JPS58102608A - Rotary fluid hydraulic cylinder for chucking in machine tool - Google Patents

Rotary fluid hydraulic cylinder for chucking in machine tool

Info

Publication number
JPS58102608A
JPS58102608A JP20425781A JP20425781A JPS58102608A JP S58102608 A JPS58102608 A JP S58102608A JP 20425781 A JP20425781 A JP 20425781A JP 20425781 A JP20425781 A JP 20425781A JP S58102608 A JPS58102608 A JP S58102608A
Authority
JP
Japan
Prior art keywords
rotary
oil
piston
sleeve
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20425781A
Other languages
Japanese (ja)
Other versions
JPH0331959B2 (en
Inventor
Kojiro Oota
康二郎 太田
Akira Nobukawa
信川 明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitagawa Iron Works Co Ltd
Original Assignee
Kitagawa Iron Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitagawa Iron Works Co Ltd filed Critical Kitagawa Iron Works Co Ltd
Priority to JP20425781A priority Critical patent/JPS58102608A/en
Publication of JPS58102608A publication Critical patent/JPS58102608A/en
Publication of JPH0331959B2 publication Critical patent/JPH0331959B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B31/00Chucks; Expansion mandrels; Adaptations thereof for remote control
    • B23B31/02Chucks
    • B23B31/24Chucks characterised by features relating primarily to remote control of the gripping means
    • B23B31/30Chucks characterised by features relating primarily to remote control of the gripping means using fluid-pressure means in the chuck

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gripping On Spindles (AREA)

Abstract

PURPOSE:To improve the performance of a rotary oil hydraulic cylinder by cooling the surface of the rotary cylinder with the introduced external air and by providing multiple oil paths radially. CONSTITUTION:When a work is gripped by a chuck section and a cylinder 1 is rotated, a rotary valve 5 is rotated rogether with a fan 29, the external air flows in an arrow direction V1 from the chuck side on the surface of the cylinder 1 by means of the generated negative pressure, and also the external air flows in an arrow direction V2 from the opposite side through a rotary bearing body to offer a cooling function. Since multiple radial oil paths are provided in the rotary bearing body, more effective cooling function is available.

Description

【発明の詳細な説明】 従来装置の回転油圧シリンダーは、回転シリンダーを5
000R◆PGM以上の高速回転させると、回転軸受部
の発熱などにより装置の全体温度が上昇して、回転油圧
シリンダーの性能に問題が生ずる。
DETAILED DESCRIPTION OF THE INVENTION The rotary hydraulic cylinder of the conventional device has five rotary cylinders.
If the rotary hydraulic cylinder is rotated at a high speed of 000R◆PGM or higher, the overall temperature of the device will rise due to heat generation in the rotary bearing, causing a problem in the performance of the rotary hydraulic cylinder.

か\る温度上昇を防止するだめの従来技術は■油槽容量
を増大させて作動油の全体循環量を増して自然冷却され
るようにする。■発熱部及びその他の放熱性を良くする
ため、適宜部品へフィンを取付けて放熱冷却させるよう
にする。■作動油回路途中にクーラーを配置させるよう
にする。などであるが装置が大型化した゛り複雑化した
りして高価になるとか、また油洩れが増大するなどの問
題がある。
The conventional technology to prevent such a temperature rise is to increase the oil tank capacity and increase the overall circulation amount of hydraulic oil so that it is naturally cooled. ■In order to improve the heat dissipation of heat generating parts and other parts, attach fins to the parts as appropriate to dissipate and cool the parts. ■A cooler should be placed in the middle of the hydraulic oil circuit. However, there are problems such as the equipment becoming larger and more complicated, making it more expensive, and increasing oil leakage.

本出願人は上述の問題点を除去するべく先に特願昭54
−52299号を提出した。本願発明は更にこれを改良
発明したものであって、より一段と冷却効果が高められ
るようにすると共に油洩れを可及的に小なるようKL、
且つ全体的に装置のより小型化、軽量化が図られるよう
になしたものである。
In order to eliminate the above-mentioned problems, the present applicant first applied for a patent application in 1973.
-52299 was submitted. The present invention further improves this, and in order to further enhance the cooling effect and minimize oil leakage, KL,
Moreover, the overall size and weight of the device can be reduced.

以下、本発明装置実施の一例を添附図面にもとづいて説
明する。
An example of the implementation of the device of the present invention will be described below with reference to the accompanying drawings.

第1図に於て1はシリンダー、2はピストンロッド、3
はピストンロッド2上に固定されたピストンであって、
シリンダー1の空洞内を摺動自在に嵌入されてなる。5
は前記ピストンロッド2に嵌挿される回転バルブであっ
て、インロ一部には油の流通をロックするロック機構6
.6′が組込まれて、前記シリンダー1に対しボルト7
を使用して接合されてなる。8.9.10は気密性を保
つためのOリングである。
In Figure 1, 1 is the cylinder, 2 is the piston rod, and 3
is a piston fixed on the piston rod 2,
It is slidably fitted into the cavity of the cylinder 1. 5
is a rotary valve that is fitted into the piston rod 2, and a locking mechanism 6 that locks the flow of oil is provided in a part of the inlet.
.. 6' is assembled, and the bolt 7 is attached to the cylinder 1.
It is joined using. 8.9.10 is an O-ring to maintain airtightness.

ングである。It is ng.

