JP2735168B2 - Multi-stage depolarization circuit - Google Patents

Multi-stage depolarization circuit

Info

Publication number
JP2735168B2
JP2735168B2 JP4116440A JP11644092A JP2735168B2 JP 2735168 B2 JP2735168 B2 JP 2735168B2 JP 4116440 A JP4116440 A JP 4116440A JP 11644092 A JP11644092 A JP 11644092A JP 2735168 B2 JP2735168 B2 JP 2735168B2
Authority
JP
Japan
Prior art keywords
polarization
optical path
optical
light
polarization component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4116440A
Other languages
Japanese (ja)
Other versions
JPH05313095A (en
Inventor
登 枝川
秀徳 多賀
周 山本
重幸 秋葉
博晴 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP4116440A priority Critical patent/JP2735168B2/en
Priority to EP93303500A priority patent/EP0570151B1/en
Priority to US08/058,108 priority patent/US5430795A/en
Publication of JPH05313095A publication Critical patent/JPH05313095A/en
Application granted granted Critical
Publication of JP2735168B2 publication Critical patent/JP2735168B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光通信システム及び光
計測システムに用いる光源の無偏光化技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for depolarizing a light source used in an optical communication system and an optical measurement system.

【0002】[0002]

【従来の技術】現在、開発が進められている光増幅多中
継システムでは、各中継器において、主に伝送中に生じ
た光信号の減衰を補償するための光増幅を行うだけであ
るため、伝送中及び中継毎に生じた光信号歪みや雑音光
が累積し、システム全体の伝送特性に大きく影響する。
2. Description of the Related Art In an optical amplification multi-repeating system currently under development, each repeater merely performs optical amplification mainly for compensating for attenuation of an optical signal generated during transmission. Optical signal distortion and noise light generated during transmission and for each relay accumulate, greatly affecting the transmission characteristics of the entire system.

【0003】このため、多中継増幅に用いられる各光増
幅器の増幅特性測定は0.1dB以下の超高精度及び超
高分解能が要求される。しかし、光増幅器内に用いられ
る各種の光学部品の挿入損失が信号光の偏光状態により
変化すると共に、光スペクトラムアナライザのように
0.5dB程度の偏光依存性のある測定器を用いるた
め、超高精度及び超高分解能を満足させることは極めて
困難である。
For this reason, the measurement of the amplification characteristics of each optical amplifier used for multi-relay amplification requires ultra-high accuracy and ultra-high resolution of 0.1 dB or less. However, the insertion loss of various optical components used in the optical amplifier changes depending on the polarization state of the signal light, and a measuring instrument having a polarization dependence of about 0.5 dB such as an optical spectrum analyzer is used. It is extremely difficult to satisfy accuracy and ultra-high resolution.

【0004】多中継増幅に用いられる各光増幅器の増幅
特性測定を超高精度及び超高分解能で測定する技術は、
光通信システムを構築する上で極めて重要であることか
ら、盛んに研究がなされている。以下に、現在提案され
ている技術について説明する。
Techniques for measuring the amplification characteristics of each optical amplifier used for multi-relay amplification with ultra-high accuracy and ultra-high resolution include:
Since it is extremely important in constructing an optical communication system, research has been actively conducted. The following describes the currently proposed technology.

【0005】前記のように、光増幅器特性測定分解能及
び測定精度を向上する一手段として、偏光度が通常ほぼ
1である信号光を無偏光化あるいはその偏光度を小さく
し、測定系および被測定物の持つ偏光依存性の影響を受
ける光パワーを低減することにより光増幅器及び測定系
の偏光依存性を実効的に解消する方法が考えられてい
る。
As described above, as one means for improving the resolution and accuracy of measuring the characteristics of an optical amplifier, signal light having a degree of polarization of about 1 is depolarized or its polarization is reduced, and the measurement system and the measurement target are measured. There has been proposed a method of effectively eliminating the polarization dependence of the optical amplifier and the measurement system by reducing the optical power affected by the polarization dependence of the object.

【0006】偏光度(=偏光の度合い)は、光の全パワ
ーに対する偏光成分パワーの比で表される。即ち、偏光
度が1のときは完全偏光であり、偏光度が0の時は無偏
光である。図4は、測定系及び被測定物の本来の偏光依
存性の大きさと、偏光度の低い光を用いた場合に観測さ
れる偏光依存性の光パワー変動量との関係を示すグラフ
である。図中、横軸は測定系及び被測定系物の本来の偏
光依存性の大きさ、縦軸は実際に測定される偏光依存
性、図中の直線はαは偏光度0.1,βは偏光度0.2
5,γは偏光度0.5のそれぞれ信号光を用いた場合の
測定値である。
The degree of polarization (= degree of polarization) is represented by the ratio of the polarization component power to the total power of light. That is, when the degree of polarization is 1, the light is completely polarized, and when the degree of polarization is 0, the light is not polarized. FIG. 4 is a graph showing the relationship between the original polarization dependence of the measurement system and the object to be measured and the polarization-dependent optical power fluctuation observed when light with a low degree of polarization is used. In the figure, the horizontal axis represents the magnitude of the original polarization dependence of the measurement system and the object to be measured, the vertical axis represents the polarization dependence actually measured, and the straight line in the figure represents α = 0.1 and β = β. Polarization degree 0.2
5, γ are measured values when signal light having a polarization degree of 0.5 is used.

【0007】図4から明かなように、測定系及び被測定
物の本来の偏光依存性が0.5dBであっても、偏光度
が0.1(偏光成分が信号光全体の10%)の場合に
は、観測される偏光依存性が約0.05dBであり、偏
光度が0.5(偏光成分が信号光全体の50%)の場合
には観測される偏光依存性が約0.26dBである。
As is apparent from FIG. 4, even if the original polarization dependence of the measurement system and the measured object is 0.5 dB, the degree of polarization is 0.1 (the polarization component is 10% of the entire signal light). In this case, the observed polarization dependence is about 0.05 dB, and when the degree of polarization is 0.5 (the polarization component is 50% of the entire signal light), the observed polarization dependence is about 0.26 dB. It is.

【0008】このように、測定に用いる光の偏光度が小
さければ小さいほど観測される偏光依存性も小さくな
り、偏光度0.5以下の光を用いれば測定精度を著しく
向上できることが明らかとなっている。
Thus, it is clear that the smaller the degree of polarization of the light used for measurement is, the smaller the observed polarization dependency is, and the use of light having a degree of polarization of 0.5 or less can significantly improve the measurement accuracy. ing.

【0009】以下に偏光度の大きな光の偏光度を小さく
する無偏光化の原理を示す。レーザからの出力光は、一
般に「コヒーレンス時間」と呼ばれている時間中(ほぼ
光源線幅の逆数程度)は位相が一定で、それを越えると
位相が前とはランダムに異なる振動が発生する。このた
め、図5(a),(b)に示すように、レーザ光を分岐
して一方にコヒーレンス時間を大きく越えた時間差を与
えると、2分された光の間には一定の位相関係が成立し
なくなり相関が無くなる。
The principle of non-polarization for reducing the degree of polarization of light having a large degree of polarization will be described below. The output light from the laser has a constant phase during the time generally called "coherence time" (approximately the reciprocal of the line width of the light source), and after that, oscillations with a phase different from the previous phase occur randomly. . For this reason, as shown in FIGS. 5A and 5B, when the laser beam is branched and one of them is given a time difference greatly exceeding the coherence time, a constant phase relationship exists between the two divided lights. No longer holds, no correlation.

【0010】偏波は一定の位相関係を持つ直交偏波成分
の和で定義されるので、位相関係を一意に規定できな
い、すなわち相関のない直交偏波光を等パワーで合成す
ると、偏光状態を一意に規定できない光、すなわち無偏
光となり偏光度は0となる。このとき、直交偏波成分が
等パワーでないと、その差分は偏光性をもち偏光度はそ
の差分パワー分だけ0より大きくなる。
Since the polarization is defined by the sum of orthogonal polarization components having a fixed phase relationship, the phase relationship cannot be uniquely defined. That is, if orthogonally polarized light having no correlation is synthesized with equal power, the polarization state becomes unique. , Ie, non-polarized light, and the degree of polarization is zero. At this time, if the orthogonal polarization components are not equal in power, the difference has polarization and the degree of polarization is greater than 0 by the difference power.

