JPH10242377A - High-frequency power amplifier module - Google Patents

High-frequency power amplifier module

Info

Publication number
JPH10242377A
JPH10242377A JP9040371A JP4037197A JPH10242377A JP H10242377 A JPH10242377 A JP H10242377A JP 9040371 A JP9040371 A JP 9040371A JP 4037197 A JP4037197 A JP 4037197A JP H10242377 A JPH10242377 A JP H10242377A
Authority
JP
Japan
Prior art keywords
dielectric substrate
hole
groove
metal plate
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9040371A
Other languages
Japanese (ja)
Inventor
Osamu Kagaya
修 加賀谷
Kenji Sekine
健治 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9040371A priority Critical patent/JPH10242377A/en
Publication of JPH10242377A publication Critical patent/JPH10242377A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/13Mountings, e.g. non-detachable insulating substrates characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3677Wire-like or pin-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49822Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4334Auxiliary members in encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • H01L2924/15155Shape the die mounting substrate comprising a recess for hosting the device the shape of the recess being other than a cuboid
    • H01L2924/15156Side view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19042Component type being an inductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-frequency power amplifier module which improves the heat-dissipating property of a high-output transistor, which is miniaturized suitably and which is made suitably low-cost. SOLUTION: A resin layer 13 is formed on the surface of a multilayer dielectric substrate 12. A first hole 15 or a groove 14 which is passed through a multilayer dielectric substrate 11 at the lower part is formed. A metal plate 16 which is connected to a wring layer in the interior of the multilayer dielectric substrate is inserted into the interior of the first hole 15 or the groove 14. The rear surface of the metal plate 16 is made to agree with the lower surface of the multilayer dielectric substrate 11. A second hole which is passed through the dielectric substrate 12 and the resin layer 13 is formed in the upper part. The second hole is made smaller than the first hole 15 or the groove 14. A semiconductor chip 17 is inserted into the interior of the second hole, and its backside is bonded to the metal plate 16. A passive element which contains a spiral inductor is installed on the surface of the multilayer dielectric substrates 11, 12 and on the surface of the resin layer 13.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はUHFからマイクロ
波帯の信号の増幅を行う高周波電力増幅器モジュールに
係り、特に誘電体基板を多層に用いた高周波電力増幅器
モジュールの構成に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-frequency power amplifier module for amplifying a microwave band signal from UHF, and more particularly to a high-frequency power amplifier module using a dielectric substrate in a multilayer structure.

【0002】[0002]

【従来の技術】半導体トランジスタを用いた高周波電力
増幅器モジュールは移動体通信の携帯電話機のキーデバ
イスであり、その需要は近年急激に伸びている。上記用
途に適した高周波電力増幅器モジュールとしては移動体
通信システムに対する高周波特性の仕様を満足すること
はもちろんであるが、これに加えて小型,低コストであ
ることが要求されている。これらの要求を満たすため、
従来提案されていた高周波電力増幅器モジュールの一例
としてはIEEE 1996 Microwave and Millimeter−Wave M
onolithic Circuit Symposium, pp.13−16,“A Miniatu
rized GaAs PowerAmplifier for 1.5 GHz Digital Cell
ular Phones”(従来例1)において論じられている。
2. Description of the Related Art A high-frequency power amplifier module using a semiconductor transistor is a key device of a mobile telephone for mobile communication, and the demand thereof has been rapidly increasing in recent years. As a high-frequency power amplifier module suitable for the above-mentioned application, it is not only required to satisfy the specifications of the high-frequency characteristics for the mobile communication system, but also small and low-cost. To meet these requirements,
An example of a conventionally proposed high-frequency power amplifier module is IEEE 1996 Microwave and Millimeter-Wave M.
onolithic Circuit Symposium, pp.13-16, “A Miniatu
rized GaAs PowerAmplifier for 1.5 GHz Digital Cell
ular Phones "(conventional example 1).

【0003】従来例1の高周波電力増幅器モジュールは
図2に示すように、アルミナからなる誘電体基板51,
52,53,54,55を多層に用い、それらの層間お
よび表面に金属配線を設けることによりストリップ線路
を多層に形成して小型化を図っている。これらのストリ
ップ線路はバイアス回路および整合回路の一部を構成し
ている。金属配線501,502,503はストリップ
線路を構成するストリップ線路、金属配線56,57,
58は接地導体である。59はチップ抵抗あるいはチッ
プコンデンサである。能動素子であるGaAs FET
を形成したGaAsチップ504は多層基板の中に形成
されたキャビティ中に挿入される形で、アルミナ誘電体
基板51の上面に実装されている。多層基板の上部を金
属キャップ500によって覆い、1個のモジュールを形
成している。この高周波電力増幅器モジュールは裏面電
極56を介してマザーボードに接合され、GaAsチッ
プ504において発生した熱は主にアルミナ誘電体基板
51を通じてマザーボードに放熱されている。
As shown in FIG. 2, a high-frequency power amplifier module according to Conventional Example 1 has a dielectric substrate 51 made of alumina,
52, 53, 54, 55 are used in multiple layers, and strip wiring is formed in multiple layers by providing metal wirings between the layers and on the surface to achieve miniaturization. These strip lines form part of a bias circuit and a matching circuit. The metal wirings 501, 502, 503 are strip lines constituting the strip line, the metal wirings 56, 57,
58 is a ground conductor. Reference numeral 59 denotes a chip resistor or a chip capacitor. GaAs FET as active element
Is mounted on the upper surface of the alumina dielectric substrate 51 so as to be inserted into a cavity formed in the multilayer substrate. The upper part of the multilayer substrate is covered with a metal cap 500 to form one module. This high-frequency power amplifier module is bonded to the motherboard via the back electrode 56, and the heat generated in the GaAs chip 504 is radiated to the motherboard mainly through the alumina dielectric substrate 51.

