JPS58101465A - Field effect transistor - Google Patents

Field effect transistor

Info

Publication number
JPS58101465A
JPS58101465A JP19981881A JP19981881A JPS58101465A JP S58101465 A JPS58101465 A JP S58101465A JP 19981881 A JP19981881 A JP 19981881A JP 19981881 A JP19981881 A JP 19981881A JP S58101465 A JPS58101465 A JP S58101465A
Authority
JP
Japan
Prior art keywords
metal
electrode
source electrode
output
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19981881A
Other languages
Japanese (ja)
Inventor
Naofumi Tsuzuki
都築 直文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP19981881A priority Critical patent/JPS58101465A/en
Publication of JPS58101465A publication Critical patent/JPS58101465A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • H01L23/4822Beam leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]

Abstract

PURPOSE:To reduce the number of assembling steps and to increase the efficiency of the characteristics of a field effect transistor by forming the electrodes of a gate and a drain in a beam lead structure, and forming the source electrode in the structure capable of being thermally press-bonding directly to a heat sink metal. CONSTITUTION:An electrode metal seat 16 is formed by plating on the source electrode of a GaAs substrate 14, gate and drain electroes 17, 18 are formed at the symmetrical positions to the seat, and beam lead electrodes 19, 20 are attached by thick plating. The base 16 is thermally press-bonded to a heat sink metal 21, thereby press-donding the leads 19, 20 to output metallized layers 24, 25 on the metal 21. The heat from the substrate 14 is conducted through the base 16 directly to the metal 21, the temperature distribution in the substrate is uniformly performed, the saturated output power is increased, thereby improving the linearity of the output and obtaining the highly efficient characteristics with high gain. Further, the line junction is made unnecessary, and the number of steps can be accordingly largely reduced.

Description

【発明の詳細な説明】 本発明は電界効果トランジスタ、特にマイク四波帯高出
力用砒化ガリウム電界効果トランジスタに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a field effect transistor, and particularly to a gallium arsenide field effect transistor for high output microphone four-wave band.

小形化、高信頼度化、低コスト化および高性能化のため
に化合物半導体デバイスもIC化の要求があり、GaA
sICとして論理素子を中心として開発が急速に進みつ
つある。マイクロ波帯増幅素子としてのGaAs FF
1TのIC化屯試みられており、混成集積形のものから
モノリシックIC化されたものまで小信号増幅用として
種々検討がなされている。
There is a demand for compound semiconductor devices to be integrated into ICs to achieve smaller size, higher reliability, lower cost, and higher performance, and GaA
Development of sICs, centering on logic elements, is progressing rapidly. GaAs FF as a microwave band amplification element
Attempts have been made to develop 1T ICs, and various studies have been made for use in small signal amplification, ranging from hybrid integrated ICs to monolithic ICs.

一方、高出力用GaAs FETのIC化は熱放散およ
び整合回路の問題等のため、困難性を伴ない、現状では
チップを基板に搭載したいわゆるチップキャリアの形に
とどまっている。
On the other hand, it is difficult to integrate high-output GaAs FETs into ICs due to problems such as heat dissipation and matching circuits, and at present the IC is limited to a so-called chip carrier in which a chip is mounted on a substrate.

本発明では以上のようなIC化において取り扱いが容易
であり、かつ高性能化が図られ得る構造を有するGaA
s FETを提供することを目的とする。
The present invention uses GaA having a structure that is easy to handle and can achieve high performance when integrated into an IC as described above.
s FET.

本発明によ全GaAs FETでは、ゲートとドレイン
の電極をビームリード構造とし、ソース電極を直接放熱
金鵬に熱圧着可能な構造とす・ることKより、熱抵、抗
が減少し、かつ接地インダクタンスが減少するため、飽
和出力電力が増加し出力のりニアリティ特性が改善され
ると同時に、高利得。
In the all-GaAs FET according to the present invention, the gate and drain electrodes have a beam-lead structure, and the source electrode has a structure that can be thermocompressed directly to the heat dissipation metal, which reduces thermal resistance and resistance, and allows for grounding. As the inductance is reduced, the saturated output power increases and output linearity characteristics are improved, while at the same time achieving high gain.

高効率な特性が得られる。また、入出力電極端子をビー
ムリード化することにより、素子の実装が簡単化され、
従来の素子容器とチップを接続する場合に必要としたワ
イアボンディングが不要となり、大幅な工数低減が可能
となる。
Highly efficient characteristics can be obtained. In addition, by using beam leads for the input and output electrode terminals, element mounting is simplified.
Wire bonding, which was required when connecting conventional device containers and chips, is no longer necessary, making it possible to significantly reduce the number of man-hours.

以下に本発明をよりよ〈堰跡するために図面を用いて詳
しく説明する。
The present invention will be explained in detail below using drawings to better understand the present invention.

第1図は従来の高出力用の砒化カリウムFITの構造を
示し、FET 4チツプlは放熱金属2の上に搭載され
、チップlのゲート、ドレインの各電極3.4は、各々
入力および出力誘電体基板5゜6のメタライズ層7.8
にボンディング線9.10により接続されている。まえ
、チップlのソース電極11は放熱金属2の突出部12
にボンディング線13により接続されている。
Figure 1 shows the structure of a conventional high-output potassium arsenide FIT, in which 4 FET chips 1 are mounted on a heat dissipating metal 2, and the gate and drain electrodes 3.4 of the chip 1 are used for input and output, respectively. Metallized layer 7.8 of dielectric substrate 5°6
are connected by bonding wires 9.10. In the front, the source electrode 11 of the chip 1 is connected to the protrusion 12 of the heat dissipating metal 2.
is connected to by a bonding wire 13.

以上の構造において、 FIiSTチップの表面近傍の
中心部で発生した熱は、熱伝導度がクリコンに比べて悪
いGaAsfッグ基板lを介して放熱金属2へ伝導する
ため、熱抵抗を減少させるためには熱源となるゲート部
の配置密度を下げてチップを大型化し、かつGaAs基
板1の厚さをできるだけ薄くする必要がある。また、ソ
ース電極11からボンディング線13によって突出部1
2へ接地されるため、このボンディング線13によるイ
ンダクタンス成分により電力利得が低下する。このため
、ボンディング線13の代りに幅の広いテープ等が用い
られたり、チップ1を突出部金属12に出来るだけ近づ
けてチップマクントを行う等の配慮が必要とされ、高度
な組立技術と組立工数が必要とされていた。
In the above structure, the heat generated in the center near the surface of the FIiST chip is conducted to the heat dissipating metal 2 through the GaAsF substrate 1, which has poor thermal conductivity compared to Cricon. In order to achieve this, it is necessary to increase the size of the chip by lowering the arrangement density of the gate portion, which serves as a heat source, and to reduce the thickness of the GaAs substrate 1 as much as possible. Further, the protrusion 1 is connected to the source electrode 11 by the bonding line 13.
2, the inductance component due to this bonding line 13 reduces the power gain. Therefore, it is necessary to take precautions such as using a wide tape instead of the bonding wire 13 and performing chip machining by placing the chip 1 as close as possible to the protrusion metal 12, which requires advanced assembly technology and assembly man-hours. It was needed.

第2図は本発明の一実施例によるFITチップの構造を
示し、GaAs基板14の中心部にソース電極15が形
成され、ソース電極ls上KFilO〜20建クロンに
厚くメッキされ九電極金属台座16が形成されている。
FIG. 2 shows the structure of an FIT chip according to an embodiment of the present invention, in which a source electrode 15 is formed in the center of a GaAs substrate 14, and a nine-electrode metal pedestal 16 is plated to a thickness of KFilO~20 cm on the source electrode ls. is formed.

また、ソース電極15に対してほぼ対称な位置にゲート
電極17.  ドレイン電極18が形成され、各々の電
極にはやはり10〜20ミクロンS度の厚メッキにより
形成されたビームリード電極金属19.20が形成され
ている。
Furthermore, a gate electrode 17. Drain electrodes 18 are formed, and each electrode is provided with beam lead electrode metal 19, 20, also formed by plating with a thickness of 10 to 20 microns.

第3図は1本発明によるビームリード形GaA易F]1
3Tを実装した場合の断面図を示し、ソース電極余興台
座16は放熱金属21に熱圧着され、またゲートおよび
ドレイン電極のビームリード金属19.20は、前記放
熱金属21上の入力および出力誘電体基板22.23上
に形成された入力および出力メタライズ層24.25に
各々熱圧着により接続されている。本ビームリード形G
aAs FETは、従来の様に素子容器内に内蔵される
場合、およびMIC化された混成集積回路の内部に実装
される場合、さらにモノIC化されたプリアンプ部のパ
ワ一段としての小形素子容器にへの実装の場合のいずれ
Kも適用できる。また高出力化のためKは本FETを並
列接続することKより“実現されるO 本発明の構造により、 G1As基板14のチャンネル
部で発生した熱はソース電極金属台座16を介して直接
放熱金属21に伝導するため、熱抵抗が減少すると同時
にチャンネル内部の温fI!が軽減するため温度分布が
均一化し、安定なRF動作が可能となる。この丸め、飽
和出力電力が増加すると同時に入力電力に対する出力電
力の直線性が増し、混変調歪が軽減される。を九上述の
熱放散の改善と同時にソースの接地インダクタンスも極
めて小さくなるため、電力利得も改善され、結果的に高
効率化が図られる。さらにまた、本発明の構造の他の特
徴の一つけ三端子電極素子ではあるが、アリツブチップ
としてチップ自体に加重が加わる電極がソース電極のみ
であることで、この構造はガンダイオードやインバット
ダイオード等の二端子電極素子と同様な極〈一般的な組
立技術により組立が可能となり、他のゲート、ドレイン
電極の接続はビームリード構造であるため、直接GaA
@チップには加重が加わらない丸め、GaAs基板のク
ラック、歪等が発生する可能性が少なく、信頼度の高い
素子が実現され得る。また従来の組立に必要でありたチ
ップのマクントとワイアボンディングエ穆に対して1本
発明の構造ではテ、グのボンディングとビームリードの
ボンディングが同一ボンディング装置で、一つの工場内
で可能とな)、またボンディング工数も従来に比べて著
し〈低減できる。
Figure 3 shows a beam-lead type GaA easy F according to the present invention]1
3T is shown, the source electrode entertainment pedestal 16 is thermocompression bonded to the heat dissipation metal 21, and the beam lead metals 19 and 20 of the gate and drain electrodes are attached to the input and output dielectrics on the heat dissipation metal 21. They are each connected by thermocompression to input and output metallization layers 24.25 formed on substrates 22.23. Main beam lead type G
aAs FETs can be installed in an element container as in the past, when mounted inside a MIC hybrid integrated circuit, and even in a small element container as a single power stage of a mono IC preamplifier section. Any implementation of K is applicable. Furthermore, in order to achieve high output, K is realized by connecting the present FETs in parallel.With the structure of the present invention, the heat generated in the channel part of the G1As substrate 14 is directly transferred to the heat dissipating metal via the source electrode metal pedestal 16. 21, the thermal resistance decreases and at the same time the temperature fI! inside the channel is reduced, which equalizes the temperature distribution and enables stable RF operation.This rounding increases the saturated output power and at the same time increases the The linearity of the output power is increased, and cross-modulation distortion is reduced.At the same time as the above-mentioned improvement in heat dissipation, the grounding inductance of the source is also extremely small, which improves the power gain, resulting in higher efficiency. Furthermore, although the structure of the present invention is a single-attached three-terminal electrode element, the source electrode is the only electrode that applies weight to the chip itself as an Aritz chip. A pole similar to a two-terminal electrode element such as a diode (can be assembled using general assembly technology, and the other gate and drain electrodes are connected using a beam lead structure, so GaA
@ Chips are rounded with no load applied, and there is less possibility of cracks, distortions, etc. occurring in the GaAs substrate, and a highly reliable device can be realized. Furthermore, in contrast to the conventional chip mounting and wire bonding processes that were required for chip assembly, the structure of the present invention allows bonding of chips and beam leads to be performed using the same bonding equipment and in one factory. ), and the number of bonding steps can be significantly reduced compared to conventional methods.

以上の如く、今後の高周波化、高出力化%MIC化に対
して本発明の構造は極めて適した構成が可能となる。尚
、以上の説明は化合物半導体として砒化ガリウムを例に
とって説明してきたが、半導体の材料により本発明の内
容は限定されないのは明らかでおる。
As described above, the structure of the present invention can be extremely suitable for future high frequency and high output MICs. Although the above description has been made using gallium arsenide as an example of a compound semiconductor, it is clear that the content of the present invention is not limited by the material of the semiconductor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のGaAs FF5Tの組立図を示す斜視
図、第2図は本発明の一実施例によるビームリード形G
mAs PETの構造を示す斜視図、第3図は本発明の
FETの実装構造を示す断面図を示す。 l・・・・・・FETナツプ、2.21・・・・・・放
熱金属。 3.17・・・・・・ゲート電極、4.18・・・・・
・ドレイン電極、5・・・・・・入力誘電体基板、6・
・・・・・出力誘電体基板、7,2ト・・・・・入力メ
タライズ層、8.25・・・・・・出力メタ2イズ層、
9,10,13・・・・・・ボンディング線、11.1
5・・・・・・ソース電極、12・・・・・・放熱金属
突出部、14・・・・・・GaAs基板、16・・・・
・・電極金属台座% 19.20・・・・・・ビームリ
ード電極金属。 第 3 図
FIG. 1 is a perspective view showing an assembly diagram of a conventional GaAs FF5T, and FIG. 2 is a beam lead type G according to an embodiment of the present invention.
FIG. 3 is a perspective view showing the structure of mAs PET, and FIG. 3 is a sectional view showing the mounting structure of the FET of the present invention. l...FET nap, 2.21... Heat dissipation metal. 3.17...Gate electrode, 4.18...
・Drain electrode, 5...Input dielectric substrate, 6.
...Output dielectric substrate, 7,2T...Input metallization layer, 8.25...Output metalization layer,
9, 10, 13... Bonding wire, 11.1
5... Source electrode, 12... Heat radiation metal protrusion, 14... GaAs substrate, 16...
...Electrode metal pedestal% 19.20...Beam lead electrode metal. Figure 3

Claims (1)

【特許請求の範囲】 半導体基板の一生面上にソース電極が形成され、前記ソ
ース電極の上に導電体からなる台座状部材が形成され、
前記半導体基板上に前記ソース電極をはさんでゲート電
極とドレイン電極が形成され。 さらに前記ゲート電極と前記ドレイン電極の各々の上面
に梁状の電極端子が固着形成されてなることを特徴とす
る電界効果トランジスタ。
[Claims] A source electrode is formed on the entire surface of a semiconductor substrate, a pedestal-like member made of a conductor is formed on the source electrode,
A gate electrode and a drain electrode are formed on the semiconductor substrate with the source electrode sandwiched therebetween. The field effect transistor further comprises a beam-shaped electrode terminal fixedly formed on the upper surface of each of the gate electrode and the drain electrode.
JP19981881A 1981-12-11 1981-12-11 Field effect transistor Pending JPS58101465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19981881A JPS58101465A (en) 1981-12-11 1981-12-11 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19981881A JPS58101465A (en) 1981-12-11 1981-12-11 Field effect transistor

Publications (1)

Publication Number Publication Date
JPS58101465A true JPS58101465A (en) 1983-06-16

Family

ID=16414144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19981881A Pending JPS58101465A (en) 1981-12-11 1981-12-11 Field effect transistor

Country Status (1)

Country Link
JP (1) JPS58101465A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02168632A (en) * 1988-09-14 1990-06-28 Mitsubishi Electric Corp Field effect transistor and signal transmission line
DE19914718A1 (en) * 1999-03-31 2000-10-05 Siemens Ag Semiconductor diode surface contact manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02168632A (en) * 1988-09-14 1990-06-28 Mitsubishi Electric Corp Field effect transistor and signal transmission line
DE19914718A1 (en) * 1999-03-31 2000-10-05 Siemens Ag Semiconductor diode surface contact manufacturing method
DE19914718B4 (en) * 1999-03-31 2006-04-13 Siemens Ag Method for simultaneously producing a plurality of light-emitting diode elements with integrated contacts

Similar Documents

Publication Publication Date Title
US6566749B1 (en) Semiconductor die package with improved thermal and electrical performance
US5075759A (en) Surface mounting semiconductor device and method
US3784884A (en) Low parasitic microwave package
US5376909A (en) Device packaging
US11088661B2 (en) Power amplifier devices containing inverted power transistor dies and methods for the fabrication thereof
US6492667B2 (en) Radio frequency semiconductor apparatus
JPH10242377A (en) High-frequency power amplifier module
US6049126A (en) Semiconductor package and amplifier employing the same
JP2755250B2 (en) Semiconductor integrated circuit
JPS58101465A (en) Field effect transistor
JP2991168B2 (en) Semiconductor device and manufacturing method thereof
US6094114A (en) Slotline-to-slotline mounted flip chip
JPH03132101A (en) Surface mounting type semiconductor device andits method
JPH04213863A (en) Ic mounting package/carrier
JPS5892277A (en) Manufacture of field effect transistor
JPH06169064A (en) Semiconductor device
US20230133034A1 (en) Surface-mount amplifier devices
JP2773685B2 (en) Semiconductor device
JPH1070159A (en) High-frequency module and its manufacturing method
US20230124581A1 (en) Transistor device structure with angled wire bonds
JP3102006B2 (en) High frequency high power transistor
JPH1126633A (en) Semiconductor element and mounting structure thereof
JPS61172376A (en) Semiconductor device
US6670674B2 (en) Transistor and power amplifier with improved bandwidth
JP2865099B1 (en) Semiconductor device