【0011】また、直交偏波成分が等パワーでも、直交
偏波成分間に僅かに相関が残っているとそれだけ偏光性
をもつ光パワーが増えるので偏光度はその相関度分だけ
0より大きくなる。従って、偏光度の小さな光を発生す
るには、直交偏波光間の相関をなくし同一のパワーで合
成する必要がある。
Further, even if the orthogonal polarization components have the same power, if there is a slight correlation between the orthogonal polarization components, the optical power having the polarization property increases accordingly, so that the degree of polarization is greater than 0 by the degree of the correlation. . Therefore, in order to generate light with a small degree of polarization, it is necessary to eliminate the correlation between orthogonally polarized lights and combine them with the same power.

【0012】上記無偏光化原理を用いた従来の無偏光化
回路の一つとして、高複屈折光ファイバ内直交偏波間の
伝搬速度差(即ち、偏波分散)を利用して直交偏波間に
コヒーレンス時間以上の走行時間差を発生させ、前記の
無偏光化条件を具現化する無偏光化光学素子があった
(例えば、特開昭59−155806号公報、IEEE
Journal of Lightwave Tech
nology vol.LT−1,No.3,pp47
5−479、等)。
As one of the conventional depolarizing circuits using the above depolarizing principle, a difference in the propagation speed between orthogonal polarized waves in a high birefringence optical fiber (that is, polarization dispersion) is used to generate a signal between orthogonal polarized waves. There has been a non-polarizing optical element that generates a transit time difference equal to or longer than the coherence time and realizes the above-described non-polarizing condition (for example, Japanese Patent Application Laid-Open No. Sho 59-155806, IEEE).
Journal of Lightwave Tech
noology vol. LT-1, No. 3, pp47
5-479, etc.).

【0013】そのような無偏光化光学素子を用いて、長
距離超高速光通信システムで用いられる光源線幅が10
0MHz程度以下でコヒーレンス時間が長い狭線幅レー
ザ光を無偏光化するには、現在の偏波面保存ファイバの
偏波分散量が2ps/m程度と小さいために、必要なフ
ァイバ長が非常に長くなる。
Using such a non-polarizing optical element, the light source line width used in a long-distance ultra-high-speed optical communication system can be reduced to 10 lines.
In order to depolarize a narrow linewidth laser beam having a coherence time of about 0 MHz or less and having a long coherence time, the polarization dispersion of the current polarization-maintaining fiber is as small as about 2 ps / m. Become.

【0014】[0014]

【発明が解決しようとする課題】従来の1本の偏波面保
存ファイバで形成した2つの直交偏波成分の光路を用い
て2偏波成分に時間差を与える無偏光化光学素子におい
て、例えば、100MHzの線幅に対して偏光度0.1
以下を達成するのに必要な偏波面保存ファイバ内直交偏
波間の走行時間差約7.3ナノ秒を達成するのに必要な
ファイバ長は、偏波面保存ファイバの屈折率を約1.5
とすると約4kmとなり非常に長い。これより以下の問
題点が生じる。
In a conventional non-polarizing optical element which gives a time difference to two polarization components by using two orthogonal polarization component optical paths formed by one conventional polarization preserving fiber, for example, 100 MHz Degree of polarization with respect to the line width of 0.1
The fiber length required to achieve a transit time difference of about 7.3 nanoseconds between the orthogonal polarizations in the polarization-maintaining fiber required to achieve:
It is about 4 km, which is very long. This causes the following problems.

【0015】1)偏波面保存ファイバ内では直交偏波間
でのモード結合が発生するため、偏波面保存ファイバ内
での直交偏波間の分離は光ファイバ長に比例して増加せ
ず、得られる偏光度は小さくならない。 2)数kmの偏波面保存ファイバを接続点なく作製する
のは現在の製造技術では非常に困難であり、接続に伴う
直交偏波間でのモード結合が発生するため、偏波面保存
ファイバ内での直交偏波間の分離は著しく低下する。
1) Since mode coupling occurs between orthogonal polarizations in the polarization-maintaining fiber, the separation between orthogonal polarizations in the polarization-maintaining fiber does not increase in proportion to the length of the optical fiber. The degree does not decrease. 2) It is very difficult to fabricate a polarization maintaining fiber of several km without a connection point using current manufacturing technology, and mode coupling occurs between orthogonal polarizations due to the connection. The separation between orthogonal polarizations is significantly reduced.

【0016】3)偏波面保存ファイバが長くなると、直
交偏波間の伝送損失差が無視できなくなり、直交偏波間
の光パワーが同じでなくなるため得られる偏光度はます
ます小さくならない。 4)数kmの偏波面保存ファイバの伝送損失は数dB程
度にもなるので、得られる無偏光の信号光パワーが小さ
くなる。 5)数kmの偏波面保存ファイバはかなりの分量とな
り、装置が大型化する上、非常に高額となる。
3) When the polarization-maintaining fiber becomes longer, the transmission loss difference between the orthogonal polarizations cannot be ignored, and the optical power between the orthogonal polarizations is not the same, so that the degree of polarization obtained cannot be reduced further. 4) Since the transmission loss of the polarization-maintaining single-mode fiber of several km is about several dB, the obtained non-polarized signal light power is small. 5) The polarization-maintaining fiber of several km requires a considerable amount, which increases the size of the apparatus and is very expensive.

【0017】光源線幅が1/10になれば、必要なファ
イバ長はさらに10倍となる。本発明は、上記の問題点
を解決するとともに、さらに、現在の光通信で用いられ
る狭線幅光を容易にかつ強力に無偏光化できる小型,低
損失で安価な複段無偏光化回路を提供することを目的と
する。
If the light source line width is reduced to 1/10, the required fiber length is further increased by a factor of ten. The present invention solves the above-mentioned problems, and further provides a small-sized, low-loss, inexpensive, multi-stage depolarizing circuit that can easily and powerfully depolarize narrow line light used in current optical communication. The purpose is to provide.

【0018】[0018]

【課題を解決するための手段】前記課題の解決は、本発
明が次に列挙する新規な特徴的構成手段を採用すること
により前記目的を達成する。すなわち、本発明の第1の
特徴は、入力光を互いに直交する第1の偏波成分と第2
の偏波成分に分離する第1の偏光分離光学素子と、該偏
光分離光学素子から該入力光の該第1の偏波成分の偏波
面を保持したまま伝搬させる第1の光路と、該偏光分離
光学素子から該入力光の該第2の偏波成分の偏波面を保
持したまま伝搬させる該第1の光路とは空間的に分離し
ている第2の光路と、該第1の光路と該第2の光路をそ
れぞれに伝搬した該第1の偏波成分と該第2の偏波成分
を合波する第1の偏光合成光学素子と、該偏光合成光学
素子が出射する該第1の偏波成分と該第2の偏波成分が
偏光軸に対して45度で入射されるように配置された、
入射光を互いに直交する第3の偏波成分と第4の偏波成
分に分離する第2の偏光分離光学素子と、該偏光分離光
学素子が出射する該第3の偏波成分の偏波面を保持した
まま伝搬させる第3の光路と、該偏光分離光学素子が出
射する該第4の偏波成分の偏波面を保持したまま伝搬さ
せる該第3の光路とは空間的に分離している第4の光路
と、該第3の光路と該第4の光路をそれぞれに伝搬した
該第3の偏波成分と該第4の偏波成分を合波する第2の
偏光合成光学素子と、該第1の光路と該第2の光路の少
なくとも一方に配置された該入力光に減衰を与える第1
の手段と、該第3の光路と該第4の光路の少なくとも一
方に配置された該入力光に減衰を与える第2の手段とか
ら構成される複段無偏光化回路にある。
The object of the present invention is attained by adopting the following novel characteristic constitution means of the present invention. That is, the first feature of the present invention is that the input light is divided into a first polarization component and a second polarization component orthogonal to each other.
A first polarization splitting optical element for splitting the polarization component into a first polarization component, a first optical path for propagating the input light from the polarization splitting optical element while maintaining the polarization plane of the first polarization component, A second optical path that is spatially separated from the first optical path that propagates from the separation optical element while maintaining the polarization plane of the second polarization component of the input light; A first polarization combining optical element that combines the first polarization component and the second polarization component that have respectively propagated through the second optical path, and the first polarization combining optical element that is emitted by the polarization combining optical element. The polarization component and the second polarization component are arranged so as to be incident at 45 degrees with respect to the polarization axis.
A second polarization separation optical element for separating incident light into a third polarization component and a fourth polarization component orthogonal to each other, and a polarization plane of the third polarization component emitted from the polarization separation optical element. The third optical path for propagating while holding the light and the third optical path for propagating while holding the polarization plane of the fourth polarization component emitted from the polarization splitting optical element are spatially separated. A second polarization combining optical element that combines the third polarization component and the fourth polarization component that have respectively propagated through the third optical path and the fourth optical path; A first optical path for attenuating the input light disposed on at least one of the first optical path and the second optical path;
And a second means for attenuating the input light disposed on at least one of the third optical path and the fourth optical path.

