JPS58101408A - Operation of evaporative-cooling type transformer - Google Patents

Operation of evaporative-cooling type transformer

Info

Publication number
JPS58101408A
JPS58101408A JP20053381A JP20053381A JPS58101408A JP S58101408 A JPS58101408 A JP S58101408A JP 20053381 A JP20053381 A JP 20053381A JP 20053381 A JP20053381 A JP 20053381A JP S58101408 A JPS58101408 A JP S58101408A
Authority
JP
Japan
Prior art keywords
container
pressure
transformer
internal pressure
cooling liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20053381A
Other languages
Japanese (ja)
Inventor
Kiyoshi Tamura
清 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP20053381A priority Critical patent/JPS58101408A/en
Publication of JPS58101408A publication Critical patent/JPS58101408A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/18Liquid cooling by evaporating liquids

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transformer Cooling (AREA)

Abstract

PURPOSE:To maintain the internal pressure of the container at the prescribed value for the titled transformer using a recovery tank which is used to lessen the rise of internal pressure by a method wherein the insulation gas in the container is flown out into the cooling device when the internal pressure of the container reaches the prescribed pressure. CONSTITUTION:When the transformer starts operation, cooling liquid 13 is sprayed from a sprayer 4 upon the heated core 2 and the winding 3, the cooling liquid 13 is transformed into vapour 13a, the pressure of vapour goes up, interacted with the charged pressure of insulation gas 14, and the internal pressure of the container 15 is brought up. When the internal pressure 14 of the container reaches the prescribed value, stop valves 8 and 9 are opened, and the pressure in the container 15 is discharged to the cooling device 5. As a result, the insulating gas 14 and the vapour 8a of a high temperature are brought into the cooling device 5 from the connection pipe 6, and they are cooled there. Vapour 18a is condensed and transformed into the cooling liquid 13, and the operation of the transformer is continued. Through these procedures, the internal pressure of the container can be maintained at the prescribed value without having a recovery tank to be used for lessening the increased internal voltage.

Description

【発明の詳細な説明】 この発明は設置面積の縮少を可能にした蒸発冷却式変圧
器の運転方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of operating an evaporatively cooled transformer that enables a reduction in the installation area.

従来のものは第1図のように構成されていた。The conventional one was constructed as shown in Fig. 1.

図において、(1)は変圧器本体を形成する容器、(2
ンは鉄心、(3)は鉄心(2)に巻回された巻線、上記
鉄心(2)と巻線(3)とは容器(1)内に収納されて
いる。(4)は容器(1)の上部に鉄心(2)と対向し
て設けられた散布器、(5)は冷却器、(6)と(7)
とはそれぞれ容器(1)と冷却器(5)とを接続する接
続管、(81(9)はそれぞれの接続管(6) (7)
に設けられた開閉弁、叫は回収タンク、αυは容器(1
)と回収タンクQ9間を接続する接続管、(6)は接続
管Q1に設けられた開閉弁である。
In the figure, (1) is a container forming the transformer body, (2
The iron core (3) is a winding wound around the iron core (2), and the iron core (2) and the winding (3) are housed in a container (1). (4) is a diffuser installed at the top of container (1) facing iron core (2), (5) is a cooler, (6) and (7)
and (81 (9) are the connecting pipes (6) and (7) that connect the container (1) and the cooler (5), respectively).
The opening/closing valve installed in
) and the recovery tank Q9, and (6) is an on-off valve provided in the connection pipe Q1.

第1図のものは、各開閉弁(8) 61)を開き開閉弁
@を閉じた状態で、容器(1)内に凝縮性で絶縁性を有
し所定の温度で蒸発する冷却液(至)が所定量注入され
、さらに非凝縮性の絶縁性ガスα◆が所定の圧力で封入
されている。
In the case shown in Figure 1, when each on-off valve (8) 61) is opened and the on-off valve @ is closed, a cooling liquid that is condensable and insulating and evaporates at a predetermined temperature is placed in the container (1). ) is injected in a predetermined amount, and a non-condensable insulating gas α◆ is also sealed at a predetermined pressure.

図示の状態で変圧器が運転されると、鉄心(2)と巻線
(3)が発熱する。この鉄心(2)と巻線(3)を冷却
するために冷却液(2)をポンプ(図示せず)で汲み上
げ、散布器(4)から鉄心(2)と巻線(3)に散布さ
れる。
When the transformer is operated in the illustrated state, the iron core (2) and winding (3) generate heat. In order to cool the iron core (2) and the winding (3), the cooling liquid (2) is pumped up by a pump (not shown) and sprayed onto the iron core (2) and the winding (3) from a sprayer (4). Ru.