【0004】この従来例1では出力電力1.1W クラス
の高周波電力増幅器モジュールを上記構成により小型化
し、その面積を1cm×1cmまで縮小していた。
In the prior art 1, a high-frequency power amplifier module having an output power of 1.1 W class was downsized by the above configuration, and its area was reduced to 1 cm × 1 cm.

【0005】上記従来例1では受動素子の一つとしてス
トリップ線路が用いられているが、これに替えてスパイ
ラルインダクタを用いることによって、モジュールをさ
らに小型化する提案がなされており、例えば1995年
電子情報通信学会エレクトロニクスソサエティ大会講演
論文集C−43頁“オンチップ高誘電体キャパシタを用
いた移動体通信用超小型フロントエンドHIC”(従来
例2)において論じられている。
[0005] In the above prior art example 1, a strip line is used as one of the passive elements. However, a proposal has been made to further reduce the size of the module by using a spiral inductor instead. This is discussed in the Proceedings of the IEICE Electronics Society Conference, page C-43, "Ultra-small front-end HIC for mobile communication using on-chip high-dielectric capacitors" (Conventional Example 2).

【0006】従来例2の高周波モジュールは図3に示す
ように、セラミックからなる誘電体基板61上にGaA
s ICチップ64をフリップチップ方式によって接続
し、スパイラルインダクタ62は誘電体基板61上の金
属パタン60により形成してHIC(ハイブリッド集積
回路)モジュールを構成している。GaAs ICチッ
プ64の主面(図3では下面)にはGaAs FET
(電界効果トランジスタ)およびキャパシタが形成され、
これらはCCB(Controlled Collapse Bonding)バンプ
65によって誘電体基板61上の金属パタン60に接続
されている。スパイラルインダクタ62の一端は誘電体
基板61の表面の金属パタン60へ、他の一端はスルー
ホール63を介して基板裏面の金属パタン66に接続さ
れている。
As shown in FIG. 3, a high-frequency module according to Conventional Example 2 has GaAs on a dielectric substrate 61 made of ceramic.
s An IC chip 64 is connected by a flip chip method, and a spiral inductor 62 is formed by a metal pattern 60 on a dielectric substrate 61 to constitute a HIC (hybrid integrated circuit) module. A GaAs FET is provided on the main surface (the lower surface in FIG. 3) of the GaAs IC chip 64.
(Field effect transistor) and a capacitor are formed,
These are connected to a metal pattern 60 on a dielectric substrate 61 by CCB (Controlled Collapse Bonding) bumps 65. One end of the spiral inductor 62 is connected to a metal pattern 60 on the front surface of the dielectric substrate 61, and the other end is connected to a metal pattern 66 on the back surface of the substrate via a through hole 63.

【0007】この従来例2では比較的大きな面積を必要
とするスパイラルインダクタを安価な誘電体基板上への
印刷技術により形成したこと、および高価なGaAs
ICチップの面積を少なくしたことにより、高周波半導
体装置の製造コストを低減している。また、GaAs
ICチップをフリップチップ方式により接続したことに
よりワイヤボンディング方式に比べて高さを縮小し、高
周波モジュールの小型化を図っている。
In the prior art 2, a spiral inductor requiring a relatively large area is formed by a printing technique on an inexpensive dielectric substrate, and expensive GaAs is used.
By reducing the area of the IC chip, the manufacturing cost of the high-frequency semiconductor device is reduced. In addition, GaAs
By connecting the IC chips by the flip chip method, the height is reduced as compared with the wire bonding method, and the high frequency module is downsized.

【0008】[0008]

【発明が解決しようとする課題】上記従来技術ではさら
に出力電力の大きな電力増幅器に対してその技術を適用
し、モジュールの小型化を図った場合、高出力トランジ
スタの放熱が不十分となり電力増幅器の特性が劣化する
問題があった。たとえば欧州のデジタルセルラであるG
SM(Global System for Mobile Communication)では
出力電力3.8W以上のクラスの電力増幅器が主に必要
とされている。例えばこのクラスの電力増幅器に上記従
来例1のモジュールを適用した場合、アルミナ誘電体基
板51の熱抵抗を15.6℃/W ,GaAsチップ50
4上の高出力トランジスタの電力付加効率を48%と仮
定するとGaAsチップの温度は周囲の温度に比べ64
℃上昇する。この温度上昇により高出力トランジスタの
相互コンダクタンスが低下し、出力電力値の低下や効率
の劣化が生じた。
In the above prior art, when the technology is applied to a power amplifier having a larger output power and the module is downsized, the heat dissipation of the high output transistor becomes insufficient and the power amplifier is not used. There was a problem that the characteristics deteriorated. For example, G, the European digital cellular
In SM (Global System for Mobile Communication), a power amplifier of an output power of 3.8 W or more is mainly required. For example, when the module of the prior art 1 is applied to a power amplifier of this class, the thermal resistance of the alumina dielectric substrate 51 is 15.6 ° C./W, and the GaAs chip 50
Assuming that the power-added efficiency of the high-power transistor on 4 is 48%, the temperature of the GaAs chip is 64% lower than the ambient temperature.
℃ rise. Due to this rise in temperature, the transconductance of the high-output transistor is reduced, and the output power value is reduced and the efficiency is reduced.

【0009】さらに電力増幅器モジュールを低コスト化
するという観点から、高出力トランジスタとして高価な
GaAs FETに替え、単価の安いシリコンMOSF
ETを採用することが望ましい。しかしシリコンMOS
FETでは効率が低下するため、例えば電力付加効率を
35%と仮定した場合、周囲温度が25℃の場合でもS
iチップの温度は135℃にまで上昇する。この状態で
は、電力増幅器の動作が劣化するだけではなく、モジュ
ールにおけるハンダの信頼性も悪化するため、シリコン
MOSFETの採用による電力増幅器モジュールの低コ
スト化は困難であった。
Further, from the viewpoint of reducing the cost of the power amplifier module, a high-output transistor is replaced with an expensive GaAs FET, and a low-cost silicon MOSF is used.
It is desirable to use ET. But silicon MOS
Since the efficiency is reduced in the FET, for example, assuming that the power added efficiency is 35%, even if the ambient temperature is 25 ° C., the S
The temperature of the i-chip rises to 135 ° C. In this state, not only does the operation of the power amplifier deteriorate, but also the reliability of the solder in the module deteriorates, so that it has been difficult to reduce the cost of the power amplifier module by employing silicon MOSFETs.