【0019】本発明の第2の特徴は、前記第1の特徴に
おいて、n1を第1の光路の屈折率、n2を第2の光路
の屈折率、n3を第3の光路の屈折率、n4を第4の光
路の屈折率、△νを入力光の線幅、Cを光速とした場
合、第1の光路の長さA1と第2の光路の長さA2と第
3の光路の長さA3と第4の光路の長さA4が次式の条
件を満足してなる複段無偏光化回路にある。 |A2×n2−A1×n1|≧0.22÷△ν×C |A4×n4−A3×n3|≧0.22÷△ν×C ||A2×n2−A1×n1|−|A4×n4−A3×n3|| ≧0.22÷△ν×C
According to a second feature of the present invention, in the first feature, n1 is the refractive index of the first optical path, n2 is the refractive index of the second optical path, n3 is the refractive index of the third optical path, and n4 is the refractive index of the third optical path. Is the refractive index of the fourth optical path, △ ν is the line width of the input light, and C is the speed of light, the length A1 of the first optical path, the length A2 of the second optical path, and the length of the third optical path A multi-stage depolarizing circuit in which A3 and the length A4 of the fourth optical path satisfy the condition of the following equation. | A2 × n2-A1 × n1 | ≧ 0.22 ÷ △ ν × C | A4 × n4-A3 × n3 | ≧ 0.22 ÷ △ ν × C || A2 × n2-A1 × n1 | − | A4 × n4-A3 × n3 || ≧ 0.22 ÷ △ ν × C

【0020】本発明の第3の特徴は、前記第1又は第2
の特徴における第1の光路と第2の光路と第3の光路と
第4の光路とが、偏波面保存ファイバもしくは空間伝搬
よりなる複段無偏光化回路にある。
A third feature of the present invention is that the first or the second
The first optical path, the second optical path, the third optical path, and the fourth optical path in the above-mentioned feature are provided by a polarization-maintaining fiber or a multi-stage depolarizing circuit formed by spatial propagation.

【0021】[0021]

【作用】本発明は、従来は1本の偏波面保存ファイバで
形成した2つの直交偏波成分の伝送路を、第1の偏光合
成光学素子と第2の偏光分離光学素子間の接続で区切ら
れた各段で各直交偏波成分に対し空間的に分離して(偏
光ビームスプリッタ、偏波面保存ファイバ等の組み合わ
せで)形成するため、各段において、各直交偏波成分の
走行時間差を各直交偏波成分の物理的な光路差で得られ
る。
According to the present invention, a transmission path of two orthogonal polarization components conventionally formed by one polarization-maintaining fiber is separated by a connection between a first polarization combining optical element and a second polarization separation optical element. In each stage, each orthogonal polarization component is spatially separated (by a combination of a polarization beam splitter, a polarization plane preserving fiber, etc.) and formed. It is obtained by the physical optical path difference of the orthogonal polarization component.

【0022】例えば、本発明を全ての光路を偏波面保存
ファイバで構成し、第1の光路と第2の光路の差を1m
とした時は、偏波面保存ファイバ1m当たりの走行時間
は約5nsであるので、従来例の偏波面保存ファイバ内
での直交偏波成分間の1m当たりの走行時間差の約2p
sを利用した長さ1mの偏波面保存ファイバを用いたも
のに比して、約千倍の時間差を得ることが出来る。従っ
て、本発明では、必要とされる光路長を従来の千分の1
以下にそれぞれ各段で短くできる。
For example, in the present invention, all optical paths are constituted by polarization maintaining fibers, and the difference between the first optical path and the second optical path is 1 m.
Since the transit time per 1 m of the polarization-maintaining fiber is about 5 ns, the transit time difference per 1 m between orthogonal polarization components in the conventional polarization-maintaining fiber is about 2p.
A time difference of about 1000 times can be obtained as compared with the case where a 1 m long polarization maintaining fiber utilizing s is used. Therefore, in the present invention, the required optical path length is reduced to one thousandth of the conventional value.
Below, each stage can be shortened.

【0023】また、直交偏波成分間に相互作用が無いた
め、各直交偏波成分の走行時間差を容易に大きくできる
ことにより各直交偏波成分の相関度をそれぞれ各段で低
下できるので、偏光度の小さい光が複段により容易にか
つ安定して得られる。
Also, since there is no interaction between the orthogonal polarization components, the transit time difference between the orthogonal polarization components can be easily increased, and the degree of correlation between the orthogonal polarization components can be reduced at each stage. Is easily and stably obtained by the multiple stages.

【0024】実施例の説明に先立って、本発明が利用す
る各段の単位無偏光化回路の基本原理を図面につき解説
する。図1は偏光度0.1を達成する単位無偏光化回路
の構成を示す。図中、1は光源線幅Δνが100MHz
(半値全幅)の狭線幅レーザ光L1を発振しかつスペク
トラム分布がローレンツ分布を有するDFB半導体レー
ザ等の光源、2は入射光L1を直交偏波成分に分離して
出射光P1,S1とする偏光ビームスプリッタ(偏光分
離光学素子)である。
Prior to the description of the embodiment, the basic principle of the unit depolarizing circuit of each stage used by the present invention will be described with reference to the drawings. FIG. 1 shows the configuration of a unit depolarizing circuit that achieves a degree of polarization of 0.1. In the figure, 1 denotes a light source line width Δν of 100 MHz.
A light source such as a DFB semiconductor laser or the like that oscillates (full width at half maximum) narrow line width laser light L1 and has a Lorentz spectrum spectrum distribution, and the light source 2 separates the incident light L1 into orthogonal polarization components to generate outgoing lights P1, S1. It is a polarization beam splitter (polarization separation optical element).

【0025】3は偏光ビームスピリッタ2の出射光P1
の偏波面を保存して伝搬する光路C1を構成する屈折率
1.5で長さ5cmの偏波面保存ファイバ、4は偏光ビ
ームスピリッタ2の出射光S1の偏波面を保存して伝搬
する光路C2を構成する屈折率1.5で長さ1.55m
の偏波面保存ファイバ、5,6は合波後の両直交偏波成
分P1,S1が等パワーとなるように調整するための光
減衰器、7は直交する入射光P1とS1とを合波する偏
光ビームスプリッタ(偏光合成光学素子)、8は光を集
束するための集光レンズである。光減衰器5、6につい
ては、合波後の両直交偏波成分P1,S1が等パワーと
するために用いるので、両者のどちらかを省いても良
い。
Reference numeral 3 denotes light P1 emitted from the polarizing beam splitter 2.
A polarization-maintaining fiber having a refractive index of 1.5 and a length of 5 cm, which constitutes an optical path C1 for preserving and propagating the polarization plane, and an optical path for preserving and propagating the polarization plane of the output light S1 of the polarization beam splitter 2 1.55m long with refractive index 1.5 constituting C2
5 and 6 are optical attenuators for adjusting the combined orthogonal polarization components P1 and S1 to have equal power, and 7 is a combination of orthogonal incident lights P1 and S1. A polarizing beam splitter (polarization combining optical element) 8 is a condenser lens for converging light. As for the optical attenuators 5 and 6, either of the two orthogonal polarization components P1 and S1 after the multiplexing may be omitted because they are used to make the power equal.

【0026】偏光ビームスプリッタ2と偏光ビームスプ
リッタ7とを光学的に接続する偏波面保存ファイバ3,
4は、光路C1,C2内での偏波状態が温度や振動など
の環境変化に対して変化しにくくするために、それぞれ
の偏光軸が偏光ビームスプリッタ2及び偏光ビームスプ
リッタ7の偏光軸と一致するように配置する。偏光ビー
ムスプリッタ2,7の偏光軸は、以下の説明上、紙面に
垂直な軸(以下、「垂直軸」という)と、当該垂直軸に
対して紙面に平行な面内で直交する軸(以下、「水平
軸」という)の2軸とする。
The polarization plane preserving fiber 3 for optically connecting the polarization beam splitter 2 and the polarization beam splitter 7,
Numeral 4 indicates that the respective polarization axes coincide with the polarization axes of the polarization beam splitter 2 and the polarization beam splitter 7 in order to make the polarization state in the optical paths C1 and C2 difficult to change with environmental changes such as temperature and vibration. To be placed. In the following description, the polarization axes of the polarization beam splitters 2 and 7 are defined as an axis perpendicular to the paper (hereinafter, referred to as a “vertical axis”) and an axis perpendicular to the vertical axis in a plane parallel to the paper (hereinafter, referred to as “vertical axis”). , “Horizontal axis”).

【0027】なお、光路C1,C2を偏光ビームスピリ
ッタ2からの2つの出射光P1,S1が通過する時間
(走行時間T1,T2)の差(走行時間差Ts=T2−
T1)は、所望する偏光度により決定する。図2は、D
FB半導体レーザのようにスペクトラム分布がローレン
ツ分布を有する光源1の線幅Δνの逆数で正規化された
時間Tとそのような光源からでた光を直交偏波成分に分
離し、2つの直交偏波成分のうち一方をある時間Tだけ
遅延させた後、等パワーで両直交偏波成分を合波させた
時に得られる偏光度の関係を示す。これより、例えば偏
光度0.5(−3dB)を達成するには0.22/Δν
以上の走行時間差Tsが、偏光度0.1(−10dB)
を達成するには0.73/Δν以上の走行時間差Tsが
必要であることがわかる。
The difference between the times (traveling times T1 and T2) during which the two outgoing lights P1 and S1 from the polarizing beam splitter 2 pass through the optical paths C1 and C2 (traveling time difference Ts = T2-
T1) is determined by a desired degree of polarization. FIG.
The time T normalized by the reciprocal of the line width Δν of the light source 1 having a Lorentzian spectrum distribution like an FB semiconductor laser and light emitted from such a light source are separated into orthogonal polarization components, and two orthogonal polarization components are separated. The relationship between the degrees of polarization obtained when one of the wave components is delayed by a certain time T and then the two orthogonal polarization components are multiplexed with equal power is shown. From this, for example, to achieve a polarization degree of 0.5 (-3 dB), 0.22 / Δν
The difference between the transit times Ts is a degree of polarization of 0.1 (−10 dB).
It is understood that a running time difference Ts of 0.73 / Δν or more is required to achieve the above.

【0028】従って、光路C1、C2の長さを求める式
は次の通りである。 |A2×n2−A1×n1|≧Ts×C なお、A1は光路C1の長さ、A2は光路C2の長さ、
n1は光路C1の屈折率、n2は光路C2の屈折率、△
νは入力光の線幅、Cは光速を表す。無偏光化回路とし
て有効に働くのは、偏光度0.5以下と考えるので、こ
れを達成するためには、Ts=0.22÷△νとすれば
良い。従って、次式が実用的な構成と言える。 |A2×n2−A1×n1|≧0.22÷△ν×C
Therefore, the equation for calculating the lengths of the optical paths C1 and C2 is as follows. | A2 × n2-A1 × n1 | ≧ Ts × C where A1 is the length of the optical path C1, A2 is the length of the optical path C2,
n1 is the refractive index of the optical path C1, n2 is the refractive index of the optical path C2, △
ν represents the line width of the input light, and C represents the speed of light. Since it is considered that the degree of polarization is 0.5 or less, which effectively works as the depolarizing circuit, Ts may be set to 0.22 ÷ △ ν to achieve this. Therefore, the following equation can be said to be a practical configuration. | A2 × n2-A1 × n1 | ≧ 0.22 ÷ △ ν × C

【0029】従って、例えば本基本原理のように光源線
幅Δνが100MHzの場合、偏光度0.1を達成する
のに必要な走行時間差Tsは約7.3ナノ秒となり、偏
波面保存ファイバ3の長さが非常に短く通過時間T1が
殆ど0秒とみなせる時には、偏波面保存ファイバ3,4
の屈折率を約1.5とすると、必要とされる偏波面保存
ファイバ4の長さは最低でも偏波面保存ファイバ3の長
さに約1.5m足した数値となる。
Accordingly, for example, when the light source line width Δν is 100 MHz as in the present basic principle, the transit time difference Ts required to achieve the degree of polarization of 0.1 is about 7.3 nanoseconds, and the polarization-maintaining fiber 3 Is very short and the transit time T1 can be regarded as almost 0 second, the polarization maintaining fibers 3 and 4
Is about 1.5, the required length of the polarization-maintaining fiber 4 is a value obtained by adding at least about 1.5 m to the length of the polarization-maintaining fiber 3.

【0030】従って本基本原理では、偏波面保存ファイ
バ3,4の屈折率が約1.5であるので、偏波面保存フ
ァイバ3の長さが5cmであれば偏波面保存ファイバ4
の長さは約1.55m必要であり、もし偏波面保存ファ
イバ3の長さが10cmであれば偏波面保存ファイバ4
の長さは約1.6m必要であることになる。
Therefore, according to the basic principle, since the polarization maintaining fibers 3 and 4 have a refractive index of about 1.5, if the length of the polarization maintaining fiber 3 is 5 cm, the polarization maintaining fiber 4 is not required.
Is required to be about 1.55 m. If the length of the polarization-maintaining fiber 3 is 10 cm, the length of the polarization-maintaining fiber 4
Will need to be about 1.6 m long.

【0031】以下に本基本原理の動作原理を説明する。
光路C1,C2中にはそれぞれ光減衰器5,6を用い
て、偏光ビームスプリッタ2の入射端から偏光ビームス
プリッタ7の出力端までの損失が垂直軸に平行な偏波成
分(以下、「垂直偏波光」という)と、水平軸に平行な
偏波成分(以下、「水平偏波光」という)とで一致する
ように調整する。
The operation principle of the basic principle will be described below.
In the optical paths C1 and C2, optical attenuators 5 and 6 are used, respectively, to use a polarization component parallel to the vertical axis (hereinafter referred to as “vertical component”) in which the loss from the input end of the polarization beam splitter 2 to the output end of the polarization beam splitter 7 is And the polarization component parallel to the horizontal axis (hereinafter referred to as “horizontal polarized light”).

【0032】光源1から偏光軸が紙面に垂直な面内で垂
直軸から45度回転された直線偏光波(入力光L1)を
偏光ビームスプリッタ2に入力すると、偏光ビームスプ
リッタ2の垂直軸と水平軸とに均等に入射される。従っ
て第1の無偏光化回路は、入力光を偏光軸が垂直な面内
で垂直軸から45度回転された直線偏光波に近い偏光状
態で偏光ビームスプリッタ2に入力できるように固定し
た場合には、より容易に発明の効果が得られる。
When a linearly polarized wave (input light L 1) whose polarization axis is rotated by 45 degrees from the vertical axis in a plane perpendicular to the plane of the paper from the light source 1 is input to the polarization beam splitter 2, the light is horizontally aligned with the vertical axis of the polarization beam splitter 2. It is equally incident on the axis. Accordingly, the first depolarizing circuit is used when the input light is fixed so that it can be input to the polarization beam splitter 2 in a polarization state close to a linearly polarized wave rotated by 45 degrees from the vertical axis in a plane where the polarization axis is vertical. Can more easily obtain the effects of the invention.

【0033】偏光ビームスプリッタ2の出射端から偏光
ビームスプリッタ7の出力端までの損失が垂直偏波光と
水平偏波光とで一致するように調整するので、偏光ビー
ムスプリッタ7で合成された出力光L2,L3(直交偏
波成分)は等パワーで、かつ光路C2で光源線幅の逆数
の約0.73倍の走行時間差Tsが与えられている。従
って、出力光の偏光度は0.1以下となる。
Since the loss from the output end of the polarization beam splitter 2 to the output end of the polarization beam splitter 7 is adjusted so that the vertically polarized light and the horizontally polarized light match, the output light L2 synthesized by the polarization beam splitter 7 is adjusted. , L3 (orthogonal polarization components) have the same power, and a traveling time difference Ts of about 0.73 times the reciprocal of the light source line width is given in the optical path C2. Therefore, the degree of polarization of the output light is 0.1 or less.

【0034】次に任意の偏光状態の入力光L1が入射し
た場合について説明する。任意の偏光状態は直交する偏
波状態の和で表わされるので、任意の偏光状態を持つ入
力光L1が偏光ビームスプリッタ2に入力されると、偏
光ビームスプリッタ2の垂直軸と水平軸とに入射される
パワーは均等でなくなるが、光減衰器5,6を用いれ
ば、偏光ビームスプリッタ7で合成された出力光L2,
L3を等パワーとすることができる。
Next, the case where the input light L1 having an arbitrary polarization state is incident will be described. Since an arbitrary polarization state is represented by the sum of orthogonal polarization states, when the input light L1 having an arbitrary polarization state is input to the polarization beam splitter 2, it is incident on the vertical axis and the horizontal axis of the polarization beam splitter 2. However, if the optical attenuators 5 and 6 are used, the output lights L2 and L2 synthesized by the polarization beam splitter 7 are used.
L3 can be equal power.

【0035】従って、出力光L2,L3のパワー低下を
ある程度許容できれば、出力光L2,L3の偏光度は
0.1以下とすることができる。本基本原理では出力パ
ワーの低下をできるだけ避けるため、入力偏光状態を偏
光軸が紙面に垂直な面内で垂直軸から45度回転された
直線偏光波に近い偏光状態で偏光ビームスプリッタ2に
入力できるように固定する必要がある。
Therefore, if the power reduction of the output lights L2 and L3 can be tolerated to some extent, the degree of polarization of the output lights L2 and L3 can be set to 0.1 or less. According to this basic principle, in order to avoid a decrease in output power as much as possible, the input polarization state can be input to the polarization beam splitter 2 in a polarization state close to a linearly polarized wave rotated by 45 degrees from the vertical axis in a plane perpendicular to the plane of the paper. Need to be fixed.

【0036】なお、前記の光路C1又はC2で用いた偏
波面保存ファイバ3,4は、光路C1又はC2が十分短
く光路中の偏波状態が温度や振動などの環境変化に対し
て変化しにくくければ、ミラー等で構成しても良い。ま
た、光減衰器5,6は、固定の入力偏波状態に対して偏
光ビームスプリッタ7で合成された出力光L2,L3を
等パワーとすることができる場合には省略できる。更
に、集光レンズ8は、光が広がらなければ必ずしも必要
としない。以上の各段に用いる単位無偏光化回路の基本
原理を踏まえた上で次に本発明の実施例に移る。
The polarization preserving fibers 3 and 4 used in the optical path C1 or C2 are such that the optical path C1 or C2 is sufficiently short so that the polarization state in the optical path hardly changes with environmental changes such as temperature and vibration. If necessary, a mirror or the like may be used. Further, the optical attenuators 5 and 6 can be omitted when the output lights L2 and L3 combined by the polarization beam splitter 7 can have the same power for a fixed input polarization state. Further, the condenser lens 8 is not always necessary unless the light spreads. Based on the basic principle of the unit depolarizing circuit used in each of the above stages, the operation of the present invention will now be described.

【0037】[0037]

【実施例】本発明の実施例を図面につき説明する。図3
は本実施例の複段無偏光化回路の構成を示すブロックダ
イアグラムである。前記単位無偏光化回路と異なる点
は、本実施例では入力光が任意の偏光状態でも出力パワ
ーの低下をきたさないように、半波長板10を介して前
記単位無偏光化回路を2段構成にしたことにある。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. FIG.
3 is a block diagram showing a configuration of a multi-stage depolarizing circuit of the present embodiment. The difference from the unit depolarizing circuit is that, in this embodiment, the unit depolarizing circuit has a two-stage configuration via the half-wave plate 10 so that the output power does not decrease even if the input light is in an arbitrary polarization state. It is to have done.

【0038】本実施例は、光源線幅Δνが100MHz
であり、偏光度0.1を得る無偏光化回路であるので、
必要な走行時間差Tsは約7.3ナノ秒となり、偏波面
保存ファイバ3,4,12,13の屈折率が約1.5、
偏波面保存ファイバ3,12の長さはそれぞれ5cm、
偏波面保存ファイバ4の長さは約1.55m、偏波面保
存ファイバ13の長さは3.05mである。これらの長
さは、後述の式により任意に選択が可能である。例え
ば、偏波面保存ファイバ3,12の長さをそれぞれ10
cmにすれば、偏波面保存ファイバ4の長さは約1.6
m,偏波面保存ファイバ13の長さは約3.1mとな
る。
In this embodiment, the light source line width Δν is 100 MHz.
Since it is a depolarizing circuit that obtains a degree of polarization of 0.1,
The required transit time difference Ts is about 7.3 ns, and the polarization maintaining fibers 3, 4, 12, 13 have a refractive index of about 1.5,
The lengths of the polarization maintaining fibers 3 and 12 are each 5 cm,
The length of the polarization maintaining fiber 4 is about 1.55 m, and the length of the polarization maintaining fiber 13 is 3.05 m. These lengths can be arbitrarily selected according to the formula described later. For example, the lengths of the polarization maintaining fibers 3 and 12 are each set to 10
cm, the length of the polarization preserving fiber 4 is about 1.6.
m, the length of the polarization-maintaining single-mode fiber 13 is about 3.1 m.

【0039】本実施例は上記のように構成されるが、以
下に、前記各段の単位無偏光化回路の利用を中心に説明
する。光源1から偏光ビームスプリッタ7までの構成
は、前記単位無偏光化回路と同一なため説明を省略す
る。また、偏光ビームスプリッタ11から偏光ビームス
プリッタ16まで(以下、この間の構成を「2段目」と
称す)の構成も、前記単位無偏光化回路の偏光ビームス
ピリッタ2から偏光ビームスプリッタ7まで(以下、こ
の間の構成を「1段目」と称す)と同一である。
The present embodiment is configured as described above. Hereinafter, the description will be made focusing on the use of the unit depolarizing circuit of each stage. The configuration from the light source 1 to the polarization beam splitter 7 is the same as that of the unit depolarizing circuit, and the description is omitted. Further, the configuration from the polarization beam splitter 11 to the polarization beam splitter 16 (hereinafter, the configuration between them is referred to as a “second stage”) is also applied to the configuration from the polarization beam splitter 2 to the polarization beam splitter 7 of the unit depolarizing circuit ( Hereinafter, the configuration during this period is referred to as “first stage”).

【0040】本実施例では、1段目と2段目の構成との
間に偏波面保存ファイバー9を介して、使用する光の偏
光軸が垂直な面内で45度回転されるように半波長板1
0が配置されている。なお、1段目の出力である偏光ビ
ームスプリッタ7と半波長板10との間の偏波面保存フ
ァイバ9は、その偏光軸が偏光ビームスプリッタ7の偏
光軸と一致するように配置されている。従って、1段目
の偏光ビームスプリッタ7から出力されて半波長板10
に入力される垂直軸及び水平軸に平行な偏波成分の光軸
は、2段目の偏光ビームスプリッタ11の入力端でも容
易に一致させることができる。光路C1,C2にある光
減衰器5,6は、偏光ビームスプリッタ2の入力端から
半波長板10の出力端までの損失が、垂直軸に並行な偏
波成分と水平軸に平行な偏波成分とで一致するように調
整するものである。
In this embodiment, the polarization axis of the used light is rotated by 45 degrees in the vertical plane through the polarization preserving fiber 9 between the first stage and the second stage. Wave plate 1
0 is arranged. The polarization plane preserving fiber 9 between the polarization beam splitter 7 and the half-wave plate 10, which is the output of the first stage, is arranged so that its polarization axis matches the polarization axis of the polarization beam splitter 7. Accordingly, the half-wave plate 10 output from the first-stage polarization beam splitter 7
The optical axes of the polarization components parallel to the vertical axis and the horizontal axis, which are input to the second stage, can be easily matched even at the input end of the second-stage polarization beam splitter 11. The optical attenuators 5 and 6 in the optical paths C1 and C2 are used to control the loss from the input end of the polarizing beam splitter 2 to the output end of the half-wave plate 10 by the polarization component parallel to the vertical axis and the polarization component parallel to the horizontal axis. It is adjusted so that it matches with the component.

【0041】各光路C1〜C4の伝搬時間(走行時間)
をそれぞれT1〜T4とし、前記基本原理で示したよう
に、図2を基にして得られる、所望する偏光度に対して
必要な走行時間差をTsとした場合、 |T2−T1|>Ts |T4−T3|>Ts ||T4−T3|−|T2−T1||>Ts となるように、各光路C1〜C4長を構成する。
Propagation time (travel time) of each optical path C1 to C4
Are defined as T1 to T4, respectively, and as shown in the basic principle, assuming that a transit time difference required for a desired degree of polarization obtained based on FIG. 2 is Ts, | T2-T1 |> Ts | T4-T3 |> Ts || T4-T3 |-| T2-T1 ||> Ts, the lengths of the optical paths C1 to C4 are configured.

【0042】従って、光路C1の長さA1と光路C2の
長さA2と光路C3の長さA3と光路C4の長さA4
は、次式の条件より得ることが出来る。 |A2×n2−A1×n1|≧Ts×C |A4×n4−A3×n3|≧Ts×C ||A2×n2−A1×n1|−|A4×n4−A3×n3||≧Ts×C なお、n1は光路C1の屈折率、n2は光路C2の屈折
率、n3は光路C3の屈折率n4は光路C4の屈折率、
△νは入力光の線幅、Cは光速を表す。
Accordingly, the length A1 of the optical path C1, the length A2 of the optical path C2, the length A3 of the optical path C3, and the length A4 of the optical path C4
Can be obtained from the following condition. | A2 × n2-A1 × n1 | ≧ Ts × C | A4 × n4-A3 × n3 | ≧ Ts × C || A2 × n2-A1 × n1 | − | A4 × n4-A3 × n3 || ≧ Ts × C, n1 is the refractive index of the optical path C1, n2 is the refractive index of the optical path C2, n3 is the refractive index of the optical path C3, n4 is the refractive index of the optical path C4,
Δν represents the line width of the input light, and C represents the speed of light.

【0043】無偏光化回路として有効に働くのは、偏光
度0.5以下と考えるので、これを達成するためには、
Ts=0.22÷△νとすれば良い。従って、次式が実
用的な構成と言える。 |A2×n2−A1×n1|≧0.22÷△ν×C |A4×n4−A3×n3|≧0.22÷△ν×C ||A2×n2−A1×n1|−|A4×n4−A3×n3|| ≧0.22÷△ν×C
Since it is considered that the degree of polarization of 0.5 or less works effectively as a depolarizing circuit, in order to achieve this,
Ts = 0.22 ÷ △ ν. Therefore, the following equation can be said to be a practical configuration. | A2 × n2-A1 × n1 | ≧ 0.22 ÷ △ ν × C | A4 × n4-A3 × n3 | ≧ 0.22 ÷ △ ν × C || A2 × n2-A1 × n1 | − | A4 × n4-A3 × n3 || ≧ 0.22 ÷ △ ν × C

【0044】また、光減衰器14,15は、偏光ビーム
スプリッタ11の入射端から偏光ビームスプリッタ16
の出射端までの損失が、垂直軸に平行な偏波成分と水平
軸に平行な偏波成分とで一致することができれば省略で
きる。
The optical attenuators 14 and 15 are connected to the polarization beam splitter 16 from the incident end of the polarization beam splitter 11.
Can be omitted if the loss to the emission end can be matched between the polarization component parallel to the vertical axis and the polarization component parallel to the horizontal axis.

【0045】なお、前記単位無偏光化回路と同様に、光
路C3または光路C4で用いた偏波面保存ファイバ1
2,13は、光路C3または光路C4が十分短く光路中
の偏波状態が温度や振動などの環境変化に対して変化し
にくくければ、ミラー等で構成しても良い。また、光減
衰器14,15は、固定の入力偏波状態に対して偏光ビ
ームスプリッタ16で合成された出力光L2,L3を等
パワーとすることができる場合には省略できる。
The polarization-maintaining fiber 1 used in the optical path C3 or the optical path C4 as in the unit depolarizing circuit.
The mirrors 2 and 13 may be configured as mirrors if the optical path C3 or the optical path C4 is sufficiently short so that the polarization state in the optical path is unlikely to change with environmental changes such as temperature and vibration. Further, the optical attenuators 14 and 15 can be omitted when the output lights L2 and L3 combined by the polarization beam splitter 16 for the fixed input polarization state can have the same power.

【0046】以下に本実施例の動作を説明する。光源1
から垂直軸に平行な偏波面を持つ直線偏光光(入力光L
1)を偏光ビームスプリッタ2に入射すると、偏光ビー
ムスピリッタ7から垂直軸に平行な偏波面を持つ直線偏
光光として出射され(出力光L1′)、半波長板10に
より偏光軸が45度回転され、偏光ビームスプリッタ1
1の垂直軸と水平軸とに均等に入射されて偏波面保存フ
ァイバ12,13に出射される(出射光P2,S2)。
The operation of this embodiment will be described below. Light source 1
Linearly polarized light having a plane of polarization parallel to the vertical axis (the input light L
When 1) is incident on the polarizing beam splitter 2, it is emitted from the polarizing beam splitter 7 as linearly polarized light having a plane of polarization parallel to the vertical axis (output light L 1 ′), and the polarization axis is rotated by 45 degrees by the half-wave plate 10. And the polarizing beam splitter 1
1 are equally incident on the vertical axis and the horizontal axis, and are emitted to the polarization maintaining fibers 12 and 13 (emitted light P2 and S2).

【0047】偏光ビームスプリッタ16で合成された偏
光ビームスピリッタ11からの出射光P2,S2は等パ
ワーでかつ光路C4で光源線幅Δνの逆数の約1.5倍
の走行時間差T2をあたえられているので、出力光は偏
光度0.1以下となる。一方、光源1から水平軸に平行
な偏波面を持つ直線偏光光を偏光ビームスプリッタ2に
入射させた場合も、上記と同様な動作原理で偏光度0.
1以下の出力光を偏光ビームスプリッタ16から得るこ
とができる。
The outgoing light beams P2 and S2 from the polarizing beam splitter 11 synthesized by the polarizing beam splitter 16 are given equal traveling power difference T2 about 1.5 times the reciprocal of the light source line width Δν on the optical path C4. Therefore, the output light has a polarization degree of 0.1 or less. On the other hand, when linearly polarized light having a plane of polarization parallel to the horizontal axis is incident on the polarizing beam splitter 2 from the light source 1, the degree of polarization is set to 0.
1 or less output light can be obtained from the polarizing beam splitter 16.

【0048】任意の偏光状態は直交する偏波状態の和で
表されるので、任意の偏光状態を持つ光が偏光ビームス
プリッタ2に入射されると垂直軸及び水平軸に平行な直
線偏光成分に分解して考えることができ、各直交偏波成
分は上記の動作原理でそれぞれ偏光ビームスプリッタ1
6出力で無偏光の光となる。
Since an arbitrary polarization state is represented by the sum of orthogonal polarization states, when light having an arbitrary polarization state is incident on the polarization beam splitter 2, it becomes a linear polarization component parallel to the vertical axis and the horizontal axis. Each orthogonal polarization component can be considered by decomposing the polarization beam splitter 1 according to the above operation principle.
It becomes unpolarized light with 6 outputs.

【0049】この時、走行時間差T2が走行時間差Ts
の2倍であるため、偏光ビームスプリッタ16の出力で
得られる出力光の各直交偏波成分間には少なくとも光源
線幅の逆数の0.73倍の走行時間差Tsが生じている
ので、出力光L2,L3,L4,L5の偏光度が少なく
とも0.1程度となることがわかる。従って、本発明に
より入力光L1の偏光状態によらず偏光度が約0.1以
下の出力光が得られる。
At this time, the traveling time difference T2 is equal to the traveling time difference Ts.
Therefore, a transit time difference Ts of at least 0.73 times the reciprocal of the light source line width is generated between the orthogonal polarization components of the output light obtained at the output of the polarization beam splitter 16. It is understood that the degree of polarization of L2, L3, L4, and L5 is at least about 0.1. Therefore, according to the present invention, output light having a degree of polarization of about 0.1 or less can be obtained regardless of the polarization state of the input light L1.

【0050】本実施例で用いた半波長板10は、例えば
偏波面保存ファイバ9の出力端を45度回転させて、偏
光ビームスプリッタ7の偏光軸と偏光ビームスプリッタ
11の偏光軸とが45度の角度を持つようにできれば省
略できる。また、偏光ビームスプリッタ7と半波長板1
0との間の偏波面保存ファイバ9は、偏光ビームスプリ
ッタ7から出射され半波長板10に入射される垂直軸及
び水平軸に平行な偏波成分の光軸を出力端以降で一致さ
せることができれば省略しても良い。
In the half-wave plate 10 used in this embodiment, for example, the output end of the polarization plane preserving fiber 9 is rotated by 45 degrees so that the polarization axes of the polarization beam splitter 7 and the polarization beam splitter 11 are 45 degrees. If it can be made to have an angle, it can be omitted. Further, the polarizing beam splitter 7 and the half-wave plate 1
The polarization plane preserving fiber 9 between 0 and 0 makes the optical axes of the polarization components parallel to the vertical axis and the horizontal axis emitted from the polarization beam splitter 7 and incident on the half-wave plate 10 coincide with each other after the output end. It may be omitted if possible.

【0051】さらに、光路C1,C2,C3,C4で用
いた偏波面保存ファイバ3,4,12,13は、光路C
1,C2,C3,C4が十分短く、光路中の偏波状態が
温度や振動などの環境変化に対して変化しにくくけれ
ば、いずれも省略することができる。
The polarization preserving fibers 3, 4, 12, and 13 used in the optical paths C1, C2, C3, and C4 are connected to the optical path C1,
If C1, C2, C3, and C4 are sufficiently short and the polarization state in the optical path is unlikely to change with environmental changes such as temperature and vibration, all of them can be omitted.

【0052】光減衰器5,6,14,15は、偏光ビー
ムスプリッタ2,11の入射端から偏光ビームスプリッ
タ7,16の入力端までの損失を垂直軸に平行な偏波成
分と水平軸に平行な偏波成分とで一致させる上で不要で
あるか、入射光の偏光状態の変化により出力光が変化し
ても構わない場合には省略できる。
The optical attenuators 5, 6, 14, and 15 convert the loss from the input ends of the polarization beam splitters 2 and 11 to the input ends of the polarization beam splitters 7 and 16 into a polarization component parallel to the vertical axis and a horizontal axis. This can be omitted if it is unnecessary for matching with parallel polarization components, or if output light may change due to a change in the polarization state of incident light.

【0053】なお、本実施例では、2段目の構成を示し
たが、n段でも良い。その場合には、n−1段目とn段
目の構成との間の光の偏光軸が紙面に垂直な面内で45
度回転されるように構成する必要がある。
In the present embodiment, the configuration of the second stage is shown, but n stages may be used. In that case, the polarization axis of the light between the (n−1) -th stage and the n-th stage is 45 ° in a plane perpendicular to the paper surface.
It must be configured to be rotated degrees.

【0054】[0054]

【発明の効果】本発明によれば、高複屈折光ファイバの
替わりに入力光を直交する偏波成分に分離する偏光ビー
ムスプリッタ及び偏波面保存ファイバ(またはミラー)
を各段に用いて各段で直交偏光成分を相互作用なく独立
に遅延させた後、各段で各直交偏光成分を偏光ビームス
プリッタで等パワーで合成するため、各段において、各
直交偏光成分の走行時間差が各直交偏光成分の物理的な
光路差で得られるので光路長(偏波面保存ファイバ長)
を従来の千分の1以下に短くでき、その結果従来よりは
るかに小型,低損失で安価な複段無偏光化光学回路を得
ることができる。
According to the present invention, a polarization beam splitter and a polarization-maintaining fiber (or mirror) for separating input light into orthogonal polarization components instead of a high birefringence optical fiber.
Is used in each stage to independently delay the orthogonal polarization components in each stage without any interaction, and then in each stage, the orthogonal polarization components are combined with equal power by the polarization beam splitter. Optical path length (length of polarization-maintaining fiber)
Can be reduced to 1 / 1,000 or less of the conventional one, and as a result, a much smaller, low-loss and inexpensive multi-stage depolarizing optical circuit can be obtained.

【0055】また、各段で直交偏光成分間に相互作用が
無いため各直交偏光成分の走行時間差を容易に大きくで
きることにより各直交偏光成分の相関度を低下できるの
で、偏光度の小さい光が複段により容易にかつ安定して
得られる。従って、本発明の実現により光増幅器特性測
定精度及び分解能が大幅に改善されると共に、これを信
号光源として光増幅多中継システムを構築すれば伝送特
性が飛躍的に向上するため、その効果は極めて大であ
る。
Also, since there is no interaction between the orthogonal polarization components at each stage, the transit time difference between the orthogonal polarization components can be easily increased, and the degree of correlation between the orthogonal polarization components can be reduced. Easily and stably obtained by means of steps. Therefore, the implementation of the present invention greatly improves the measurement accuracy and resolution of the optical amplifier characteristics, and the transmission characteristics are greatly improved if an optical amplification multi-repeating system is constructed using this as a signal light source. Is big.

【0056】更に、2段構成の場合、第1の偏波成分と
第2の偏波成分が偏光軸に対して45度で入射されるよ
うに偏光ビームスプリッタを配置することにより、入射
光が任意の偏光状態でも出力パワーの低下を来さないよ
うにすることが出来る等、優れた有用性を発揮する。
Further, in the case of the two-stage configuration, by arranging the polarization beam splitter so that the first polarization component and the second polarization component are incident at 45 degrees with respect to the polarization axis, incident light can be reduced. It exhibits excellent usefulness such that the output power can be prevented from decreasing even in an arbitrary polarization state.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明が利用する各段の単位無偏光化回路の構
成を示すブロックダイアグラムである。
FIG. 1 is a block diagram showing a configuration of a unit depolarizing circuit of each stage used by the present invention.

【図2】同上、動作原理を説明するグラフで、走行時間
差と偏光度の関係を示す。
FIG. 2 is a graph illustrating the principle of operation, showing the relationship between the transit time difference and the degree of polarization.

【図3】本発明の実施例の構成を示すブロックダイアグ
ラムである。
FIG. 3 is a block diagram showing a configuration of an embodiment of the present invention.

【図4】測定系及び被測定物の本来の偏光依存性の大き
さと、偏光度の低い光を用いた場合に観測される偏光依
存性の光パワー変動量との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the original polarization dependence of the measurement system and the object to be measured and the polarization-dependent optical power fluctuation observed when light with a low degree of polarization is used.

【図5】無偏光化の概念を示すグラフである。FIG. 5 is a graph showing the concept of depolarization.

【符号の説明】 C1,C2,C3,C4…光路 L1,L1′…入力光 L2,L3,L4,L5…出力光 P1,P2,S1,S2…直交偏波成分に分離された光 1…光源 2,7,11,16…偏光ビームスプリッタ 3,4,9,12,13…偏波面保存ファイバ 5,6,14,15…光減衰器 8…集光レンズ、 10…半波長板[Explanation of Codes] C1, C2, C3, C4 ... optical path L1, L1 '... input light L2, L3, L4, L5 ... output light P1, P2, S1, S2 ... light separated into orthogonal polarization components 1 ... Light source 2, 7, 11, 16 ... polarization beam splitter 3, 4, 9, 12, 13 ... polarization plane preserving fiber 5, 6, 14, 15 ... optical attenuator 8 ... condenser lens, 10 ... half-wave plate

フロントページの続き (72)発明者 秋葉 重幸 東京都新宿区西新宿2丁目3番2号 国 際電信電話株式会社内 (72)発明者 若林 博晴 東京都新宿区西新宿2丁目3番2号 国 際電信電話株式会社内 (56)参考文献 特開 昭63−113519(JP,A) 特開 昭61−112123(JP,A) 実開 昭62−96604(JP,U)Continued on the front page (72) Inventor Shigeyuki Akiba 2-3-2 Nishi-Shinjuku, Shinjuku-ku, Tokyo International Telegraph and Telephone Corporation (72) Inventor Hiroharu Wakabayashi 2-3-2 Nishi-Shinjuku, Shinjuku-ku, Tokyo International Telegraph and Telephone Corporation (56) References JP-A-63-113519 (JP, A) JP-A-61-112123 (JP, A) JP-A-62-196604 (JP, U)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】入力光を互いに直交する第1の偏波成分と
第2の偏波成分に分離する第1の偏光分離光学素子と、 該偏光分離光学素子から該入力光の該第1の偏波成分の
偏波面を保持したまま伝搬させる第1の光路と、 該偏光分離光学素子から該入力光の該第2の偏波成分の
偏波面を保持したまま伝搬させる、該第1の光路とは空
間的に分離している第2の光路と、 該第1の光路と該第2の光路をそれぞれに伝搬した該第
1の偏波成分と該第2の偏波成分を合波する第1の偏光
合成光学素子と、 該偏光合成光学素子が出射する該第1の偏波成分と該第
2の偏波成分が偏光軸に対して45度で入射されるよう
に配置された、入射光を互いに直交する第3の偏波成分
と第4の偏波成分に分離する第2の偏光分離光学素子
と、 該偏光分離光学素子が出射する該第3の偏波成分の偏波
面を保持したまま伝搬させる第3の光路と、 該偏光分離光学素子が出射する該第4の偏波成分の偏波
面を保持したまま伝搬させる、該第3の光路とは空間的
に分離している第4の光路と、 該第3の光路と該第4の光路をそれぞれに伝搬した該第
3の偏波成分と該第4の偏波成分を合波する第2の偏光
合成光学素子と、 該第1の光路と該第2の光路の少なくとも一方に配置さ
れた該入力光に減衰を与える第1の手段と、 該第3の光路と該第4の光路の少なくとも一方に配置さ
れた該入力光に減衰を与える第2の手段とを有すること
を特徴とする複段無偏光化回路
A first polarization splitting optical element for splitting input light into a first polarization component and a second polarization component orthogonal to each other; and a first polarization splitting optical element for splitting the input light from the first polarization splitting optical element. A first optical path for propagating while maintaining the polarization plane of the polarization component; and a first optical path for propagating from the polarization splitting optical element while maintaining the polarization plane for the second polarization component of the input light. And a second optical path spatially separated from the first optical path, and the first polarization component and the second polarization component propagated through the first optical path and the second optical path, respectively. A first polarization combining optical element, and the first polarization component and the second polarization component emitted by the polarization combining optical element are arranged so as to be incident at 45 degrees with respect to a polarization axis; A second polarization splitting optical element for splitting incident light into a third polarization component and a fourth polarization component orthogonal to each other; A third optical path for propagating while maintaining the polarization plane of the emitted third polarization component, and propagating while maintaining the polarization plane of the fourth polarization component emitted by the polarization splitting optical element; A fourth optical path spatially separated from the third optical path, the third polarization component and the fourth polarization component propagated through the third optical path and the fourth optical path, respectively; A second polarization-combining optical element for multiplexing the first optical path, a first means for attenuating the input light disposed on at least one of the first optical path and the second optical path, and a third optical path. A second means for attenuating the input light disposed on at least one of the fourth optical paths.
【請求項2】第1の光路の長さA1と第2の光路の長さ
A2と第3の光路の長さA3と第4の光路の長さA4が
次式の条件を満足することを特徴とする請求項1記載の
複段無偏光化回路 |A2×n2−A1×n1|≧0.22÷△ν×C |A4×n4−A3×n3|≧0.22÷△ν×C ||A2×n2−A1×n1|−|A4×n4−A3×n3|| ≧0.22÷△ν×C なお、n1は第1の光路の屈折率、n2は第2の光路の
屈折率、n3は第3の光路の屈折率、n4は第4の光路
の屈折率、△νは入力光の線幅、Cは光速とする。
2. The length A1 of the first optical path, the length A2 of the second optical path, the length A3 of the third optical path, and the length A4 of the fourth optical path satisfy the following condition. The multi-stage depolarizing circuit according to claim 1, wherein | A2 × n2-A1 × n1 | ≧ 0.22 ÷ △ ν × C | A4 × n4-A3 × n3 | ≧ 0.22 ÷ △ ν × C || A2 × n2-A1 × n1 | − | A4 × n4-A3 × n3 || ≧ 0.22 ÷ △ ν × C where n1 is the refractive index of the first optical path, and n2 is the refraction of the second optical path. , N3 is the refractive index of the third optical path, n4 is the refractive index of the fourth optical path, Δν is the line width of the input light, and C is the speed of light.
【請求項3】第1の光路と第2の光路と第3の光路と第
4の光路とが、偏波面保存ファイバもしくは空間伝搬よ
りなることを特徴とする請求項1又は2記載の複段無偏
光化回路
3. The multi-stage optical system according to claim 1, wherein the first optical path, the second optical path, the third optical path, and the fourth optical path are polarization maintaining fibers or spatial propagation. Non-polarizing circuit
JP4116440A 1992-05-08 1992-05-08 Multi-stage depolarization circuit Expired - Fee Related JP2735168B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP4116440A JP2735168B2 (en) 1992-05-08 1992-05-08 Multi-stage depolarization circuit
EP93303500A EP0570151B1 (en) 1992-05-08 1993-05-05 Optical transmitter with the signal light of reduced degree of polarization and optical depolarizing circuit
US08/058,108 US5430795A (en) 1992-05-08 1993-05-06 Optical transmitter with the signal light of reduced degree of polarization and optical depolarizing circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4116440A JP2735168B2 (en) 1992-05-08 1992-05-08 Multi-stage depolarization circuit

Publications (2)

Publication Number Publication Date
JPH05313095A JPH05313095A (en) 1993-11-26
JP2735168B2 true JP2735168B2 (en) 1998-04-02

Family

ID=14687163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4116440A Expired - Fee Related JP2735168B2 (en) 1992-05-08 1992-05-08 Multi-stage depolarization circuit

Country Status (1)

Country Link
JP (1) JP2735168B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4738040B2 (en) * 2005-03-29 2011-08-03 富士通株式会社 Optical communication system, transmission degradation compensation method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6296604U (en) * 1985-12-06 1987-06-19
JPS63113519A (en) * 1986-10-31 1988-05-18 Fujikura Ltd Polarized wave dissolving device

Also Published As

Publication number Publication date
JPH05313095A (en) 1993-11-26

Similar Documents

Publication Publication Date Title
US8164831B2 (en) Optical depolarizers and DGD generators based on optical delay
JP2665097B2 (en) Optical coupler
US5596448A (en) Dispersion compensator and optical amplifier
US5430795A (en) Optical transmitter with the signal light of reduced degree of polarization and optical depolarizing circuit
JP2850891B2 (en) Optical filter module and optical amplifying device using the same
JP2001103006A (en) Optical transmitter and method for expanding channel
JP3440895B2 (en) Dispersion compensator
JP3935877B2 (en) Compensator for polarization mode dispersion compensation
EP1241499A1 (en) Laser with depolariser
JP2735168B2 (en) Multi-stage depolarization circuit
US8947767B2 (en) Excitation light source for raman amplification, raman amplifier, and optical transmission system
US20200403383A1 (en) Semiconductor amplifier with low polariation-dependent gain
JPH0246432A (en) Optical amplifier
JP3349730B2 (en) Depolarizer
JPS63157133A (en) Multiplexing circuit and separating circuit for optical pulse
JP2003029209A (en) Depolarizer
JPH02278232A (en) Optical amplifier
AU675424B2 (en) Improvements to optical phase shifting
JP5791094B2 (en) Optical amplifier
JPH0651243A (en) Depolarizer
JPH0398025A (en) Optical amplifying device
JPH1022917A (en) Optical amplifier and optical transmission system
JPS61112123A (en) Depolarizer
JPH02933A (en) Optical amplifier
JPH0330534A (en) Optical access node

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees