止膜を付加して構成され、両端
面からの入出射が可能となっている。6は光増幅器5の
一端面に対向するように配設した偏光子、7は光増幅器
5の他端面に対向するように配設した偏光子で、これら
偏光子6,7は横偏波から(+)45° (縦偏波から
(−)45°)回転した偏波面のみを透過する。また、
光増幅器5及び偏光子6,7は、全反射ミラー8,9に
よる反射光路途中(両者一致)に配設しである。
(Embodiment) FIG. 1 is a simplified configuration diagram showing an embodiment of an optical amplification device according to the present invention. In FIG. 1, X and Y are input/output ports orthogonal to each other, and 1 is a polarization beam splitter, which transmits horizontally polarized waves of incident light and reflects vertically polarized waves in a direction perpendicular to the direction of incidence. Reference numeral 2 denotes a first Faraday rotation element, which rotates the plane of polarization of incident polarized light by (+) 45 degrees, and is disposed on the optical path to the polarizing beam splitter 1 facing port X. Reference numeral 3 denotes a second Faraday rotation element, which rotates the plane of polarization of the incident polarized light by (-) 45 degrees, and creates a reflected optical path by a total reflection mirror 4 provided in the optical path to the polarizing beam splitter 1 facing port Y. It is placed on the way. Reference numeral 5 denotes a traveling wave optical amplifier for amplifying incident light, which is constructed by adding anti-reflection films to both end faces of a semiconductor laser element, and allows input and output from both end faces. 6 is a polarizer disposed to face one end surface of the optical amplifier 5; 7 is a polarizer disposed to face the other end surface of the optical amplifier 5; Only the plane of polarization rotated by (+)45° ((−)45° from the longitudinal polarization) is transmitted. Also,
The optical amplifier 5 and the polarizers 6 and 7 are arranged in the middle of the optical path reflected by the total reflection mirrors 8 and 9 (both coincident).

次に、上記構成による動作を説明する。まず、任意の偏
光状態の光がポートXを介して偏光ビームスプリッタ1
に入射し、入射光の横偏波は偏光ビームスプリッタ1を
透過し、縦偏波は反射される。
Next, the operation of the above configuration will be explained. First, light with an arbitrary polarization state passes through port X to the polarizing beam splitter 1.
The horizontally polarized wave of the incident light is transmitted through the polarizing beam splitter 1, and the vertically polarized wave is reflected.

偏光ビームスプリッタ1を透過した横偏波は、第1図中
実線矢印Aで示すように、第1のファラデー回転素子2
に入射しその偏波面を(+)45゜回転され、さらに全
反射ミラー8で全反射されて第1の偏光子6を透過した
後、光増幅器5にその一端面から入射する。光増幅器5
に入射した偏波は増幅作用を受けて、光増幅器5の他端
面から出射し、第2の偏光子7を透過した後、第2のフ
ァラデー回転素子3に入射する。増幅された偏波は、こ
の第2のファラデー回転素子3により、その偏波面を(
−)45°回転されて、横偏波に戻る。この増幅後の横
偏波は全反射ミラー4で全反射されて偏光ビームスプリ
ッタ・1に帰還し、さらに偏光ビームスプリッタ1を透
過してポートYへ出力される。
The horizontally polarized wave transmitted through the polarizing beam splitter 1 is transferred to the first Faraday rotation element 2, as shown by the solid arrow A in FIG.
The light beam enters the optical amplifier 5, its plane of polarization is rotated by (+) 45 degrees, is totally reflected by the total reflection mirror 8, passes through the first polarizer 6, and then enters the optical amplifier 5 from one end face thereof. Optical amplifier 5
The incident polarized wave is amplified, exits from the other end face of the optical amplifier 5, passes through the second polarizer 7, and then enters the second Faraday rotation element 3. The amplified polarized wave changes its plane of polarization to (
-) rotated by 45° to return to transverse polarization. This amplified horizontally polarized wave is totally reflected by the total reflection mirror 4, returns to the polarizing beam splitter 1, and is further transmitted through the polarizing beam splitter 1 and output to port Y.

一方、偏光ビームスプリッタ1で反射された縦偏波は、
第1図中実線矢印Bで示すように、全反射ミラー4で全
反射されて第2のファラデー回転素子3に入射し、その
偏波面を(−)45°回転され、全反射ミラー9で全反
射されて第2の偏光子7に入射する。この第2の偏光子
7に入射した偏波は、縦偏波の偏波面を(−)45°回
転させたちのであるが、この偏波方向は横偏波の偏波面
を(+)45°回転した偏波方向と同一である。従って
第2の偏光子7を透過することができ、光増幅器5にそ
の他端面から入射する。光増幅器5に入射した偏波は増
幅作用を受けて光増幅器5の一端面から出射し、第1の
偏光子6を透過した後、全反射ミラー8で全反射されて
、第1のファラデー回転素子2に入射する。増幅された
偏波は、この第1のファラデー回転素子2により、その
偏波面を(+)45°回転されて縦偏波に戻る。この増
幅後の縦偏波は偏光ビームスプリッタ1に帰還し、さら
に偏光ビームスプリッタ1で反射されて、ボー)Yへ出
力される。
On the other hand, the longitudinally polarized wave reflected by the polarizing beam splitter 1 is
As shown by the solid line arrow B in FIG. It is reflected and enters the second polarizer 7. The polarized wave incident on the second polarizer 7 rotates the plane of polarization of the vertically polarized wave by (-)45 degrees, but this polarization direction rotates the plane of polarization of the horizontally polarized wave by (+)45 degrees. It is the same as the rotated polarization direction. Therefore, it can pass through the second polarizer 7 and enter the optical amplifier 5 from the other end face. The polarized wave incident on the optical amplifier 5 is amplified and output from one end face of the optical amplifier 5, passes through the first polarizer 6, is totally reflected by the total reflection mirror 8, and undergoes first Faraday rotation. incident on element 2. The plane of polarization of the amplified polarized wave is rotated by (+) 45° by the first Faraday rotation element 2 and returns to a longitudinally polarized wave. This amplified longitudinally polarized wave returns to the polarizing beam splitter 1, is further reflected by the polarizing beam splitter 1, and is output to (B)Y.

また、以上の状態でポートYから任意の偏波面を有した
光が入射した場合、この入射光の横偏波は、偏光ビーム
スプリッタ1を透過し、全反射ミラー4で全反射されて
第2のファラデー回転素子3に入射し、その偏波面を(
−)45°回転され、さらに全反射ミラー9で全反射さ
れて第2の偏光子7に入射するが、透過することができ
ない。
Furthermore, when light with an arbitrary polarization plane enters from port Y in the above state, the horizontally polarized wave of this incident light passes through the polarizing beam splitter 1, is totally reflected by the total reflection mirror 4, and is reflected at the second is incident on the Faraday rotation element 3, and its polarization plane is (
-) The light is rotated by 45 degrees, is totally reflected by the total reflection mirror 9, and enters the second polarizer 7, but cannot be transmitted.

同様に、ポートYからの入射光の縦偏波は、偏光ビーム
スプリッタ1で反射されて、第1のファラデー回転素子
2に入射し、その偏波面を(+)45°回転された後、
全反射ミラー8で全反射されて第1の偏光子6に入射す
るが、透過することができない。従って、ポートYから
入射した光は、光増幅器5で増幅作用を受けることはな
く、当該光増幅装置から出力されることはない。
Similarly, the vertically polarized wave of the incident light from port Y is reflected by the polarizing beam splitter 1, enters the first Faraday rotation element 2, and after the plane of polarization is rotated by (+) 45 degrees,
Although it is totally reflected by the total reflection mirror 8 and enters the first polarizer 6, it cannot be transmitted. Therefore, the light incident from port Y is not amplified by the optical amplifier 5 and is not output from the optical amplifier.

以上のように、本実施例によれば、偏光ビームスプリッ
タ1で入射光の横偏波及び縦偏波を分離し、この分離後
の横偏波及び縦偏波を第1及び第2のファラデー回転素
子2,3でそれぞれ一定の偏波状態に変換し、さらにこ
の状態の偏波のみ透過可能な第1及び第2の偏光子6.
7を介して、光増幅器5で増幅を行なうので、偏波面依
存性のない光増幅特性を有し、かつ一方向からの入射光
のみを増幅し出力できる優れた光増幅装置を実現できる
As described above, according to this embodiment, the polarizing beam splitter 1 separates the horizontally polarized wave and the vertically polarized wave of the incident light, and the horizontally polarized wave and the vertically polarized wave after the separation are transmitted to the first and second Faraday polarized waves. First and second polarizers that are converted into a fixed polarization state by the rotating elements 2 and 3, respectively, and that can transmit only the polarized light in this state.6.
Since the amplification is performed by the optical amplifier 5 via the optical amplifier 7, it is possible to realize an excellent optical amplification device that has optical amplification characteristics without polarization dependence and can amplify and output only incident light from one direction.

なお、本実施例では全反射ミラー4,8.9を用いて、
光路の方向変換を行なうようにしたが、これに限定され
るものではなく、各素子間の偏波の伝搬手段として、例
えば偏波保持光ファイバ等を用いても良いことはいうま
でもない。
In addition, in this example, total reflection mirrors 4, 8.9 are used,
Although the direction of the optical path is changed in this embodiment, the invention is not limited to this, and it goes without saying that, for example, a polarization-maintaining optical fiber may be used as a means for propagating polarized waves between each element.

(発明の効果) 以上説明したように、本発明によれば、半導体レーザ素
子の両端面に反射防止膜を付加してなる進行波型光増幅
器と、この光増幅器の両端面側にそれぞれ配設され、偏
波面が所定角度回転した偏波のみを透過する第1及び第
2の偏光子と、一の入出力ポートからの入射光の横偏波
と縦偏波のうちいずれか一方を透過し、他方を所定方向
に反射する偏光ビームスプリッタと、この偏光ビームス
プリッタの前記入射光透過側と前記第1の偏光子との間
に配設され、偏波面を所定角度回転する第1のファラデ
ー回転素子と、前記偏光ビームスプリッタの前記入射光
反射側と前記第2の偏光子との間に配設され、偏波面を
前記第1のファラデ回転素子と逆方向に所定角度回転す
る第2のファラデー回転素子とを備えたので、横偏波及
び縦偏波を別の光路に分離後、一定の偏波状態に変換し
て増幅を行なうことができ、偏波面依存性のない光増幅
特性を有すると共に、一方向からの入射光のみを増幅し
出力できる優れた光増幅装置を提供できる利点がある。
(Effects of the Invention) As explained above, according to the present invention, there is provided a traveling wave optical amplifier formed by adding an antireflection film to both end faces of a semiconductor laser element, and a traveling wave optical amplifier formed by adding an antireflection film to both end faces of a semiconductor laser element, and a traveling wave optical amplifier provided on both end faces of the optical amplifier. first and second polarizers that transmit only polarized waves whose polarization planes have been rotated by a predetermined angle, and transmit either horizontally polarized waves or vertically polarized waves of incident light from one input/output port. , a polarizing beam splitter that reflects the other in a predetermined direction, and a first Faraday rotation that is disposed between the incident light transmitting side of the polarizing beam splitter and the first polarizer, and that rotates the plane of polarization by a predetermined angle. a second Faraday element, which is disposed between the incident light reflecting side of the polarizing beam splitter and the second polarizer, and rotates the plane of polarization by a predetermined angle in a direction opposite to that of the first Faraday rotation element. Since it is equipped with a rotating element, it is possible to separate horizontally polarized waves and vertically polarized waves into separate optical paths and then convert them to a constant polarized state for amplification, and it has optical amplification characteristics that are independent of polarization plane. In addition, there is an advantage that an excellent optical amplification device that can amplify and output only incident light from one direction can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による光増幅装置の一実施例を示す簡略
構成図である。 図中、1・・・偏光ビームスプリッタ、2・・・第1の
ファラデー回転素子、3・・・第2のファラデー回転素
子、4,8.9・・・全反射ミラー 5・・・進行波型
光増幅器、6・・・第1の偏光子、7・・・第2の偏光
子。 特許出願人 日本電信電話株式会社
FIG. 1 is a simplified configuration diagram showing an embodiment of an optical amplifying device according to the present invention. In the figure, 1... Polarizing beam splitter, 2... First Faraday rotation element, 3... Second Faraday rotation element, 4, 8.9... Total reflection mirror 5... Traveling wave type optical amplifier, 6... first polarizer, 7... second polarizer. Patent applicant Nippon Telegraph and Telephone Corporation

Claims (1)

【特許請求の範囲】 半導体レーザ素子の両端面に反射防止膜を付加してなる
進行波型光増幅器と、 この光増幅器の両端面側にそれぞれ配設され、偏波面が
所定角度回転した偏波のみを透過する第1及び第2の偏
光子と、 一の入出力ポートからの入射光の横偏波と縦偏波のうち
いずれか一方を透過し、他方を所定方向に反射する偏光
ビームスプリッタと、 この偏光ビームスプリッタの前記入射光透過側と前記第
1の偏光子との間に配設され、偏波面を所定角度回転す
る第1のファラデー回転素子と、前記偏光ビームスプリ
ッタの前記入射光反射側と前記第2の偏光子との間に配
設され、偏波面を前記第1のファラデー回転素子と逆方
向に所定角度回転する第2のファラデー回転素子とを備
えたことを特徴とする光増幅装置。
[Claims] A traveling wave optical amplifier formed by adding an antireflection film to both end faces of a semiconductor laser element, and a polarized wave whose plane of polarization is rotated by a predetermined angle, which is disposed on each end face of the optical amplifier. a polarizing beam splitter that transmits only one of the horizontally polarized wave and the vertically polarized wave of the incident light from one input/output port and reflects the other in a predetermined direction. and a first Faraday rotation element that is disposed between the incident light transmitting side of the polarizing beam splitter and the first polarizer and rotates the plane of polarization by a predetermined angle, and the incident light of the polarizing beam splitter. A second Faraday rotation element is provided between the reflective side and the second polarizer and rotates the plane of polarization by a predetermined angle in a direction opposite to that of the first Faraday rotation element. Optical amplifier.
JP19759588A 1988-08-08 1988-08-08 Optical amplifier Expired - Fee Related JP2612904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19759588A JP2612904B2 (en) 1988-08-08 1988-08-08 Optical amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19759588A JP2612904B2 (en) 1988-08-08 1988-08-08 Optical amplifier

Publications (2)

Publication Number Publication Date
JPH0246432A true JPH0246432A (en) 1990-02-15
JP2612904B2 JP2612904B2 (en) 1997-05-21

Family

ID=16377100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19759588A Expired - Fee Related JP2612904B2 (en) 1988-08-08 1988-08-08 Optical amplifier

Country Status (1)

Country Link
JP (1) JP2612904B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03241323A (en) * 1990-02-20 1991-10-28 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser amplifier
US5303314A (en) * 1993-03-15 1994-04-12 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for polarization-maintaining fiber optical amplification with orthogonal polarization output
JP2012109498A (en) * 2010-11-19 2012-06-07 Nippon Telegr & Teleph Corp <Ntt> Optical amplifier
CN109031853A (en) * 2018-09-04 2018-12-18 中国电子科技集团公司第三十四研究所 A kind of phase sensitive optical parametric amplifier and its operation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160050922A (en) * 2014-10-31 2016-05-11 에스케이텔레콤 주식회사 Phase Modulation Apparatus based on Sagnac interferometer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03241323A (en) * 1990-02-20 1991-10-28 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser amplifier
US5303314A (en) * 1993-03-15 1994-04-12 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for polarization-maintaining fiber optical amplification with orthogonal polarization output
JP2012109498A (en) * 2010-11-19 2012-06-07 Nippon Telegr & Teleph Corp <Ntt> Optical amplifier
CN109031853A (en) * 2018-09-04 2018-12-18 中国电子科技集团公司第三十四研究所 A kind of phase sensitive optical parametric amplifier and its operation method

Also Published As

Publication number Publication date
JP2612904B2 (en) 1997-05-21

Similar Documents

Publication Publication Date Title
US5319483A (en) Polarization independent low cross-talk optical circulator
US5295016A (en) Polarization insensitive amplification device
JPH0743489B2 (en) Polarization independent optical amplifier
US5355249A (en) Optical passive components
US10415971B2 (en) Apparatus and method for diminished bias error due to polarization mismatch
JPH0327027A (en) Optical amplifier
US20200072609A1 (en) Apparatus and method for diminished bias error due to polarization mismatch
US20040184148A1 (en) Integrated micro-optic architecture for combining and depolarizing plural polarized laser beams
JPH0246432A (en) Optical amplifier
US5237442A (en) Device for optical heterodyne detection and mirror system suitable for use in such a device
US5734667A (en) Polarization-stable laser
US20020191290A1 (en) Integrated micro-optic architecture for combining and depolarizing plural polarized laser beams
JP2612913B2 (en) Optical amplifier
JP2612912B2 (en) Optical amplifier
JP2706480B2 (en) Optical amplifier
JPH02278232A (en) Optical amplifier
KR100469751B1 (en) Distributed feedback laser module
JPH03241323A (en) Semiconductor laser amplifier
JP2953189B2 (en) Optical coupler
US6859298B2 (en) Optical module of optical isolator structure
JP3642840B2 (en) Optical device for monitoring
JPH0651242A (en) Optoisolator and light amplifier equipped therewith
JPH0335576A (en) Semiconductor laser amplifier
JPH0298185A (en) Optical amplifying device
JPH022532A (en) Optical amplifying module

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees