JPS58104099A - Growth process for tellurium dioxide single crystal - Google Patents

Growth process for tellurium dioxide single crystal

Info

Publication number
JPS58104099A
JPS58104099A JP56202150A JP20215081A JPS58104099A JP S58104099 A JPS58104099 A JP S58104099A JP 56202150 A JP56202150 A JP 56202150A JP 20215081 A JP20215081 A JP 20215081A JP S58104099 A JPS58104099 A JP S58104099A
Authority
JP
Japan
Prior art keywords
crystal
single crystal
tellurium dioxide
raw material
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56202150A
Other languages
Japanese (ja)
Other versions
JPS5933550B2 (en
Inventor
Yoshio Fujino
芳男 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP56202150A priority Critical patent/JPS5933550B2/en
Publication of JPS58104099A publication Critical patent/JPS58104099A/en
Publication of JPS5933550B2 publication Critical patent/JPS5933550B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:When a single crystal of tellurium dioxide is made to grow by the drawing-up method, after its start, the melt of the raw material is gradually cooled to allow the seed crystal to become thicker gradually to form a bell shape with the flat bottom, thus producing a good-quality single crystal free from striae formation. CONSTITUTION:Tellurium dioxide is melted in a platinum crucible and the single crystal is made to grow by the drawing-up method. At this time, from its start or when the seed crystal comes to have a certain diameter, the melt of the raw material is gradually cooled to allow its diameter to become larger gradually, thus forming a shape of narrow bell or narrow cone 2 with flat or convexed bottom 3. Since the latent heat of solidification is also dissipated toward the melted raw material which is getting lower in its temperature, satisfactory heat dissipation is effected to cause uniform crystallization at the center and inhibit the striae formation.

Description

【発明の詳細な説明】 この発明は引上げ育成法によって二酸化テルル単結晶を
育成する方法に関するものであり、特に脈理の発生しな
い育成方法に関する4のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for growing tellurium dioxide single crystals by a pulling growth method, and particularly relates to a growth method in which striae do not occur.

二酸化テルルは大きな光偏向係数を持つ物質として知ら
れ、それを利用してレーザー光の変調器としてレーザー
ファクシミリなどに応用され、実用化されている。実用
に際してこの結晶に基本的に望まれることは他の光学用
結晶と同様にレーザー光が結晶中を進むとき、吸収中散
乱などで減衰した多屈折したヤしないことである。そし
てこれらは不純物、気泡、脈理などの存在が原因となっ
て起る。不純物の除去は高純度の原料を使用することで
解決でき、気泡の発生社結晶の引上げ速度や一転数、炉
内の温度分布を適正な値にすることで防ぐことが出来る
Tellurium dioxide is known as a substance with a large optical deflection coefficient, and has been put to practical use as a modulator of laser light in devices such as laser facsimiles. In practical use, what is basically desired for this crystal is that, like other optical crystals, when laser light travels through the crystal, it does not undergo multi-refraction and attenuation due to scattering during absorption. These are caused by the presence of impurities, bubbles, striae, etc. The removal of impurities can be solved by using high-purity raw materials, and the generation of bubbles can be prevented by adjusting the pulling speed of the crystal, the number of revolutions, and the temperature distribution in the furnace to appropriate values.

しかし脈理はその発生機構が解明されていないために発
生を抑える根本的な方法が確立されておらず、良質結晶
の歩留9を悪くする原因となつずいる。
However, since the mechanism by which striae occurs has not been elucidated, a fundamental method for suppressing its occurrence has not been established, leading to a decrease in the yield of high-quality crystals.

この発明は脈理を含まない品質のよい二酸化テルル単結
晶の育成方法を提供することを目的とするものである◇
すなわち本発明は二酸化テルル単結晶を引上げ法にょ)
育成するIIK育成開始時あるい伏種子結晶がある所定
の直径になつ先後、原料融液をしだいに冷却させてゆき
、種子結晶から次第に太らせて所定の直径を得た後、前
述の種子結晶より所定の直径を得る迄の直径の増加率と
同等か又はより少ない割合で少しづつ直径が増加するよ
うに育成して、結晶外形が結果として8鐘形かあるいは
細長い円錐台形あるいは綱長い釣鐘状となるような形状
で、かつ該結晶の底面の形状が平坦あるいは凸形と−な
るように育成することである。
The purpose of this invention is to provide a method for growing high-quality tellurium dioxide single crystals that do not contain striae◇
In other words, the present invention is a method for pulling tellurium dioxide single crystals.
At the start of IIK growth, after the seed crystal reaches a predetermined diameter, the raw material melt is gradually cooled and the seed crystal is gradually thickened to a predetermined diameter, and then the aforementioned seed crystal is grown. The crystal is grown so that the diameter increases little by little at a rate equal to or less than the rate of increase in diameter until a predetermined diameter is obtained, resulting in an 8-bell shape, an elongated truncated cone shape, or a long rope bell shape. The crystal is grown in such a shape that the bottom surface of the crystal is flat or convex.

以下この発明を育成実験およびその結果の考察と合わせ
て図を用いて詳細VC説明する。
Hereinafter, this invention will be explained in detail with reference to the drawings, together with a growth experiment and a discussion of the results.

育成実験の条件は次の通りである。るつぼは内径、深さ
共に50−1厚さ1.5s+sの白金線で、穐子結蟲回
転数は毎分30回、引上げ速さは毎時2IIIl11溶
融原料液画上の温度勾配は1cm当シ1200とした。
The conditions for the growth experiment were as follows. The crucible is made of platinum wire with an inner diameter and depth of 50-1 and a thickness of 1.5 s + s. The rotation speed of the crucible is 30 times per minute, and the pulling speed is 2 III l 11 per hour. The temperature gradient on the molten raw material liquid is 1 cm per hour. It was set to 1200.

二酸化テルル(融点的740℃)は−固潜熱が比較的大
きいので、この熱を効率よく放散させるため、タンタル
戚リジウムやニオブ鍍リジウムの11当り50℃より大
きくしている。しかし二酸化テルルの場合、一般の結晶
育成で行われるような一定[径を保持するような育成条
件では第1図のように結晶底lN11の形状は凹形とな
る。これは1(1!III当り120℃のal[勾配で
は凝固潜鵬の放散が不充分であることを示している。す
なわち、凝固潜熱が小さいか又は熱の放散が充分である
場合は、結晶化(凝1ji)は本来最も温度が低い原料
融液向の中心部すなわち結晶底面の中心部から外周へと
向って理想的に行なわれ、凝固時の歪は結晶中に残留し
ないが、熱放散が不充分である場合は結晶中に溜った熱
のため結晶の中心部が高温となり、結晶の凝固は結晶表
向からの熱の放散の比較的大きい外周部から始まり、中
心部がlk後となるため歪が残留して、これが脈理発生
の原因となると考えられる。
Tellurium dioxide (melting point: 740°C) has a relatively large latent heat of solidity, so in order to efficiently dissipate this heat, the temperature is set higher than 50°C per 11 of tantalum-related rhidium and niobium-plated rhidium. However, in the case of tellurium dioxide, under growth conditions that maintain a constant diameter as in general crystal growth, the shape of the crystal bottom lN11 becomes concave as shown in FIG. This indicates that the dissipation of the solidification latent heat is insufficient at an al gradient of 120 °C per 1 (1! The solidification (solidification 1ji) is ideally carried out from the center of the raw material melt, where the temperature is originally the lowest, that is, the center of the bottom surface of the crystal, toward the outer periphery, and the strain during solidification does not remain in the crystal, but heat dissipation If the temperature is insufficient, the center of the crystal will become high temperature due to the heat accumulated in the crystal, and the solidification of the crystal will start from the outer periphery where heat dissipates from the crystal surface, and the center will become hot after lk. Therefore, strain remains, which is considered to be the cause of striae generation.

脈理は結晶を”:110軸方向に育成し九場合、も□・
、。
The striae grow crystals in the direction of the 110 axis, and also □・
,.

う一つの110軸に垂直な板状に人や、これtW成軸に
垂直な#?面から見ると第2図のように何本かの線とし
て認められる。このような脈理を発生させないためには
熱の放散をよくして結晶I&向が平坦又は凸状になるよ
うな条件を見出せばよいことになる。その実現のために
は種子回転を少なくするかあるいは炉内温度勾配を大き
くするなどの方法が考えられる。しかし二酸化テルルの
場合、前記の回転数より小さくすると結晶中に気泡の入
ること、さらに温度勾配も11当)150℃以上にする
と歪が多くなって結晶の切断などの加工時にひび割れを
起こすことが判明した。この丸めこれら以外の方法をと
らねばならない。
Another plate-shaped person perpendicular to the 110 axis, and this #? perpendicular to the tW axis. When viewed from above, it can be seen as several lines as shown in Figure 2. In order to prevent such striae from occurring, it is necessary to find conditions that improve heat dissipation and make the crystal I& direction flat or convex. To achieve this, methods such as reducing the rotation of seeds or increasing the temperature gradient in the furnace can be considered. However, in the case of tellurium dioxide, if the rotation speed is lower than the above-mentioned number, air bubbles may enter the crystal, and if the temperature gradient is 110°C or higher, the distortion will increase and cracks may occur during processing such as cutting the crystal. found. This rounding must be done using a method other than these.

ここで発明者が行なった方法は率科鯖液そのものの温度
を下げていく方法である。この方法によれば凝固潜熱は
温度が次@に低くなる溶融原料の方へも拡散するため、
熱放散は充分に行われ、結晶内部に残留しないので原料
の結晶化は外周部から起こることなく、中心部からある
いは均等に起こることが推定される。次に4実施例にお
いて育成条件ならびKJrl鎗液の降温率に対する結晶
底面の形状、さらに底面形状と脈理発生との一連につい
て述べる。育成条件は前記の通りとし、育成方向は11
0軸、種子結晶を次第に太らせて得られるいわゆる所定
i[径を20+m程度とし、この所定直径を確保し先後
の原料5hiiの降温率を毎時0.4℃、0.5℃、0
.6℃の三種類とした。そして各種IIについて2本づ
つ単結晶を育成した。この結果から定性的にではあるが
降温率の大きい場合は結晶の太り方(直径増加率)も大
きいようであつ九。直径増加率の比較的大きいものは第
3図のように底面が(a)平坦か又は(bl凸形となっ
た〇 直径増加率を所定直径2をDA、底向厘径3をDI 。
The method used by the inventor here is to lower the temperature of the mackerel liquid itself. According to this method, the latent heat of solidification also diffuses toward the molten raw material whose temperature is the next lowest, so
Since heat dissipates sufficiently and does not remain inside the crystal, it is presumed that crystallization of the raw material does not occur from the outer periphery but occurs from the center or evenly. Next, in Example 4, the growth conditions, the shape of the crystal bottom surface with respect to the cooling rate of the KJrl liquid, and the relationship between the bottom surface shape and the occurrence of striae will be described. The growth conditions were as described above, and the growth direction was 11.
0 axis, the so-called predetermined diameter obtained by gradually increasing the diameter of the seed crystal is set to about 20 + m, and while securing this predetermined diameter, the temperature decrease rate of the subsequent raw material 5hii is set to 0.4°C, 0.5°C, 0.
.. There were three types at 6°C. Then, two single crystals were grown for each type of II. Although this result is qualitative, it appears that the thickening of the crystal (diameter increase rate) is also large when the cooling rate is large. For those with a relatively large diameter increase rate, as shown in Figure 3, the bottom surface is (a) flat or (bl) convex.The diameter increase rate is determined by DA for the predetermined diameter 2 and DI for the bottom diameter 3.

両IL径関の長さをtとして(Da−DA)/Aで定義
すると、直径増加率と底面形状の関係は第4図のようで
ある。両者の関係は絶対的に厳密なものではなく目安4
i度と考えた方がよいと思われる。何故なら、条件を全
く−じにした場合であっても育成結晶にはあるI!度の
差異が見られるものだからである。従って増加率はなる
べく大きくとった方が有利と思われる。
When the length of both IL diameters is defined as (Da-DA)/A as t, the relationship between the diameter increase rate and the bottom shape is as shown in FIG. The relationship between the two is not absolutely strict, but is a guideline 4.
It seems better to think of it as i degree. This is because even when the conditions are exactly the same, the grown crystal has a certain I! This is because differences in degree can be seen. Therefore, it seems advantageous to increase the rate of increase as much as possible.

これら底面形状が平坦および凸形となった結晶には予想
通り脈理は認められなかった。これは先に推定したよう
に結晶直径の増加率が大きいことは原料−液の温[降下
が大きいことを意味し、それが凝固潜熱の放散に寄与し
て結晶化が理想的に行われ、その結果脈理の発生が抑i
[lll  4されることになるからであろう。尚、脈
理の有無の判定は育成結晶を引」二げ軸に迭直に犀さ1
014111程度に切断し先後、二つの切断面が平行に
なるように鏡面研磨し、これを肉iit*察と偏光顕微
鏡観察することによって行なった。原料の融液の降温の
方法は単調に一足の率で行なって結晶外形が同値形ない
しは円錐台形を表す方法の他に、W期は比較的大きい降
温率とし、中期・後期になるに従って降温率を次第に小
さくしていって細長い釣鐘状の形にする方法によっても
良い結果が得られた。後の方法は前の方法に比軟して直
径の増加率は少ないので尚価な原料の節約となり、切り
出される素子の大きさも比較的揃っているので加工が容
易であるなど有利な点が多い。
As expected, no striae were observed in these crystals with flat and convex bottom shapes. As estimated earlier, a large increase rate in crystal diameter means a large temperature drop between the raw material and the liquid, which contributes to the dissipation of latent heat of solidification and ideal crystallization. As a result, the occurrence of striae is suppressed.
[llll 4 This is probably because it will be done. In addition, to determine the presence or absence of striae, directly attach the grown crystal to the second axis.
After cutting to approximately 014111, mirror polishing was performed so that the two cut surfaces were parallel to each other, and this was observed by incision inspection and polarized light microscopy. In addition to the method of lowering the temperature of the raw material melt at a monotonous rate so that the crystal outer shape is equivalent or truncated, the cooling rate is set at a relatively high rate in the W period, and the cooling rate increases as the middle and late stages progress. Good results were also obtained by gradually reducing the size of the ring to create an elongated bell-like shape. The latter method has many advantages over the previous method, such as the rate of increase in diameter is small, which saves valuable raw materials, and the cut elements are relatively uniform in size, making processing easier. .

以上詳述したようにこの発明を用いて二酸化テルルの単
結晶育成を行なえば脈理のない・1b質の良い単結晶を
得ることが出来る。
As detailed above, if the present invention is used to grow a single crystal of tellurium dioxide, a striae-free single crystal of good 1b quality can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は二酸化テルル単結晶育成時に所定の直径から一
定に保持し九場合の底1i1i形状を示す図、第2図は
110軸方向に育成した?#i晶をこの晶を育成した場
合の結晶外形の一例と底南形状を示す図、第4図は直径
増加率と結晶底面の形状の関連を示す図である。 以上の図において、lは単結晶の凹曲状になっている底
11i@% 2は実施例の方法により作製した墜結晶に
おける8鐘台形の上部の置県3は同様の単結晶の育成終
了時の直径を示す。 第3図 525− 第4図 o    o、to  θ、20 直イをす曽カロ牟
Figure 1 shows the bottom 1i1i shape when a tellurium dioxide single crystal is grown in the 110-axis direction when the diameter is kept constant from a predetermined diameter while growing in the 110 axis direction. FIG. 4 is a diagram showing an example of the crystal outer shape and the bottom south shape when #i crystal is grown, and FIG. 4 is a diagram showing the relationship between the diameter increase rate and the bottom shape of the crystal. In the above figures, l is the bottom 11i@% of the single crystal with a concave curve. 2 is the fallen crystal produced by the method of the example, and 3 is the upper part of the 8-bell trapezoid. A similar single crystal has been grown. Indicates the diameter of the hour. Fig. 3 525 - Fig. 4

Claims (1)

【特許請求の範囲】[Claims] 二酸化テルル単結晶を引き上げ法によって育成するーに
、育成開始時あるいは種子結晶がある直径になったとき
から原料**をしだいに冷却させてゆき、種子結晶から
しだいに直径が増加するよう1形状で、しかもその底−
が平坦かあるいは凸mKなるような形状に育成すること
を特徴とする二酸化テルル単結晶の育成方法。
To grow tellurium dioxide single crystals by the pulling method, the raw material** is gradually cooled from the start of growth or when the seed crystal reaches a certain diameter, so that the diameter gradually increases starting from the seed crystal. And, what's more, the bottom-
A method for growing a tellurium dioxide single crystal, which is characterized by growing the tellurium dioxide single crystal into a shape that is flat or convex mK.
JP56202150A 1981-12-15 1981-12-15 Method for growing tellurium dioxide single crystal Expired JPS5933550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56202150A JPS5933550B2 (en) 1981-12-15 1981-12-15 Method for growing tellurium dioxide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56202150A JPS5933550B2 (en) 1981-12-15 1981-12-15 Method for growing tellurium dioxide single crystal

Publications (2)

Publication Number Publication Date
JPS58104099A true JPS58104099A (en) 1983-06-21
JPS5933550B2 JPS5933550B2 (en) 1984-08-16

Family

ID=16452787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56202150A Expired JPS5933550B2 (en) 1981-12-15 1981-12-15 Method for growing tellurium dioxide single crystal

Country Status (1)

Country Link
JP (1) JPS5933550B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2507319C1 (en) * 2012-11-22 2014-02-20 Федеральное государственное бюджетное учреждение науки Институт геологии и минералогии им. В.С. Соболева Сибирского отделения Российской академии наук (Институт геологии и минералогии СО РАН, ИГМ СО РАН) Growth method of paratellurite crystals of polygonal shape, and device for its implementation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU3542284A (en) * 1984-03-30 1985-10-03 Wang Laboratories, Inc. Enhanced videotex decoder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2507319C1 (en) * 2012-11-22 2014-02-20 Федеральное государственное бюджетное учреждение науки Институт геологии и минералогии им. В.С. Соболева Сибирского отделения Российской академии наук (Институт геологии и минералогии СО РАН, ИГМ СО РАН) Growth method of paratellurite crystals of polygonal shape, and device for its implementation

Also Published As

Publication number Publication date
JPS5933550B2 (en) 1984-08-16

Similar Documents

Publication Publication Date Title
JPWO2007063637A1 (en) Method for producing semiconductor bulk polycrystal
JP3988217B2 (en) Large-diameter fluorite manufacturing apparatus and manufacturing method
JPS58104099A (en) Growth process for tellurium dioxide single crystal
JPH10265296A (en) Production of fluorite single crystal
JP4854814B1 (en) Method for coating quartz crucible for silicon crystal growth and quartz crucible for silicon crystal growth
JP2574618B2 (en) Crystal growth method and crucible for crystal growth
EP1085112A2 (en) Method of fabricating a single crystal
JPH10203899A (en) Fluorite little in alkaline earth metal impurities and its production
JPH10251096A (en) Method for annealing fluorite single crystal
JP2861640B2 (en) Beta barium borate single crystal growth method
JPS6360194A (en) Method for pulling up single crystal
JP2739556B2 (en) Method for manufacturing piezoelectric crystal
JP2738184B2 (en) Method for producing seed crystal for pulling and growing
JPS59182298A (en) Production of single crystal of compound semiconductor
JPS5921594A (en) Crucible
JPH03116924A (en) Manufacture of single crystal semiconductor thin film
JP2959097B2 (en) Single crystal growth method
JP2002020196A (en) Quartz crucible and method of improving the same
JPH07149598A (en) Method for growing single crystal
JP2002160999A (en) Method for growing crystal, method for forming fluoride crystal, method for forming optical member, and seed crystal for growing crystal
JPH09208380A (en) Production of oxide single crystal
JPH10101486A (en) Optical material for ultraviolet laser beam
JPH0859396A (en) Reforming of beta-barium borate single crystal worked surface
JPH11106284A (en) Production of single crystal
JPS60195098A (en) Production of lithium niobate single crystal