【0010】上記従来例1の構造で放熱性を改善する方
法としてはアルミナ誘電体基板51に替えて窒化アルミ
基板を採用し、熱抵抗を約1/10まで低減することが
容易に考えつく。しかしこの場合窒化アルミ基板がアル
ミナ基板に対してはるかに高価なため、高周波電力増幅
器モジュールを低コストで提供することは困難になっ
た。
As a method of improving the heat dissipation in the structure of the above-mentioned conventional example 1, it is easily conceivable to adopt an aluminum nitride substrate instead of the alumina dielectric substrate 51 and to reduce the thermal resistance to about 1/10. However, in this case, since the aluminum nitride substrate is much more expensive than the alumina substrate, it has been difficult to provide a high-frequency power amplifier module at low cost.

【0011】上記従来例2の構造を電力増幅器に採用し
た場合、GaAs ICチップ64で発生した熱は、C
CBバンプ65の接触面のみを通ってセラミック基板6
1に放熱されるため、GaAs ICチップ64から基
板裏面66までの熱抵抗は上記従来例1より比べて高く
なる。このため高出力トランジスタの放熱が不十分とな
り電力増幅器の特性が劣化した。
When the structure of the above-mentioned conventional example 2 is adopted for a power amplifier, the heat generated in the GaAs IC chip 64 is C
The ceramic substrate 6 passes only through the contact surface of the CB bump 65
1, the thermal resistance from the GaAs IC chip 64 to the back surface 66 of the substrate is higher than that of the first conventional example. For this reason, the heat dissipation of the high-output transistor was insufficient, and the characteristics of the power amplifier deteriorated.

【0012】本発明の目的は高出力トランジスタの放熱
性を改善するモジュールの構成を提案し、小型化および
低コスト化に最適な高周波電力増幅器モジュールを提供
することにある。
An object of the present invention is to propose a module configuration that improves the heat dissipation of a high-output transistor, and to provide a high-frequency power amplifier module that is optimal for miniaturization and cost reduction.

【0013】[0013]

【課題を解決するための手段】本目的は多層の誘電体基
板を用いた高周波電力増幅器モジュールにおいて、多層
誘電体基板の表面に樹脂層を設け、誘電体基板の層間に
第1の配線層を設け、その第1の配線層の下部に誘電体
層を貫く第1の穴または溝を設け、その第1の穴または
溝の内部に第1の配線層に接続した金属板を挿入し、そ
の金属板の下面の高さを多層誘電体基板の下面に対し±
50μm以内で一致させ、第1の配線層の上部には誘電
体と樹脂層を貫く第2の穴を設け、第2の穴は第1の穴
または溝より小さく、第1の穴または溝の内側に位置さ
せ、その第2の穴の内部に半導体チップを挿入し、その
半導体チップの裏面を金属板に接合し、スパイラルイン
ダクタを含む受動素子を多層誘電体基板の表面および樹
脂層の表面に設けることにより達成できる。
SUMMARY OF THE INVENTION An object of the present invention is to provide a high-frequency power amplifier module using a multilayer dielectric substrate, in which a resin layer is provided on the surface of the multilayer dielectric substrate, and a first wiring layer is provided between layers of the dielectric substrate. A first hole or groove penetrating the dielectric layer is provided below the first wiring layer, and a metal plate connected to the first wiring layer is inserted into the first hole or groove. The height of the lower surface of the metal plate is ±
Matching within 50 μm, a second hole penetrating the dielectric and the resin layer is provided above the first wiring layer, and the second hole is smaller than the first hole or the groove. A semiconductor chip is inserted inside the second hole, the back surface of the semiconductor chip is bonded to a metal plate, and a passive element including a spiral inductor is mounted on the surface of the multilayer dielectric substrate and the surface of the resin layer. This can be achieved by providing.

【0014】第1の穴または溝の内部に第1の配線層に
接続した金属板を設けたことにより、この金属板の裏面
を接地電位に固定することで第1の配線層および金属板
の表面電位を高周波において良好に接地することが可能
になる。
Since the metal plate connected to the first wiring layer is provided inside the first hole or the groove, the back surface of the metal plate is fixed at the ground potential, so that the first wiring layer and the metal plate are fixed. The surface potential can be satisfactorily grounded at a high frequency.

【0015】その金属板の下面を多層誘電体基板の下面
に対し±50μm以内で一致させて設けたことにより、
マザーボードに対し高周波電力増幅器モジュールをハン
ダなどにより接続が容易となる。
By providing the lower surface of the metal plate within ± 50 μm with the lower surface of the multilayer dielectric substrate,
The connection of the high-frequency power amplifier module to the motherboard by soldering or the like becomes easy.

【0016】半導体チップを金属板上に接合したことに
より、半導体チップの放熱を熱抵抗の非常に低い金属板
を通じてできるため、放熱性を著しく改善できる。さら
に高出力トランジスタのソース電極がチップ裏面にある
場合、例えば低コスト化する目的で高出力シリコンMO
SFETを適用する場合には、半導体チップ裏面を高周
波的に良好に接地できる。これらの作用により高出力ト
ランジスタの高周波特性の劣化を最小に抑えられる。
Since the semiconductor chip is bonded to the metal plate, heat can be radiated from the semiconductor chip through the metal plate having a very low thermal resistance, so that the heat radiation can be remarkably improved. Further, when the source electrode of the high-output transistor is on the back surface of the chip, for example, a high-output silicon
When an SFET is applied, the back surface of the semiconductor chip can be satisfactorily grounded at high frequencies. By these actions, deterioration of the high-frequency characteristics of the high-output transistor can be minimized.

【0017】多層誘電体基板の表面および樹脂層の表面
に受動素子を設けることにより、チップ抵抗,チップコ
ンデンサをなくし、モジュールを小型化することができ
る。また受動素子は多数のモジュール基板上に一括プロ
セスで形成できるため、受動素子を含むモジュールを、
ばらつきの点で歩留まり良くかつ低コストに製造でき
る。
By providing passive elements on the surface of the multilayer dielectric substrate and on the surface of the resin layer, chip resistors and chip capacitors can be eliminated, and the module can be downsized. In addition, since passive elements can be formed on a large number of module substrates in a batch process, modules containing passive elements
It can be manufactured with good yield and low cost in terms of variation.

【0018】[0018]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

<実施例1>本発明の実施例1を図1および図4を用い
て説明する。本実施例1は高出力トランジスタとしてシ
リコンMOSFETを用いた高周波電力増幅器モジュー
ルである。図1はモジュールを側面から見た断面構造
図、図4はモジュールを下方から見た裏面レイアウトを
示す図である。
<Embodiment 1> Embodiment 1 of the present invention will be described with reference to FIGS. The first embodiment is a high-frequency power amplifier module using a silicon MOSFET as a high-output transistor. FIG. 1 is a cross-sectional structural view of the module as viewed from the side, and FIG. 4 is a diagram illustrating a back surface layout of the module as viewed from below.

【0019】図1を用いて高周波増幅器モジュールの構
造および製造方法を説明する。アルミナセラミックから
なる誘電体基板11,12に対し、配線層18,19,
20を印刷技術により形成し、誘電体基板11,12を
貫き配線層をつなぐようにバイアホール22をメッキ技
術により形成する。誘電体基板11にはあらかじめ溝1
4をパターニングしておく。配線層18,19,20の
材質としては通常は銅、あるいは銀と白金の積層膜を用
いる。これらの基板はおよび配線層は同時に焼結し、1
枚の多層アルミナセラミック基板を形成する。
The structure and manufacturing method of the high-frequency amplifier module will be described with reference to FIG. For dielectric substrates 11 and 12 made of alumina ceramic, wiring layers 18 and 19,
20 is formed by a printing technique, and a via hole 22 is formed by a plating technique so as to penetrate the dielectric substrates 11 and 12 and connect the wiring layers. The dielectric substrate 11 has grooves 1 in advance.
4 is patterned. As a material of the wiring layers 18, 19, and 20, a copper or a laminated film of silver and platinum is usually used. These substrates and the wiring layer are sintered simultaneously,
A multi-layer alumina ceramic substrate is formed.

【0020】次に誘電体基板12上に薄膜容量24およ
び薄膜抵抗25を形成する。通常、薄膜容量24の材料
としてはTa−O等、薄膜抵抗25の材料としてはTa
−N等が選ばれる。
Next, a thin film capacitor 24 and a thin film resistor 25 are formed on the dielectric substrate 12. Usually, the material of the thin film capacitor 24 is Ta-O or the like, and the material of the thin film resistor 25 is Ta.
-N or the like is selected.

【0021】次に誘電体基板12上にポリイミドからな
る樹脂膜13およびバイアホール23,配線層21を形
成する。この時点では誘電体基板12の表面に穴や溝が
形成されていないので、樹脂膜13は平坦性よく、厚さ
をほぼ一定に形成できる。配線層21の材質としては通
常銅とニッケルと金の積層膜あるいは銀と白金の積層膜
を用い、これらは主にメッキ技術により被着する。配線
層21は素子間をつなぐ配線としてだけではなく、スパ
イラルインダクタを形成し、薄膜容量24および薄膜抵
抗25とともに整合回路の一部を構成する。
Next, a resin film 13 made of polyimide, a via hole 23, and a wiring layer 21 are formed on the dielectric substrate 12. At this point, since no holes or grooves are formed on the surface of the dielectric substrate 12, the resin film 13 can be formed with good flatness and a substantially constant thickness. As a material of the wiring layer 21, a laminated film of copper, nickel, and gold or a laminated film of silver and platinum is generally used, and these are mainly applied by a plating technique. The wiring layer 21 forms a spiral inductor and forms a part of a matching circuit together with the thin film capacitor 24 and the thin film resistor 25, as well as a wiring connecting the elements.

【0022】次にレーザー加工法により誘電体基板12
および樹脂膜13を貫く穴15を形成する。この穴15
のサイズは溝14より小さくし、穴15は上方から見て
溝14の内部に位置するように設ける。
Next, the dielectric substrate 12 is formed by a laser processing method.
Then, a hole 15 penetrating through the resin film 13 is formed. This hole 15
Is smaller than the groove 14, and the hole 15 is provided so as to be located inside the groove 14 when viewed from above.

【0023】次に溝14の中に金属板16を挿入し、配
線層19に接続する。そして穴15の中にシリコンMO
SFETを表面に形成した半導体チップ17を挿入し、
その裏面を金属板16に接続する。金属板16の厚さ
は、金属板16の下面の高さと誘電体基板11の下面の
高さがほぼ一致するように選ぶ。その精度は±50μm
以内にすることが好ましい。
Next, a metal plate 16 is inserted into the groove 14 and connected to the wiring layer 19. And the silicon MO in the hole 15
Insert the semiconductor chip 17 having the SFET formed on the surface,
The back surface is connected to the metal plate 16. The thickness of the metal plate 16 is selected so that the height of the lower surface of the metal plate 16 and the height of the lower surface of the dielectric substrate 11 substantially match. Its accuracy is ± 50μm
It is preferable to set it within.

【0024】次に半導体チップ17と配線層21をボン
ディングワイヤ26で接続し、メタルキャップ27でふ
たをすることにより高周波電力増幅器モジュールが完成
する。
Next, the semiconductor chip 17 and the wiring layer 21 are connected by bonding wires 26 and covered with a metal cap 27 to complete a high-frequency power amplifier module.

【0025】次に図4を用いて高周波電力増幅器モジュ
ールへの信号の出し入れおよび電源の供給の方法を説明
する。まず接地電位GNDは金属板16および必要に応
じて配線層18からなる電極に接続する。電源電圧Vdd
は配線層18からなる電極(Vdd)に接続し、バイアホ
ール22等を通じて高出力トランジスタのドレインに電
流を供給する。出力制御電圧Vapc は配線層18からな
る電極(Vapc )に接続し、バイアホール22等を通じ
て高出力トランジスタのゲートに電圧を印加する。入力
高周波電力Pinは配線層18からなる電極(Pin)に接
続し、バイアホール22等を通じて基板表面に形成した
薄膜容量,スパイラルインダクタからなる入力整合回路
に送られる。電力増幅器で増幅された出力高周波電力P
out はバイアホール22等を通じて配線層18からなる
電極(Pout )より取り出す。以上の様に全ての信号お
よび電源はリードレスの状態のまま与えることができ、
高周波電力モジュールの面積を最小にすることができ
る。
Next, a method for inputting / outputting signals to / from the high-frequency power amplifier module and supplying power will be described with reference to FIG. First, the ground potential GND is connected to an electrode composed of the metal plate 16 and, if necessary, the wiring layer 18. Power supply voltage Vdd
Is connected to the electrode (Vdd) formed of the wiring layer 18 and supplies a current to the drain of the high-power transistor through the via hole 22 and the like. The output control voltage Vapc is connected to an electrode (Vapc) formed of the wiring layer 18 and applies a voltage to the gate of the high output transistor through the via hole 22 or the like. The input high-frequency power Pin is connected to an electrode (Pin) composed of the wiring layer 18 and sent to an input matching circuit composed of a thin film capacitor and a spiral inductor formed on the substrate surface through the via hole 22 and the like. Output high frequency power P amplified by power amplifier
out is taken out from the electrode (Pout) composed of the wiring layer 18 through the via hole 22 or the like. As described above, all signals and power can be given in a leadless state,
The area of the high-frequency power module can be minimized.

【0026】本実施例1によれば、高周波電力増幅器モ
ジュールの低コスト化の観点から高出力トランジスタと
してシリコンMOSFETを採用した場合にも充分な放
熱性を確保でき、発熱量の増大による性能劣化を対策で
きる。また半導体チップ裏面を高周波的に良好な接地が
できるため、シリコンMOSFETの高周波特性の劣化
を最小に抑えられる。以上の作用によりシリコンMOS
FETを適用でき、低コスト化に適した電力増幅器モジ
ュールを実現できる。
According to the first embodiment, from the viewpoint of reducing the cost of the high-frequency power amplifier module, sufficient heat dissipation can be ensured even when a silicon MOSFET is used as a high-output transistor, and performance degradation due to an increase in the amount of heat generated is prevented. Can take measures. In addition, since the back surface of the semiconductor chip can be grounded with good frequency in terms of high frequency, deterioration of the high frequency characteristics of the silicon MOSFET can be minimized. With the above operation, silicon MOS
An FET can be applied, and a power amplifier module suitable for cost reduction can be realized.

【0027】また図4において、金属板16の上下には
溝14の余白部分(誘電体基板12が表出している部
分)を設けているが、この溝14の余白部分はそこにメ
タルキャップ27に設けたフックまたは突起部分200
を引っかけ、モジュール基板に対するメタルキャップ2
7の容易な取り付けを実現できる効果を持つ。
In FIG. 4, blank portions of the groove 14 (portions where the dielectric substrate 12 is exposed) are provided above and below the metal plate 16, and the blank portion of the groove 14 is provided with a metal cap 27. Hook or projection 200 provided on
To the metal cap 2 for the module board.
7 has the effect of realizing easy mounting.

【0028】上記従来例1において14の形状を溝型と
したが、これはキャビティ状の穴としてもよい。また樹
脂膜13の材質はポリイミドとしたがBCB(ベンゾシ
クロブデン)を用いてもよい。この場合には、BCB樹
脂膜13の誘電率がポリイミドより小さくなるため、受
動素子の寄生容量を低減でき、高周波特性を改善する効
果を有する。また半導体チップ17はシリコンMOSF
ETを形成したシリコンチップとしたが、これはもちろ
んGaAs FETを形成したGaAsチップやシリコ
ンバイポーラトランジスタを形成したシリコンチップで
あってもよい。また配線層21によりスパイラルインダ
クタを形成したが、さらに配線層21によりマイクロス
トリップ線路を形成し、整合回路の一部を構成してもよ
い。この場合モジュールの面積は多少増大するものの、
出力整合回路による電力損失を低減し、電力増幅器モジ
ュールの電力効率を向上する効果を持つ。
In the above-mentioned conventional example 1, the shape of the groove 14 is used, but it may be a cavity-like hole. Although the material of the resin film 13 is polyimide, BCB (benzocyclobutene) may be used. In this case, the dielectric constant of the BCB resin film 13 is smaller than that of polyimide, so that the parasitic capacitance of the passive element can be reduced, and the effect of improving high-frequency characteristics can be obtained. The semiconductor chip 17 is a silicon MOSF
Although the silicon chip has the ET formed thereon, it may be, of course, a GaAs chip having a GaAs FET formed thereon or a silicon chip having a silicon bipolar transistor formed thereon. Although the spiral inductor is formed by the wiring layer 21, a microstrip line may be further formed by the wiring layer 21 to constitute a part of the matching circuit. In this case, although the area of the module is slightly increased,
This has the effect of reducing power loss due to the output matching circuit and improving the power efficiency of the power amplifier module.

【0029】[0029]

【発明の効果】本発明によれば、高出力トランジスタで
生じる熱を熱抵抗の小さな金属板を通じて放熱するた
め、放熱性が良好なモジュールを構成でき、さらに薄膜
受動素子の適用により小型化および低コスト化に最適な
高周波電力増幅器モジュールを実現できる。
According to the present invention, the heat generated by the high-output transistor is radiated through the metal plate having a small thermal resistance, so that a module having good heat radiation can be constructed. A high-frequency power amplifier module optimal for cost reduction can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による実施例1の高周波増幅器モジュー
ルの断面図。
FIG. 1 is a sectional view of a high-frequency amplifier module according to a first embodiment of the present invention.

【図2】従来例1の高周波増幅器モジュールの断面図。FIG. 2 is a cross-sectional view of a high-frequency amplifier module of Conventional Example 1.

【図3】従来例2のハイブリッド集積回路モジュールの
断面図。
FIG. 3 is a cross-sectional view of a hybrid integrated circuit module of Conventional Example 2.

【図4】本発明による実施例1の高周波増幅器モジュー
ルの裏面レイアウト図。
FIG. 4 is a back layout diagram of the high-frequency amplifier module according to the first embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11,12…誘電体基板、13…樹脂膜、14…溝、1
5…穴、16…金属板、17…半導体チップ、18〜2
1…配線層、22…バイアホール、23…バイアホー
ル、24…薄膜容量、25…薄膜抵抗、26…ボンディ
ングワイヤ、27…メタルキャップ、51〜55…誘電
体基板、56〜58…接地導体、59…チップ抵抗ある
いはチップコンデンサ、60…金属パタン、61…誘電
体基板、62…スパイラルインダクタ、63…スルーホ
ール、64…GaAs ICチップ、65…CCBバン
プ、66…金属パタン、200…メタルキャップのフッ
クまたは突起部分、500…金属キャップ、501〜5
03…金属配線、504…GaAsチップ。
11, 12: dielectric substrate, 13: resin film, 14: groove, 1
5 ... Hole, 16 ... Metal plate, 17 ... Semiconductor chip, 18-2
DESCRIPTION OF SYMBOLS 1 ... Wiring layer, 22 ... Via hole, 23 ... Via hole, 24 ... Thin film capacitor, 25 ... Thin film resistance, 26 ... Bonding wire, 27 ... Metal cap, 51-55 ... Dielectric substrate, 56-58 ... Ground conductor, 59: chip resistor or chip capacitor, 60: metal pattern, 61: dielectric substrate, 62: spiral inductor, 63: through hole, 64: GaAs IC chip, 65: CCB bump, 66: metal pattern, 200: metal cap Hook or projection, 500 ... metal cap, 501-5
03: metal wiring, 504: GaAs chip.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】単一あるいは多層の誘電体からなる第1の
誘電体基板と、上記第1の誘電体基板上に形成した第1
の配線層と上記第1の誘電体基板上に積層した単一ある
いは多層の誘電体からなる第2の誘電体基板を有する高
周波電力増幅器モジュールにおいて、第1の誘電体基板
を貫く第1の穴もしくは溝を設け、第1の穴もしくは溝
の内部に第1の配線層に接続した金属板を設け、上記金
属板の下面の高さを上記第1の誘電体基板の下面の高さ
に対し±50μm以内で一致させ、上記第2の誘電体基
板を貫き、その側面が上記第1の穴もしくは溝の側面よ
り内側に位置し、その大きさが上記第1の穴もしくは溝
より小さな第2の穴を設け、上記金属板に対し裏面を接
続した半導体チップを第2の穴の内部に設け、上記半導
体チップの表面に能動素子を形成し、上記第2の誘電体
基板上にインダクタを含む受動素子を設けたことを特徴
とする高周波電力増幅器モジュール。
A first dielectric substrate formed of a single or multi-layer dielectric; and a first dielectric substrate formed on the first dielectric substrate.
A high frequency power amplifier module having a second dielectric substrate made of a single or multilayer dielectric laminated on the first dielectric substrate, and a first hole penetrating the first dielectric substrate. Alternatively, a groove is provided, a metal plate connected to the first wiring layer is provided inside the first hole or the groove, and the height of the lower surface of the metal plate is made higher than the height of the lower surface of the first dielectric substrate. Aligned within ± 50 μm, penetrated the second dielectric substrate, the side surface of which is located inside the side surface of the first hole or groove, and the second side of which is smaller than the first hole or groove. A semiconductor chip having a back surface connected to the metal plate is provided in the second hole, an active element is formed on the surface of the semiconductor chip, and an inductor is provided on the second dielectric substrate. High frequency power increase characterized by the provision of passive elements Breadth module.
【請求項2】単一あるいは多層の誘電体からなる第1の
誘電体基板と、上記第1の誘電体基板上に形成した第1
の配線層と上記第1の誘電体基板上に積層した単一ある
いは多層の誘電体からなる第2の誘電体基板と上記第2
の誘電体基板上に積層した樹脂層を有する高周波電力増
幅器モジュールにおいて、第1の誘電体基板を貫く第1
の穴もしくは溝を設け、第1の穴もしくは溝の内部に第
1の配線層に接続した金属板を設け、上記金属板の下面
の高さを上記第1の誘電体基板の下面の高さに対し±5
0μm以内で一致させ、上記第2の誘電体基板および上
記樹脂層を貫き、その側面が上記第1の穴もしくは溝の
側面より内側に位置し、その大きさが上記第1の穴もし
くは溝より小さな第2の穴を設け、上記金属板に対し裏
面を接続した半導体チップを第2の穴の内部に設け、上
記半導体チップの表面に能動素子を形成し、上記樹脂層
上および上記第2の誘電体基板上にインダクタを含む受
動素子を設けたことを特徴とする高周波電力増幅器モジ
ュール。
2. A first dielectric substrate comprising a single or multi-layer dielectric, and a first dielectric substrate formed on the first dielectric substrate.
A second dielectric substrate composed of a single or multi-layer dielectric laminated on the first dielectric substrate and the second dielectric substrate;
A high frequency power amplifier module having a resin layer laminated on the first dielectric substrate, wherein the first dielectric substrate penetrates the first dielectric substrate.
And a metal plate connected to the first wiring layer is provided inside the first hole or groove, and the height of the lower surface of the metal plate is set to the height of the lower surface of the first dielectric substrate. ± 5 for
Aligned within 0 μm, penetrated the second dielectric substrate and the resin layer, the side face was located inside the side face of the first hole or groove, and the size was larger than that of the first hole or groove. A small second hole is provided, a semiconductor chip having a back surface connected to the metal plate is provided inside the second hole, an active element is formed on a surface of the semiconductor chip, and a second chip is provided on the resin layer and the second chip. A high-frequency power amplifier module comprising a passive element including an inductor provided on a dielectric substrate.
【請求項3】上記請求項1または上記請求項2におい
て、上記第1の配線層を接地導体とし、上記第2の誘電
体基板上に形成した第2の配線層をストリップ導体とし
たマイクロストリップ線路を有し、上記マイクロストリ
ップ線路が電力増幅器の出力整合回路の一部をなすこと
を特徴とする高周波電力増幅器モジュール。
3. A microstrip according to claim 1, wherein said first wiring layer is a ground conductor, and said second wiring layer formed on said second dielectric substrate is a strip conductor. A high frequency power amplifier module having a line, wherein the microstrip line forms a part of an output matching circuit of a power amplifier.
【請求項4】単一あるいは多層の誘電体からなる第1の
誘電体基板、および上記第1の誘電体基板上に形成した
第1の配線層、および上記第1の誘電体基板上に積層し
た単一あるいは多層の誘電体からなる第2の誘電体基板
を同時に焼結して形成し、上記第1の誘電体基板を貫く
第1の穴もしくは溝は焼結前にパターニングし、上記第
2の誘電体基板上に樹脂層を形成した後にレーザー加工
により上記第2の誘電体基板および上記樹脂層を貫く穴
を形成し、第1の穴もしくは溝の内部に第1の配線層に
接続した金属板を設け、上記金属板に裏面を接続した半
導体チップを接続し、上記樹脂層上および上記第2の誘
電体基板上にインダクタを含む受動素子を設けたことを
特徴とする高周波電力増幅器モジュールの製造方法。
4. A first dielectric substrate made of a single or multi-layer dielectric, a first wiring layer formed on the first dielectric substrate, and laminated on the first dielectric substrate. A second dielectric substrate made of a single or multi-layered dielectric is sintered and formed at the same time, and a first hole or groove penetrating the first dielectric substrate is patterned before sintering. After forming a resin layer on the second dielectric substrate, a hole is formed through the second dielectric substrate and the resin layer by laser processing, and connected to the first wiring layer inside the first hole or groove. A high-frequency power amplifier, comprising: a metal plate, a semiconductor chip having a back surface connected to the metal plate, and a passive element including an inductor provided on the resin layer and the second dielectric substrate. Module manufacturing method.
JP9040371A 1997-02-25 1997-02-25 High-frequency power amplifier module Pending JPH10242377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9040371A JPH10242377A (en) 1997-02-25 1997-02-25 High-frequency power amplifier module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9040371A JPH10242377A (en) 1997-02-25 1997-02-25 High-frequency power amplifier module

Publications (1)

Publication Number Publication Date
JPH10242377A true JPH10242377A (en) 1998-09-11

Family

ID=12578796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9040371A Pending JPH10242377A (en) 1997-02-25 1997-02-25 High-frequency power amplifier module

Country Status (1)

Country Link
JP (1) JPH10242377A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010055094A (en) * 1999-12-09 2001-07-02 조덕수 Hybrid amplifier module integrated circuit for used in a handset and method for fabricating the same
WO2002078086A3 (en) * 2001-03-27 2003-07-31 Ericsson Inc Power transistor package with integrated flange for surface mount heat removal
JP2005500685A (en) * 2001-08-14 2005-01-06 スカイワークス ソリューションズ,インコーポレイテッド Structure of leadless chip carrier with embedded inductor and method for its fabrication
KR100618759B1 (en) * 1998-10-26 2006-08-31 다이요 유덴 가부시키가이샤 Hybrid module
WO2006090204A1 (en) * 2005-02-24 2006-08-31 Freescale Semiconductor, Inc. Lead-frame circuit package
JP2009071016A (en) * 2007-09-13 2009-04-02 Ibiden Co Ltd Electronic component and manufacturing method thereof
EP2575167A2 (en) 2011-09-30 2013-04-03 Fujitsu Limited Electronic device
JP2014175409A (en) * 2013-03-07 2014-09-22 Toshiba Corp Package for high frequency semiconductor
US8907467B2 (en) 2012-03-28 2014-12-09 Infineon Technologies Ag PCB based RF-power package window frame
US9629246B2 (en) 2015-07-28 2017-04-18 Infineon Technologies Ag PCB based semiconductor package having integrated electrical functionality
WO2017200561A1 (en) * 2016-05-18 2017-11-23 Macom Technology Solutions Holdings, Inc. High-power amplifier package
US9997476B2 (en) 2015-10-30 2018-06-12 Infineon Technologies Ag Multi-die package having different types of semiconductor dies attached to the same thermally conductive flange
US10134658B2 (en) 2016-08-10 2018-11-20 Macom Technology Solutions Holdings, Inc. High power transistors
US10225922B2 (en) 2016-02-18 2019-03-05 Cree, Inc. PCB based semiconductor package with impedance matching network elements integrated therein
US10468399B2 (en) 2015-03-31 2019-11-05 Cree, Inc. Multi-cavity package having single metal flange
FR3094565A1 (en) * 2019-03-28 2020-10-02 Stmicroelectronics (Grenoble 2) Sas Cooling of electronic devices
CN114613751A (en) * 2022-03-01 2022-06-10 中国电子科技集团公司第十研究所 High-power three-dimensional stacked three-dimensional integrated radio frequency front end micro-system
US12080660B2 (en) 2021-04-13 2024-09-03 Macom Technology Solutions Holdings, Inc. Package with different types of semiconductor dies attached to a flange

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100618759B1 (en) * 1998-10-26 2006-08-31 다이요 유덴 가부시키가이샤 Hybrid module
KR20010055094A (en) * 1999-12-09 2001-07-02 조덕수 Hybrid amplifier module integrated circuit for used in a handset and method for fabricating the same
WO2002078086A3 (en) * 2001-03-27 2003-07-31 Ericsson Inc Power transistor package with integrated flange for surface mount heat removal
JP2005500685A (en) * 2001-08-14 2005-01-06 スカイワークス ソリューションズ,インコーポレイテッド Structure of leadless chip carrier with embedded inductor and method for its fabrication
US8736034B2 (en) 2005-02-24 2014-05-27 Freescale Semiconductor, Inc. Lead-frame circuit package
WO2006090204A1 (en) * 2005-02-24 2006-08-31 Freescale Semiconductor, Inc. Lead-frame circuit package
JP2009071016A (en) * 2007-09-13 2009-04-02 Ibiden Co Ltd Electronic component and manufacturing method thereof
EP2575167A2 (en) 2011-09-30 2013-04-03 Fujitsu Limited Electronic device
JP2013077746A (en) * 2011-09-30 2013-04-25 Fujitsu Ltd Electronic device
US8829362B2 (en) 2011-09-30 2014-09-09 Fujitsu Limited Electronic device having member which functions as ground conductor and radiator
EP2575167A3 (en) * 2011-09-30 2016-09-14 Fujitsu Limited Electronic device
DE102013103119B4 (en) * 2012-03-28 2019-04-18 Infineon Technologies Ag PCB-BASED WINDOW FRAME FOR RF POWER PACKAGE, semiconductor package, and method of manufacturing a semiconductor package
US8907467B2 (en) 2012-03-28 2014-12-09 Infineon Technologies Ag PCB based RF-power package window frame
JP2014175409A (en) * 2013-03-07 2014-09-22 Toshiba Corp Package for high frequency semiconductor
US11437362B2 (en) 2015-03-31 2022-09-06 Wolfspeed, Inc. Multi-cavity package having single metal flange
US10468399B2 (en) 2015-03-31 2019-11-05 Cree, Inc. Multi-cavity package having single metal flange
US9629246B2 (en) 2015-07-28 2017-04-18 Infineon Technologies Ag PCB based semiconductor package having integrated electrical functionality
US9997476B2 (en) 2015-10-30 2018-06-12 Infineon Technologies Ag Multi-die package having different types of semiconductor dies attached to the same thermally conductive flange
US11004808B2 (en) 2015-10-30 2021-05-11 Cree, Inc. Package with different types of semiconductor dies attached to a flange
US10575394B2 (en) 2016-02-18 2020-02-25 Cree, Inc. PCB based semiconductor package with impedance matching network elements integrated therein
US10743404B2 (en) 2016-02-18 2020-08-11 Cree, Inc. PCB based semiconductor device
US10225922B2 (en) 2016-02-18 2019-03-05 Cree, Inc. PCB based semiconductor package with impedance matching network elements integrated therein
WO2017200561A1 (en) * 2016-05-18 2017-11-23 Macom Technology Solutions Holdings, Inc. High-power amplifier package
US9960127B2 (en) 2016-05-18 2018-05-01 Macom Technology Solutions Holdings, Inc. High-power amplifier package
US10700023B2 (en) 2016-05-18 2020-06-30 Macom Technology Solutions Holdings, Inc. High-power amplifier package
US11367674B2 (en) 2016-08-10 2022-06-21 Macom Technology Solutions Holdings, Inc. High power transistors
US10134658B2 (en) 2016-08-10 2018-11-20 Macom Technology Solutions Holdings, Inc. High power transistors
US11862536B2 (en) 2016-08-10 2024-01-02 Macom Technology Solutions Holdings, Inc. High power transistors
FR3094565A1 (en) * 2019-03-28 2020-10-02 Stmicroelectronics (Grenoble 2) Sas Cooling of electronic devices
US12080660B2 (en) 2021-04-13 2024-09-03 Macom Technology Solutions Holdings, Inc. Package with different types of semiconductor dies attached to a flange
CN114613751A (en) * 2022-03-01 2022-06-10 中国电子科技集团公司第十研究所 High-power three-dimensional stacked three-dimensional integrated radio frequency front end micro-system
CN114613751B (en) * 2022-03-01 2023-11-07 中国电子科技集团公司第十研究所 High-power three-dimensional stacked three-dimensional integrated radio frequency front end microsystem

Similar Documents

Publication Publication Date Title
US8299572B2 (en) Semiconductor die with backside passive device integration
US5717249A (en) RF power amplifying circuit device
US7638364B2 (en) Multilayer integrated circuit for RF communication and method for assembly thereof
KR100993277B1 (en) Semiconductor device and electronic device
KR100839067B1 (en) Electronic circuit module and manufacturing method thereof
US5796165A (en) High-frequency integrated circuit device having a multilayer structure
JPH10242377A (en) High-frequency power amplifier module
US20030060172A1 (en) Radio frequency module
US6828658B2 (en) Package for integrated circuit with internal matching
JP2000124358A (en) High-frequency integrated circuit
KR100993579B1 (en) Semiconductor device and electronic device
JPH05167302A (en) High frequency power amplifier circuit device and high frequency module including said circuit device
JP3515854B2 (en) High frequency power amplifier circuit device
JPH09116091A (en) Hybrid integrated circuit device
JP2000299427A (en) High-frequency integrated circuit device
WO2011104774A1 (en) Semiconductor device
US20050180122A1 (en) Electronic circuit module
JP2002009193A (en) Semiconductor device
WO1999054935A1 (en) Portable communication equipment
JPH1145976A (en) High frequency multi chip module and manufacture thereof
JP2008066657A (en) Semiconductor device and manufacturing method therefor
JP2003078102A (en) Flip-chip amplifier
JP2000133765A (en) High-frequency integrated circuit device
JPH10321762A (en) Semiconductor device
JP2003229521A (en) Semiconductor module and manufacturing method therefor