これによって、冷却液(至)が蒸発するときの気化潜熱
によって鉄心(2)と巻線(3)とが冷却される。蒸発
した冷却液(至)の蒸気(18a)は絶縁性ガスQ4と
一緒に接続管(6)から冷却器(5)へ流入する。冷却
器(6)で冷却された蒸気(laa)は凝縮されて冷却
液(至)となり、接続管(7)から容器(1)内へ戻さ
れる。
As a result, the iron core (2) and the winding (3) are cooled by the latent heat of vaporization when the cooling liquid evaporates. The vapor (18a) of the evaporated cooling liquid flows into the cooler (5) from the connecting pipe (6) together with the insulating gas Q4. The steam (laa) cooled by the cooler (6) is condensed to become a cooling liquid, which is returned into the container (1) through the connecting pipe (7).

このまりに、変圧器の運転で温度が上昇する鉄心(2)
と巻線(3)とは、冷却液(2)の蒸発によって冷却さ
れる。したがって、蒸気(laa)の発生によって容器
(1)内部の圧力が上昇し、内部圧力が所定の圧力にな
ると、開閉弁(2)を開いて容器(1)内の絶縁性ガス
α荀と蒸気(18B)とを回収タンクα1へ流し、容器
(11a部圧力を所定の圧力以下にして、変圧器の運転
が継続される。
In this case, the iron core (2) whose temperature rises due to the operation of the transformer.
and the winding (3) are cooled by evaporation of the cooling liquid (2). Therefore, the pressure inside the container (1) increases due to the generation of steam (laa), and when the internal pressure reaches a predetermined pressure, the on-off valve (2) is opened and the insulating gas αXun and steam inside the container (1) are opened. (18B) is flowed into the recovery tank α1, and the pressure in the container (11a) is lowered to a predetermined pressure or less, and operation of the transformer is continued.

従来の運転方法では、容器(1)の内部圧力を所定の圧
力以下に保つために、回収タンクαQが必要であり、設
置面積が大きくなるという欠点があった。
The conventional operating method requires a recovery tank αQ to maintain the internal pressure of the container (1) below a predetermined pressure, which has the disadvantage of increasing the installation area.

この発明は上記欠点を解消するためになされたもので、
冷却器を真空状−にして変圧器を起動させ容器内部の圧
力が起動時の圧力より高い所定の圧力になると容器中の
絶縁カスを冷却器へ向って流すようにした蒸発冷却式変
圧器を提供する。
This invention was made to eliminate the above drawbacks.
This is an evaporative cooling transformer in which the cooler is evacuated, the transformer is started, and when the pressure inside the container reaches a predetermined pressure higher than the pressure at startup, the insulation scum in the container flows toward the cooler. provide.

以下図について説明する。第29において、(2)(1
) (4) (5) (6) (71(8) (91Q
、lα◆は従来と同様である。(至)は容器で接続管(
6)と(7)とで冷却器(6)と接続されている。
The figures will be explained below. In No. 29, (2) (1
) (4) (5) (6) (71(8) (91Q
, lα♦ are the same as before. (to) is a container and a connecting pipe (
6) and (7) are connected to the cooler (6).

第2図のものは、開閉弁(8)と(9)とを開いた状態
で、冷却器(5)と容器(至)の内部を真空にした後書
開閉弁(8)と(9)とを閉じ、容器(ト)内に冷却液
(至)が注入され絶縁性ガスa4が所定の圧力で封入さ
れている。
The one in Figure 2 shows the on-off valves (8) and (9) that are opened to create a vacuum inside the cooler (5) and the container (to). is closed, a cooling liquid (2) is injected into the container (G), and an insulating gas A4 is sealed at a predetermined pressure.

図示の状態で変圧器が運転されると、発熱した鉄心(2
)と巻線(3)に散布器(4)から冷却液(至)がかけ
られ、冷却液(至)の蒸発によって冷却液(至)が蒸気
(18m)となり、蒸気圧力が上昇し絶縁性ガスα◆の
封入圧力と協働して容器(ト)内部の圧力が上昇する。
When the transformer is operated in the condition shown, the iron core (2
) and the winding (3) from the sprayer (4), the cooling liquid (through) evaporates and becomes steam (18 m), the steam pressure increases and the insulation The pressure inside the container (G) increases in cooperation with the sealing pressure of the gas α◆.

この内部圧力が所定の圧力になると各開閉弁(8)と(
9)を開き、容器(ト)内の圧力を冷却器(5)へ向っ
て放圧させる。これに誹って、温度の高くなった絶縁性
ガスQ4と蒸気(18a)とが接続管(6)から冷却器
(5)へ入って冷却され、蒸気(18a)は凝縮されて
冷却液(至)となり、運転が継続される。
When this internal pressure reaches a predetermined pressure, each on-off valve (8)
9) to release the pressure inside the container (G) toward the cooler (5). Due to this, the insulating gas Q4 and steam (18a), which have become high in temperature, enter the cooler (5) from the connecting pipe (6) and are cooled, and the steam (18a) is condensed and the cooling liquid ( ), and operation continues.

この発明によれば、冷却器内部を真空にして変圧器を起
動させ、容器内部の圧力が起動時の圧力より扁い所定の
圧力になると、容器中の絶縁ガスを冷却器へ流すように
したので、内圧の上昇を緩和するための(ロ)収タンク
を必要とせず、容器の内圧を所定の値に保ちながら変圧
器を運転することができる。
According to this invention, the inside of the cooler is evacuated and the transformer is started, and when the pressure inside the container reaches a predetermined pressure lower than the pressure at startup, the insulating gas in the container is made to flow to the cooler. Therefore, the transformer can be operated while maintaining the internal pressure of the container at a predetermined value without requiring (b) a storage tank for mitigating the rise in internal pressure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の正面図、#82図は発明の運転方法を説
明する正面図である。図において、(2)は鉄心、(3
)は巻線、(5)は冷却器、(2)は冷却液、(18M
)は蒸気、O彎は絶縁性ガス、(至)は容器である。 なお各図中同一符号は同−又は相当部分を示す。 第1図 第2図
FIG. 1 is a front view of the conventional system, and FIG. 82 is a front view illustrating the operating method of the invention. In the figure, (2) is the iron core, (3
) is the winding, (5) is the cooler, (2) is the coolant, (18M
) is a steam, O-curvature is an insulating gas, and (to) is a container. Note that the same reference numerals in each figure indicate the same or equivalent parts. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 非凝縮性の絶縁性ガスが所定の圧力で封入された容器内
に鉄心とこの鉄心に巻回された巻線とを収納し、比重が
上記絶縁性ガスの比重より大きい凝縮性で絶縁性を有す
る冷却液を上記鉄心及び上記巻線にかけて上記冷却液の
蒸発時の気化潜熱で冷却し、気化した上記冷却液を上記
容器と連結された冷却器で凝縮させるようにした蒸発冷
却式変圧器の運転方法において、上記冷却器の内部を真
空にして変圧器を起動させ、上記容器の内部圧力が起動
時の圧力より高い所定の圧力になると上記容器中の上記
絶縁性ガスを上記冷却器内へ流すようにしたことを特徴
とする蒸発冷却式変圧器の運転方法。
An iron core and a winding wound around this iron core are housed in a container filled with a non-condensable insulating gas at a predetermined pressure, and the condensable gas has a higher specific gravity than the above-mentioned insulating gas to provide insulation. An evaporative cooling type transformer in which a cooling liquid containing the liquid is cooled by the latent heat of vaporization during evaporation of the cooling liquid over the iron core and the winding, and the vaporized cooling liquid is condensed in a cooler connected to the container. In the operating method, the inside of the cooler is evacuated and the transformer is started, and when the internal pressure of the container reaches a predetermined pressure higher than the pressure at startup, the insulating gas in the container is transferred into the cooler. A method of operating an evaporative cooling transformer characterized by allowing the current to flow.
JP20053381A 1981-12-11 1981-12-11 Operation of evaporative-cooling type transformer Pending JPS58101408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20053381A JPS58101408A (en) 1981-12-11 1981-12-11 Operation of evaporative-cooling type transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20053381A JPS58101408A (en) 1981-12-11 1981-12-11 Operation of evaporative-cooling type transformer

Publications (1)

Publication Number Publication Date
JPS58101408A true JPS58101408A (en) 1983-06-16

Family

ID=16425882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20053381A Pending JPS58101408A (en) 1981-12-11 1981-12-11 Operation of evaporative-cooling type transformer

Country Status (1)

Country Link
JP (1) JPS58101408A (en)

Similar Documents

Publication Publication Date Title
US3024298A (en) Evaporative-gravity cooling systems
EP0550748B1 (en) Solid/gas reaction cooling plant having a reactor equipped with cooling means
US3887759A (en) Evaporative cooling system employing liquid film evaporation from grooved evaporator surface and vapor push pump for circulating liquid
JPS58101408A (en) Operation of evaporative-cooling type transformer
US3444308A (en) Vapor cooled electrical transformer
US2344245A (en) Refrigeration
GB1595094A (en) Method and system for cooling electrical apparatus
JPS5860512A (en) Evaporation cooling induction electric appliance
JPS6032334B2 (en) transformer
JPS58101407A (en) Vaporizative-cooling type transformer
JPH07117596B2 (en) Natural heat dissipation type containment
US1752204A (en) Vapor electric device
US1663709A (en) Cooling device for valves and the like
JPH1054680A (en) Operating liquid sealing method and operating liquid sealing device for heat pipe
JPS6011422Y2 (en) evaporative cooling equipment
JP3093306B2 (en) Emergency condenser system
US2088390A (en) Cooling apparatus
US1926286A (en) Refrigerating plant
US1549990A (en) Refrigerating apparatus
JPS5818139Y2 (en) Double effect absorption chiller
US2352798A (en) Refrigeration
JPS611962A (en) Superfluid helium generator
JPH06222181A (en) Cooling facility of nuclear reactor containment
JPS6343992B2 (en)
JPH0443640A (en) Isopropyl alcohol vapor drying equipment