11はピストン3に固定されたガイドピンで該ガイドピ
ンの両端p、p’のいづれか片端は常にシリンダー1又
は回転バルブ5(図示例ではシリンター側)に設けたガ
イドピン用穴12に案内されることにより、ピストンロ
ッド2の自由な回動が制限されるようになっている。
Reference numeral 11 denotes a guide pin fixed to the piston 3, and either end p or p' of the guide pin is always guided into a guide pin hole 12 provided in the cylinder 1 or the rotary valve 5 (in the illustrated example, on the cylinder side). As a result, free rotation of the piston rod 2 is restricted.

図示例でピストンロッド2の右端はドローチューブに連
結され、チャック本体のジョー(何れも図示せず)を移
動させるようになすのである。
In the illustrated example, the right end of the piston rod 2 is connected to a draw tube to move the jaws (none of which are shown) of the chuck body.

一方、回転バルブ5は外形が二段の錦秋段部に1、K2
に構成されてなり、下段にはスリーブボディ13が設け
られる。こ\にスリーブボディ13内部にはスリーブ1
4が次のようにして設けられる。即ち、スリーブ14の
両端に嵌込んだベアリング15.15’の一方(図示例
では15)は直接にスリーブ14の内側壁へ当接され、
他方のベアリング(図示例では151)はボルト16に
てスリーブボディ13に接合させたスリーブカバー1〒
の内側壁へ当接されるようになされる。また該下段部の
端縁部にはストッパー18をボルト19を使用して止着
させてなり、前記スリーブカバーと対向する両者間には
ラビリンスシール構造の凹凸形状に構成される。しかし
て外部から浸入する油は排油溝20から外部へ排出し、
くれに対し内部から漏洩して来る油は排油溝21を経て
スIJ +ダボディ13内のドレン溜め22内に回収さ
せるようになすのである。このさい、その排出及び回収
の分離及び区別を容易且つ確実となすために、スリーブ
カバー17には空気栓23が設けである。
On the other hand, the rotary valve 5 has a two-stage brocade section with 1 and K2.
A sleeve body 13 is provided at the lower stage. There is a sleeve 1 inside the sleeve body 13.
4 is provided as follows. That is, one of the bearings 15 and 15' (15 in the illustrated example) fitted into both ends of the sleeve 14 is brought into direct contact with the inner wall of the sleeve 14,
The other bearing (151 in the illustrated example) is attached to the sleeve cover 1 which is connected to the sleeve body 13 with bolts 16.
It is made to abut against the inner wall of the. A stopper 18 is fixed to the edge of the lower part using bolts 19, and a concave-convex shape having a labyrinth seal structure is formed between the two facing the sleeve cover. Therefore, oil entering from the outside is discharged to the outside from the oil drain groove 20,
Oil leaking from inside the tank is collected through an oil drain groove 21 into a drain reservoir 22 in the IJ+da body 13. At this time, the sleeve cover 17 is provided with an air plug 23 in order to easily and reliably separate and distinguish the discharge and recovery.

次にシリンダー1内でピストン3の作動を説明すれば、
以下のようにして行われる。図示しない外部供給装置(
油槽)からの作動油はスリーブボディ13の注油管口2
4から油路25を通り、ロック機構6を経て油路26、
油室27へと導かれ、ピストン3を図面で左側方向へ抑
圧移動させる。該ピストン3の移動に伴って押出される
油室27′の排油はロック機構6゛を経て油路25°を
通り、排油管口241から外部供給装置へ回収されるの
である。
Next, if we explain the operation of the piston 3 in the cylinder 1,
This is done as follows. External supply device (not shown)
The hydraulic oil from the oil tank is supplied to the oil supply pipe port 2 of the sleeve body 13.
4, passes through the oil passage 25, passes through the lock mechanism 6, and then the oil passage 26,
The oil is guided to the oil chamber 27, and the piston 3 is moved to the left in the drawing. The drained oil in the oil chamber 27' that is pushed out as the piston 3 moves passes through the lock mechanism 6', the oil passage 25°, and is collected from the drain oil pipe port 241 to an external supply device.

以上によるピストンの往工程が終了し、復工程に移ると
きは前述の排油管口24′は注油管口に、また注油管口
24は排油管口となるように切換弁(図示せず)が切換
えられることによって変更されるのであり、同様の逆経
路回路にて復工程が行われる。このさい作動油の微量は
回転パルプ5とスリーブ14の間隙T1r1+1を通っ
て両側ベアリング15.15“へ供給され、該ベアリン
グ15.If)°を潤滑せしめた後にドレン溜めに流入
し、該ドレン溜め22を経て外部供給装置(油f1)へ
回収される。
When the forward stroke of the piston is completed and the piston moves to the backward stroke, a switching valve (not shown) is installed so that the aforementioned oil drain pipe port 24' becomes the oil filling pipe port and the oil filling pipe port 24 becomes the oil drain pipe port. The change is made by switching, and the reverse process is performed using a similar reverse path circuit. At this time, a small amount of hydraulic oil is supplied to both side bearings 15.15" through the gap T1r1+1 between the rotary pulp 5 and the sleeve 14, and after lubricating the bearings 15.If)°, it flows into the drain reservoir. 22 and is recovered to an external supply device (oil f1).

以上に説明した作動油回路によって、図示しないワーク
をジョーにて把握し、ワークの機械加工が行われる。こ
の機械加工を継続するとき回転パルプ5の高速回転に伴
って発生する熱エネルギーは、前記油路25.25“、
26.26’及び油室27.27’内の作動油を加熱し
該油温を上昇させる。熱エネルギー発生源の主なものを
挙げれば■作動油の回転部に於ける剪断熱、のベアリン
グの摩擦熱と核部に於ける作動油の攪拌熱、■作動油の
圧油洩れに伴う変換熱などである。
Using the hydraulic oil circuit described above, a workpiece (not shown) is gripped by the jaws and the workpiece is machined. When continuing this machining, the thermal energy generated due to the high speed rotation of the rotary pulp 5 is
The hydraulic oil in the oil chambers 26, 26' and 27, 27' is heated to raise the oil temperature. The main sources of thermal energy are ■ Shear heat in the rotating parts of the hydraulic oil, frictional heat of the bearings and agitation heat of the hydraulic oil in the core, and ■ Conversion due to pressure oil leakage of the hydraulic oil. Such as fever.

しかして、この発生熱による油温の上昇は作動油の粘度
を低下させ、或はピストンロッドを微振動させる。さら
に油洩れが大きくなって油圧エネルギーをロスさせるよ
うになすのであり、しかもこのロスはチャッキング装置
に於けるジョーの把′握力を弱めて工作精度を低下させ
るなどのトラブルの原因をなす。
An increase in oil temperature due to this generated heat reduces the viscosity of the hydraulic oil or causes the piston rod to vibrate slightly. Furthermore, the oil leakage increases and hydraulic energy is lost, and this loss weakens the gripping force of the jaws of the chucking device, causing problems such as deterioration of machining accuracy.

特願昭54−52299号ではこの発生熱による装置全
体及び油温の上昇を防ぐために次の如くなして、装置全
体及び油温の昇温防止が図られるようになしてあり、即
ち29はファンであって、該ファン29の取付けられる
回転パルプ5の位置は錦秋の段部Klの凹みであって、
該錦秋の段部に1の凹みに沿って空気を流入させるべく
ファン29の前面には折り曲げられた鍔縁Qを有する筒
状カバー30が取付けられる。
In Japanese Patent Application No. 54-52299, in order to prevent the temperature of the entire device and the oil from rising due to the generated heat, the following measures are taken to prevent the temperature of the entire device and the oil from rising. The position of the rotary pulp 5 to which the fan 29 is attached is the recess of the step Kl of the brocade,
A cylindrical cover 30 having a bent flange Q is attached to the front surface of the fan 29 to allow air to flow into the stepped portion of the brocade along the recess 1.

これにより外気を前方のシリンダー1表面から回転パル
プ5の鐘状段部Klを経てスリーブボディ13の後方に
向って流すようになすのであり、また外周面の表面積が
広くなるため、放熱面積が増大して効果的な冷却作用が
行われるようKなすのである。31及び32はファン及
び筒状カバーの取付は用ボルトである。
This allows the outside air to flow from the front surface of the cylinder 1 through the bell-shaped stepped portion Kl of the rotary pulp 5 toward the rear of the sleeve body 13, and since the surface area of the outer circumferential surface becomes wider, the heat dissipation area increases. This is done so that an effective cooling effect can be achieved. Numerals 31 and 32 are bolts for mounting the fan and the cylindrical cover.

上述の実施にさいし筒状カバー30の内部を中空構造と
なし、該中空内部へ吸熱剤を封入したシ、循環させたり
するときは、一層効果的な冷却作用が働くようになる。
In carrying out the above-mentioned implementation, the inside of the cylindrical cover 30 is formed into a hollow structure, and when the heat-absorbing agent is sealed in the hollow inside and circulated, a more effective cooling effect is achieved.

なお、ファン29を可変ピッチ構造にするとか、ファン
船を回転パルプの鍵段El上で或は筒状カバー30をフ
ィン上に固定するとき、穿設したスリット33.34内
で適宜摺動しながら固定することにより、空気取入口と
しての隙間35が適宜変えられるようになすのである。
In addition, when the fan 29 is made to have a variable pitch structure, or when the fan ship is fixed on the rotary pulp key stage El or the cylindrical cover 30 is fixed on the fins, the fan 29 can be slid as appropriate within the bored slits 33 and 34. However, by fixing the air gap 35, the gap 35 serving as an air intake port can be changed as appropriate.

一本願発明は上記構成に於てピストンロッド2や回転パ
ルプ5及びスリーブ14或はスリーブボディ13などか
らなる回転軸受体に対しチャックの反対面側から流入し
、且つファン29位置或はカバー30位置に吐出する外
気の冷却用通風路3qを穿設し、ファン29の回動と共
にチャックの反対面側から外気が回転軸受体内に強制的
に通過するようKなさしめて、これにより内部発熱が常
時外方に持ち去られるようになすのである。
One aspect of the present invention is that, in the above-mentioned configuration, the air flows into the rotary bearing body consisting of the piston rod 2, the rotary pulp 5, the sleeve 14, or the sleeve body 13 from the side opposite to the chuck, and is located at the fan 29 position or the cover 30 position. A ventilation passage 3q for cooling the outside air discharged into the shaft is bored, and as the fan 29 rotates, the outside air is forced to pass from the opposite side of the chuck into the rotating bearing body. It will be carried away by someone else.

この実施の態様について説明すると第2図はピストンロ
ッド2と回転パルプ5の接触面箇所Hに於ける冷却を主
体にして考えた本のであって、ピストンロッド2の外周
面に於ける長さ方向に対し冷却用通風路を一定長のスリ
ット37aとして穿設してあり、外気はストッパー18
に穿設した導入孔3日及び回転パルプ5に穿設した導入
孔39を経てスリット3マaの始端Eへ流入し、スリン
) 37aの末端E1から再び回転パルプ5に穿設した
排気孔40を経てファン29位置に抜けるようになすの
であり。
To explain this mode of implementation, Fig. 2 is a book that mainly considers cooling at the contact surface H between the piston rod 2 and the rotary pulp 5, and shows the cooling in the longitudinal direction on the outer circumferential surface of the piston rod 2. A cooling ventilation passage is provided as a slit 37a of a certain length, and the outside air is passed through the stopper 18.
It flows into the starting end E of the slit 3ma through the introduction hole 39 drilled in the rotary pulp 5 and the introduction hole 39 drilled in the rotary pulp 5, and flows into the exhaust hole 40 drilled in the rotary pulp 5 again from the end E1 of the slit 37a. This allows the fan to pass through to the fan 29 position.

このさい排気孔40°を一点鎖線位置の如く穿設してカ
バー30の前面位置に抜けるようになしても良い亀ので
ある。なお、該スリン) 3’iaの数は冷風効果を高
めるべく円周方向に対し任意数設けることができ、また
その形状はスリットに限らず弧状輪や環状輪の形状とな
されるものでも良い。
At this time, the exhaust hole 40° may be drilled as shown by the dashed line to allow the exhaust hole to pass through to the front side of the cover 30. Note that the number of the sulins) 3'ia can be provided in any number in the circumferential direction in order to enhance the cold air effect, and the shape thereof is not limited to a slit, but may be an arcuate ring or an annular ring.

第3図は冷却用通風路 37#を回転パルプ5内に穿設
した例であって、上部側即ち回転パルプ5とスリーブ1
4との接触面箇所LK於ける冷却も図られるようになし
たものである。
FIG. 3 shows an example in which a cooling ventilation passage 37# is bored inside the rotary pulp 5.
Cooling is also achieved at the contact surface LK with 4.

本例では排気孔401を回転パルプ5の鍵段に1の側壁
とスリーブボディ13の側壁との間に形成される隙間4
1に対して穿設したものについて示しているが、前例同
様ファン29位置又はカバー30位置に向って穿設され
るものであっても良い。また、通風路の数も任意とする
ことができる。
In this example, the exhaust hole 401 is located at the key stage of the rotary pulp 5 and the gap 4 formed between the side wall of the rotary pulp 5 and the side wall of the sleeve body 13.
1 is shown, but it may be drilled toward the fan 29 position or the cover 30 position as in the previous example. Moreover, the number of ventilation passages can also be made arbitrary.

第4図は冷却用通風路37rをスリーブボディ13内に
対して穿設した例であり、導入孔39“はスリーブカバ
ー17に穿設しである。
FIG. 4 shows an example in which a cooling ventilation passage 37r is bored in the sleeve body 13, and an introduction hole 39'' is bored in the sleeve cover 17.

上記各側に於いて冷却用通風路は個別に設けた本のにつ
いて説明したが、適宜組合せて使用するようにすると良
く、これらを含め本発明実施の範囲内とする。斯くして
、実施される本装置では作業中外気が夫々れ矢示方向に
導かれて内部発熱を外部に持ち去って効果的な冷却が図
られるようKするのである。なお、本発明では上記冷却
効果の他にファン29の回動による風圧で回転パルプ5
の鍵段部とスリーブボディ13との接触部(第1図示例
に於けるF)の油洩れを効果的に防止できるのであり、
特に第2図及び第3図例ではラビリンスシール構造の端
部凹溝fに対し、該凹溝に通ずる透孔42を穿設してお
くとより効果的であることが本発明者等の実験で傷めら
れた。
Although the cooling ventilation passages have been described as being provided individually on each side, they may be used in appropriate combinations, and these are included within the scope of the present invention. In this manner, in the present apparatus implemented, during work, the outside air is guided in the directions indicated by the arrows, and the internal heat is carried away to the outside for effective cooling. In addition, in the present invention, in addition to the above-mentioned cooling effect, the rotating pulp 5 is
It is possible to effectively prevent oil leakage at the contact portion (F in the first illustrated example) between the key stage portion and the sleeve body 13,
In particular, in the examples shown in FIGS. 2 and 3, experiments conducted by the present inventors have shown that it is more effective to drill a through hole 42 communicating with the end groove f of the labyrinth seal structure. I was hurt by this.

また霧吹き現象(ファンのフリジジ作用)の発生がない
ことも確められた。
It was also confirmed that no misting phenomenon (fringing effect of the fan) occurred.

一方、本発明装置に於ては油路ブロックの構成を次の如
くなすことにより従来のものに比べて作動油による冷却
効果の増大とその漏洩の極減化が図られるのである。
On the other hand, in the apparatus of the present invention, by configuring the oil passage block as follows, the cooling effect of the hydraulic oil can be increased and the leakage thereof can be minimized compared to the conventional apparatus.

即ち、第1図はスリーブ14の一部破断斜視図、第6図
は該スリーブ内の注油用油路と排油用油路の配列状態を
示す展開平面図である。
That is, FIG. 1 is a partially cutaway perspective view of the sleeve 14, and FIG. 6 is a developed plan view showing the arrangement of the oil supply passage and the oil drainage passage within the sleeve.

本図面に見られる通り本発明ではスリーブ本体の外周面
に穿設される凹条輪45.451に対し、注油用油路4
6と排油用油路46“の多数を46a    46b 
  46c 、、、、、    46’a  、46°
b    46’c・・・・・の如く放射状方向に多数
穿設するのであり、且つこのさい隣り合う注油用油路4
6と排油用油路46’は千鳥状となる関係に配設される
のであり、またスリーブ内面に於ける各油路面は弓弦状
の切欠s、Iが穿設されてなる。
As seen in this drawing, in the present invention, the oil passage 4 for lubrication is
6 and many oil drainage oil passages 46" 46a 46b
46c , , , 46'a , 46°
A large number of holes are drilled in the radial direction as shown in b 46'c..., and in this case, adjacent lubrication oil passages 4
6 and the drain oil passage 46' are arranged in a staggered relationship, and each oil passage surface on the inner surface of the sleeve is formed with bow-shaped notches s and I.

本発明に於ける上記構成の特徴は注油管口24及び排油
管口24′からの作動油の出入路となる凹条輪45.4
5゛間の距離lを小となし、且つ冷却効果を高めるべく
多数の注油用油路46a。
The feature of the above structure in the present invention is the concave ring 45.4 which becomes the passage for the hydraulic oil to enter and exit from the oil supply pipe port 24 and the oil drain pipe port 24'.
A large number of lubrication oil passages 46a are provided in order to reduce the distance l between the 5° and increase the cooling effect.

46b  46t −* −e −、排油用油路a6!
g 、 46’b。
46b 46t -* -e -, drain oil passage a6!
g, 46'b.

46′l・・・・・を設けしめても、これらが隣り合う
関係で千鳥状に設けであるため、各油路間の距離りを比
較的に大とならしめて作動油の漏洩が減少するのであり
、また弓弦状の切欠t、t’は作動油が流れるさい衝激
を和らげて油が泡状となる劣化現象を防止する上で優れ
た作用効果を発揮するのである。なお、凹条輪45.4
51間の距mlを小となるよう忙することは装置全体の
小型化、コンパクト化が図れる上で優れる。
Even if 46'l... is provided, since they are arranged next to each other in a staggered manner, the distance between each oil passage is made relatively large and leakage of hydraulic oil is reduced. Moreover, the bowstring-shaped notches t and t' have an excellent function and effect in alleviating the impact when the hydraulic oil flows and preventing the deterioration phenomenon in which the oil becomes foamy. In addition, concave ring 45.4
Minimizing the distance ml between the 51 is advantageous in terms of making the entire device smaller and more compact.

他方、上記注油用油路46及び排油用油路46゜と連通
する回転パルプ5側に穿設される油路溜め47.47’
は、第り図の第1図X−X断面図で示す如く三日月状に
形成されており、このさい各油路溜めは偏荷重を防止す
る上で番フa141及び47’g 、 47’bノ如く
複数筒1を称的に配設するようになすのである。図示例
では°2箇づつ設けたものを示したが3箇づつとなして
も良く、軸心内方に向う求心作用が働く上で優れる。
On the other hand, an oil passage reservoir 47.47' is bored on the rotary pulp 5 side and communicates with the oil supply passage 46 and the oil drainage passage 46°.
are formed in a crescent shape as shown in the sectional view taken along line XX in FIG. The plurality of cylinders 1 are arranged symmetrically as shown in FIG. In the illustrated example, two holes each are provided, but three holes each may be provided, which is superior in terms of centripetal action directed inward from the axis.

第略図はシリンダー1に対する作動油のロック機構6.
61を示すものであって匣体M%Mlには夫々れ弁体6
0.50’がスプリングb1.51°を介し常に弁座5
2.52’に向って押圧されるようになされており、前
者の弁座52と接触するとき前記注油管からの油路25
と、シリンダーの油室′27に向う油路26を閉塞させ
るようになすのであり、これに対し後者の弁体50“は
排油路25゛とシリンダーの油室2グ1との間を閉塞さ
せるようになすのである。53及び531は上記弁体b
O150°と弁座52.521を挾む反対位置に設けら
れるパイロットスプールであって、その突出子1% l
lは各弁体50.5αと接触可能となし且つその反対リ
ング面は夫々れ排油管側の油路25′及び注油管側の油
路25と連通させる構成である。矢符イ、口、・・、二
、ホはピストンロッド2を図示例で左方向(Q方向)に
移動せしめ、このさい図示しないチャック本体のジョー
が移動されて物品を把持するさいの作動油の流れる状態
を示すものであるが、今物品の把持が終了して注油管か
らの作動油の供給を停止、すると弁体50.5σはスプ
リング51.5.11の作用で閉塞されるのであり、こ
の状態のま\で長時間経過し油温か上昇すれば、核油の
膨張でシリンダー1が内圧により破裂することになるの
であるが、本装置ではパイロットスプール53°の摺動
抵抗Rを調整してスプリング51“による押圧力Wとの
均衡がR≧Wとなる関係で、スプリング51′による押
圧力のみでは弁座52“が閉塞されないようにし、前記
膨張による油の一部を排出可能となすのである。上記例
はビス十ンロツド2を左方向(Q方向)に移動させて物
品を把持するさいの例であるが、逆にピストンロッド2
を右方向に移動させて物品を把持するとき、同様の問題
点を解消するにはパイロットスプール53に対して同様
の摺動抵抗が附与されるようになすのである。
The diagram schematically shows a locking mechanism 6 for hydraulic oil to the cylinder 1.
61, each housing M%Ml has a valve body 6.
0.50' is always applied to valve seat 5 via spring b1.51°
2.52', and when it comes into contact with the former valve seat 52, the oil passage 25 from the oil supply pipe
In this case, the oil passage 26 toward the oil chamber '27 of the cylinder is closed off, and the latter valve body 50'' closes off the space between the oil drain passage 25' and the oil chamber '27 of the cylinder. 53 and 531 are the valve bodies b.
A pilot spool provided at the opposite position between O150° and the valve seat 52.521, and its protrusion 1% l
1 is configured to be able to come into contact with each valve body 50.5α, and the opposite ring surface thereof is configured to communicate with the oil passage 25' on the oil drain pipe side and the oil passage 25 on the oil filling pipe side, respectively. The arrows A, 口, 2, E move the piston rod 2 in the illustrated example to the left (Q direction), and at this time the jaws of the chuck body (not shown) are moved to grip the article. This shows the state in which oil flows, but when the gripping of the article is finished and the supply of hydraulic oil from the oil pipe is stopped, the valve body 50.5σ is closed by the action of the spring 51.5.11. If this state continues for a long time and the oil temperature rises, cylinder 1 will rupture due to internal pressure due to expansion of the core oil, but this device adjusts the sliding resistance R of the pilot spool 53°. In this relationship, the balance with the pressing force W by the spring 51'' is R≧W, so that the valve seat 52'' is not blocked only by the pressing force by the spring 51', and a part of the oil caused by the expansion can be discharged. It is eggplant. The above example is an example of gripping an article by moving the piston rod 2 to the left (Q direction), but conversely, the piston rod 2
To solve the same problem when gripping an article by moving the pilot spool 53 to the right, a similar sliding resistance is applied to the pilot spool 53.

とのさい、パイロットスプール53.53−に対し摺動
抵抗を附与する具体的手段としては各種の公知手段が採
用できるが、本図面では0リング55.551を取付け
せしめて、その目的が得られるようになしたものである
。その他デテント機構即ち第9図の部分図で示す如くパ
イロットスプール53.531が弁体50.5σと接触
して摺動する経路上で弁体50.50’が弁座52.5
2°を完全に閉塞させない位置附近の匣体内周面に切欠
W・°(片側例のみを示す)を施し、これに対しパイロ
ットスプール53゛のリング外周面に対しスプリング5
6’で弾撥されたボール57“を内蔵せしめ、該ボール
57′が上記切欠55’と係合させられることにより必
要な摺動抵抗が得られるrうになしても良い。
In this case, various known means can be adopted as specific means for imparting sliding resistance to the pilot spool 53.53-, but in this drawing, the purpose is achieved by attaching an O-ring 55. It was designed so that In other detent mechanisms, as shown in the partial view of FIG.
A notch W° (only one side example is shown) is made on the inner circumferential surface of the casing near the position where the 2° is not completely closed, and the spring 5 is attached to the outer circumference of the ring of the pilot spool 53°.
It is also possible to incorporate a ball 57'' which is resiliently repelled at 6', and to engage the ball 57' with the notch 55' to obtain the necessary sliding resistance.

本発明は以上の如く構成せしめるものであって、図示し
ないチャック部に被工作物が把持されてシリンダー1が
回転すると、これに付随した回転パルプbがファン29
と共に回転し、ファン29位置に生ずる負圧によって、
チャック側から回転シリンダー1の表面を外気V1が矢
符の如く流れる。他方、その反対側からは外気v2が矢
符の如く回転軸受体内を流れるのであり、この両方の作
用によって全体的に効果的な冷却作用が働く。従って、
高速運転時に生ずる発熱や該発熱に伴う作動油の劣化及
び把持力低下などのトラブルを生じせしめないようにす
るのであり、また回転軸受体内に於てピストンロッドを
中心に取巻く状態で多数の油路が放射状方向に設けであ
ることは更により効果的な冷却作用が図られるのであり
、しかも作動油の漏洩も少なく、且つ装置全体が小型化
及び軽量化できコンパクト化に優れるのである。
The present invention is constructed as described above, and when the workpiece is gripped by the chuck portion (not shown) and the cylinder 1 rotates, the rotary pulp b accompanying this is transferred to the fan 29.
Due to the negative pressure generated at the fan 29 position,
Outside air V1 flows on the surface of the rotating cylinder 1 from the chuck side as shown by the arrow. On the other hand, from the opposite side, outside air v2 flows into the rotary bearing body as shown by the arrow, and both of these effects produce an effective overall cooling effect. Therefore,
This prevents problems such as heat generation that occurs during high-speed operation, deterioration of the hydraulic oil, and reduction in gripping force due to this heat generation.In addition, there are many oil passages surrounding the piston rod in the rotating bearing body. The fact that they are arranged in the radial direction allows for a more effective cooling effect, less leakage of hydraulic oil, and the entire device can be made smaller and lighter, making it more compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本出願人が先に提案した特願昭54+ 522
99号に於ける回転流体圧シリンダ装置の構成を示す縦
断面図(但し注油管口と排油管口は90°上方に回動さ
せた位置に書いである)第2図、第3図及び第4図は冷
却用通風路の実施態様例の部分詳細図、第5図はスリー
ブの一部破断斜視図、第6図はスリーブ内の注油用油路
と排油用油路の配列状態を示す展開平面図、第7図は第
1図に於けるX−X線切断側面図、第8図は回転シリン
ダーに於ける作動油のロック機構を示す部分説明図、第
9図はデテント機構を示す部分説明図である。 1 ・・・シリンダー    2・・・ピストンロッド
301.ピストン    5061回転パルプ661、
、、  ロック機構  1’:L、、、ガイドピン13
・・・スリーブボディ  14・・・スリーブ17・・
・スリーブボディ  22・・・ ドレン溜24・・・
注油管    次“・・・排油管256′・・・油路 
  g 26’・・・油路4.27’、、、油室   
290.・ファン30、、、カバー    376 、
3’7b% 3’7t 、−Mmid路羽、39  ・
・導入孔    釦、40’、4ぴ・・・排気孔46・
・・注油用油路    461・・・排油用油路47a
、47b、47’a、47’b++ll@ 油路m園、
50’ 、 、、弁体   社、51’、、、スプリン
グb3.531・lパイロットスプール 55.5!31 、、、 Qリング 第 7 図 第 8図 第9図
Figure 1 shows the patent application No. 54+ 522, which was previously proposed by the present applicant.
A vertical cross-sectional view showing the configuration of the rotary fluid pressure cylinder device in No. 99 (however, the oil supply pipe port and oil drain pipe port are shown in the position rotated 90 degrees upward) Fig. 2, Fig. 3, and Fig. Fig. 4 is a partial detailed view of an embodiment of the cooling ventilation passage, Fig. 5 is a partially cutaway perspective view of the sleeve, and Fig. 6 shows the arrangement of the oil supply passage and the oil drainage passage within the sleeve. Developed plan view, Figure 7 is a side view cut along the line X-X in Figure 1, Figure 8 is a partial explanatory diagram showing the locking mechanism for hydraulic oil in the rotating cylinder, and Figure 9 shows the detent mechanism. It is a partial explanatory diagram. 1...Cylinder 2...Piston rod 301. Piston 5061 rotating pulp 661,
,, Lock mechanism 1': L, , Guide pin 13
...Sleeve body 14...Sleeve 17...
・Sleeve body 22... Drain reservoir 24...
Oil supply pipe Next "...Oil drain pipe 256'...Oil passage
g 26'...Oil passage 4.27', oil chamber
290.・Fan 30, Cover 376,
3'7b% 3'7t, -MmidRoha, 39 ・
・Introduction hole button, 40', 4 pin...exhaust hole 46・
...Oil passage for oil supply 461...Oil passage for oil drainage 47a
, 47b, 47'a, 47'b++ll@ Yujimen,
50', , Valve Company, 51', Spring b3.531・L Pilot spool 55.5!31 Q-ring Fig. 7 Fig. 8 Fig. 9

Claims (1)

【特許請求の範囲】 (1) 往復動可能なピストンを内蔵した回転体と、該
回転体内のピストンに作動油を供給する作動油供給路を
備えた回転軸受体とからなる回転油圧ンリンダーに於い
て、回転軸受体の外側には回転体側に向う端線に対して
内心方向に折曲げられた鍔縁を有する筒状カバーを、回
転体の一部外周面を被包するように取付けせしめると共
に、該被包されたカバー内の回転体側には回転体と共に
回動するファ/を取付け、また前記ピスト/と一体化さ
れた回転軸受体側のピストンロラド或は該ピストンロラ
ドを取巻く回転パルプ又はその外周のスリーブボディな
どに長さ方向に一定長さ沿ったのち前記ファン位置或は
カバー位置に到達する冷却用通風路を穿設り、該冷却用
通風路を介し回転体と反対する側から外気が回転!11
II受体内部を通過し、回転体の外周面を回転軸受体側
に向って流れる外気と合流するように構成されているこ
とを特徴とした工作機械に於けるチャッキング用回転流
体圧シリンダー。 (2)回転軸受体は中心部にピストンロラド、それを取
巻く状態に順次外方に向って回転ノくルプ、スリーブ及
びスリーブボディとから構成されることを特徴とする特
許請求の範囲第1項記載の工作機械に於けるチャッキン
グ用回転流体圧シリンダー (3)回転バルブの外周長さ方向の三箇所に断面三日月
状をなす複数箇の油路溜めが軸心対称方向に穿設されて
いることを特徴とする特許請求の範囲第2項記載の工作
機械に於けるチャッキング用回転流体圧シリy p−一
。 ←)スリーブの外周長さ方向の三箇所に於て放射状と表
して複数箇の油路を穿設することを特徴とする特許請求
の範囲第2項記載の工作m械に於けるチャッキング用回
転流体圧シリンダー。 (5)スリーブの外周長さ方向の二面所に於て放射状方
向に穿設する複数筒の油路が近接状態で且つ隣り合う同
志間で千鳥状に設けであることを特徴とする特許請求の
範囲第4項記載の工作機械に於けるチャッキング用回転
流体圧シリンダー。
[Scope of Claims] (1) A rotary hydraulic cylinder consisting of a rotary body containing a reciprocating piston and a rotary bearing body equipped with a hydraulic oil supply path for supplying hydraulic oil to the piston within the rotary body. A cylindrical cover having a flange bent inward from the end line facing the rotating body is attached to the outside of the rotating bearing body so as to cover a part of the outer peripheral surface of the rotating body. , a rotor that rotates with the rotor is installed on the side of the rotor in the enclosed cover, and a piston Lorado on the side of the rotary bearing body integrated with the piston, or a rotary pulp surrounding the piston Lorado, or a rotary pulp surrounding the piston, or a rotor on the outer periphery thereof. A cooling air passage is bored in the sleeve body or the like, and reaches the fan position or the cover position after a certain length in the length direction, and outside air rotates from the side opposite to the rotating body through the cooling air passage. ! 11
1. A rotary fluid pressure cylinder for chucking in a machine tool, characterized in that it is configured to pass through the inside of the receiver and join the outer peripheral surface of the rotating body with outside air flowing toward the rotating shaft bearing body. (2) The rotating bearing body is composed of a piston roller in the center, and surrounding it, in order outward, a rotating nozzle, a sleeve, and a sleeve body. A rotary fluid pressure cylinder for chucking in a machine tool (3) A plurality of oil passage reservoirs with a crescent-shaped cross section are bored in an axially symmetrical direction at three locations along the length of the rotary valve. A rotary fluid pressure series for chucking in a machine tool according to claim 2, characterized in that: ←) For chucking in a machine tool according to claim 2, characterized in that a plurality of oil passages are drilled radially at three locations along the length of the outer circumference of the sleeve. Rotating hydraulic cylinder. (5) A patent claim characterized in that a plurality of cylindrical oil passages are bored in the radial direction on two sides along the length of the outer circumference of the sleeve and are provided in a staggered manner between adjacent comrades. A rotary fluid pressure cylinder for chucking in a machine tool according to item 4.
JP20425781A 1981-12-16 1981-12-16 Rotary fluid hydraulic cylinder for chucking in machine tool Granted JPS58102608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20425781A JPS58102608A (en) 1981-12-16 1981-12-16 Rotary fluid hydraulic cylinder for chucking in machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20425781A JPS58102608A (en) 1981-12-16 1981-12-16 Rotary fluid hydraulic cylinder for chucking in machine tool

Publications (2)

Publication Number Publication Date
JPS58102608A true JPS58102608A (en) 1983-06-18
JPH0331959B2 JPH0331959B2 (en) 1991-05-09

Family

ID=16487459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20425781A Granted JPS58102608A (en) 1981-12-16 1981-12-16 Rotary fluid hydraulic cylinder for chucking in machine tool

Country Status (1)

Country Link
JP (1) JPS58102608A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6186515B1 (en) * 1998-05-28 2001-02-13 Rohm Gmbh Air-cooled hydraulic chuck actuator
JP2004136394A (en) * 2002-10-17 2004-05-13 Shuanryu Go Oil chuck

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220072U (en) * 1975-07-31 1977-02-12
JPS55144949A (en) * 1979-04-26 1980-11-12 Kitagawa Tekkosho:Kk Cooling mechanism for rotary fluid pressure cylinder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220072U (en) * 1975-07-31 1977-02-12
JPS55144949A (en) * 1979-04-26 1980-11-12 Kitagawa Tekkosho:Kk Cooling mechanism for rotary fluid pressure cylinder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6186515B1 (en) * 1998-05-28 2001-02-13 Rohm Gmbh Air-cooled hydraulic chuck actuator
JP2004136394A (en) * 2002-10-17 2004-05-13 Shuanryu Go Oil chuck

Also Published As

Publication number Publication date
JPH0331959B2 (en) 1991-05-09

Similar Documents

Publication Publication Date Title
US8904998B2 (en) Sleeve valve assembly
US7322103B2 (en) Method of making a motor/generator cooling jacket
JPS6158261B2 (en)
JP6400405B2 (en) Machine tool spindle equipment
DK155230B (en) REVERSIBLE, ROTATING FLUIDUM ENGINE
CN114749687B (en) Machine tool gear spindle with active cooling protection function
US3892165A (en) Rotary hydraulic jack device
JP2010260150A (en) Spindle cooling apparatus
JPS58102608A (en) Rotary fluid hydraulic cylinder for chucking in machine tool
JP2002310258A (en) Ball screw provided with cooling passage
CN101297111B (en) Radial piston-type hydraulic motor with cylinder block cooling
JP2000015540A (en) Motor built-in type main spindle device of machine tool
US3417672A (en) Rotary hydraulic cylinder
DK155684B (en) PLANET TYPE HYDRAULIC GEAR MACHINE
JP3494419B2 (en) Motor built-in spindle
JPS63221902A (en) Hydraulic operation type cylinder for fixing device in rotational spindle
JP2574190B2 (en) Seal structure of rotary fluid pressure cylinder device for chuck
JPS60215109A (en) Rotary fluid pressure cylinder with safety mechanism
JPH0232519B2 (en) RYUTAIYOKAITENTSUGITE
JP2533395B2 (en) Hydraulic circuit with rotary joint
US2082959A (en) Motor
JPS5851051A (en) Construction for cooling rotary type hydraulic cylinder
JPH0236679Y2 (en)
JP3319224B2 (en) Rotating cylinder
CN214237379U (en) Spindle box bearing cooling chamber