JPS58100688A - Electrolytic cell for generating fluorine - Google Patents

Electrolytic cell for generating fluorine

Info

Publication number
JPS58100688A
JPS58100688A JP56198477A JP19847781A JPS58100688A JP S58100688 A JPS58100688 A JP S58100688A JP 56198477 A JP56198477 A JP 56198477A JP 19847781 A JP19847781 A JP 19847781A JP S58100688 A JPS58100688 A JP S58100688A
Authority
JP
Japan
Prior art keywords
cathode
electrolytic cell
anode
fluorine
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56198477A
Other languages
Japanese (ja)
Other versions
JPS5937351B2 (en
Inventor
Yoshio Oda
小田 吉男
Takashi Otoma
音馬 敞
Sadao Okado
貞男 岡戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP56198477A priority Critical patent/JPS5937351B2/en
Publication of JPS58100688A publication Critical patent/JPS58100688A/en
Publication of JPS5937351B2 publication Critical patent/JPS5937351B2/en
Expired legal-status Critical Current

Links

Abstract

PURPOSE:To reduce a chance of the contact of bubbles of gaseous F2 with bubbles of gaseous H2 and to attain enhanced current efficiency by making the cathode of an electrolytic cell provided with no diaphragm open so as to lead a gas produced by electrolysis to the rear side of the cathode. CONSTITUTION:A skirt 3 for preventing gaseous F2 and gaseous H2 from mixing with each other is set on the surface of an electrolytic soln. in the electrolytic chamber 5 of an electrolytic cell for generating F2. HF and a salt contg. F are fed to the chamber 5 and electrolyzed to produce F2 and H2. Most of the F2 produced on the open cathode 2 is led to the rear side of the cathode 2 through the openings of the cathode 2. The cathode 2 has 0.1-5cm thickness in the horizontal direction, and it is formed with louverlike or expanded metal. By making use of the electrolytic cell provided with the open cathode and no diaphragm, enhanced current efficiency is attained.

Description

【発明の詳細な説明】 本発明は弗素発生用電解槽、特には、高電流効率かつ低
電解電圧で弗酸を電解して弗素と水素を生成せしめうる
弗素発生用電解槽に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrolytic cell for fluorine generation, and particularly to an electrolytic cell for fluorine generation that can generate fluorine and hydrogen by electrolyzing hydrofluoric acid with high current efficiency and low electrolysis voltage.

弗酸を電解して弗素を製造する、いわゆる弗酸電解槽に
は各社のものが提案されているが、本発明はそのうちの
無隔膜電解槽に関するものである。
Various companies have proposed so-called hydrofluoric acid electrolytic cells for producing fluorine by electrolyzing hydrofluoric acid, and the present invention relates to a diaphragmless electrolytic cell among them.

無隔膜電解槽は、陽極と陰極の間に隔膜が設けられてい
ないち解室に弗酸と弗素含有塩を供給し、これを電解す
るものであるが、従来の電解槽においては、発生した弗
素と水素が電解室の中で会合して弗酸に戻ることがあシ
、これによる電流効率の低下や、発生した気体(弗素ガ
ス及び水素ガス)が多量に電極表面またはその近傍にあ
って電極面を遮蔽し、見掛上有効電極面積低下による電
解電圧の上昇を起すという欠点があった。これに対し、
陽陰極間にスカートを°設けて水素と弗素の混合を防ぐ
と共に、陽陰極間距離を長くしたり、電極の液浸深さを
灼くすること、あるいは、陽陰極間にモイル等の耐食性
の高い金属網を設けたりして気泡の相互拡散を防止する
ことがとられていた。
A non-diaphragm electrolytic cell does not have a diaphragm between the anode and the cathode and supplies hydrofluoric acid and fluorine-containing salt to the decomposition chamber for electrolysis. Fluorine and hydrogen may combine in the electrolytic chamber and return to hydrofluoric acid, which may reduce the current efficiency or cause a large amount of generated gas (fluorine gas and hydrogen gas) to be on or near the electrode surface. This method has the disadvantage that it shields the electrode surface and causes an increase in electrolytic voltage due to a decrease in the apparent effective electrode area. In contrast,
In addition to providing a skirt between the anode and cathode to prevent hydrogen and fluorine from mixing, it is also possible to increase the distance between the anode and cathode, increase the immersion depth of the electrode, or use highly corrosion-resistant material such as moil between the anode and cathode. Measures have been taken to prevent the mutual diffusion of air bubbles, such as by providing a metal mesh.

しかしながら、前者の方法では、極間距離が犬になって
摺電圧が上昇したり、電極の液浸深芒が小さいことによ
る有効電極面値の減少により、単位電解検車りの生産量
が少くなるという欠点があった。
However, in the former method, the production volume of unit electrolytic inspection wheels decreases because the distance between the electrodes becomes narrower, increasing the sliding voltage, and the effective electrode surface value decreases due to the smaller electrode immersion depth. There was a drawback.

また、後者の方法による場合は、モネルのように耐食性
の大きな材質からなる金属網であっても耐用期間は短く
、頻繁に取り換える必要がめった。
Furthermore, in the case of the latter method, even if the metal mesh is made of a highly corrosion-resistant material such as Monel, its service life is short and it is rarely necessary to replace it frequently.

本発明者等は、従来の電解槽がもつ上記欠点を克服する
手段について種々検討した結果、陰極に特殊な工夫をこ
らすことによって、これらの問題を解決しうろことを見
出し、本発明を完成しえたもので、本発明は電解液面上
に弗素ガスと水素ガスの混合を防ぐ隔壁(スカート)が
設けられ、陽陰極間に形成される電解室に弗酸及び弗素
含有塩を供給し、これを電解して弗素及び水素を発生せ
しめる弗素発生用電解槽において、陰極は開孔性であっ
て、大部分の気体が裏面(陽極との反対面)に移動する
ものであることを特徴とする弗素発生用電解槽を要旨と
す  。
As a result of various studies on ways to overcome the above-mentioned drawbacks of conventional electrolytic cells, the present inventors discovered that these problems could be solved by devising a special method for the cathode, and completed the present invention. In this invention, a partition wall (skirt) is provided on the electrolytic solution surface to prevent mixing of fluorine gas and hydrogen gas, and hydrofluoric acid and a fluorine-containing salt are supplied to an electrolytic chamber formed between anode and cathode. A fluorine generation electrolytic cell that generates fluorine and hydrogen by electrolyzing fluorine and hydrogen, is characterized in that the cathode is open-pored and most of the gas moves to the back side (the opposite side to the anode). The main topic is an electrolytic cell for fluorine generation.

るものである。It is something that

本発明に用いられる陰極は従来用いられてきた平板状の
陰極(従来は電解槽の槽壁をその甘ま陰極として用いる
ことが多かった。)と異り、開孔性で、かつ勿体が裏面
(陽極との反対面)に移動するようなものであることを
特徴とする。
The cathode used in the present invention is different from the flat cathode used in the past (in the past, the wall of the electrolytic cell was often used as the cathode). (to the opposite side of the anode).

即ち、陰極面で発生した水素は運かに陰極の開孔部を通
して陰極の裏口f1に移動するため、陰極近傍に7?+
J留したり、陽極側に拡散する気泡が少く、従って、陽
極表面または付近を上昇または浮遊する弗素ガス気泡と
拡散水ツ(ガス気泡が会合、反応することが少く、電流
効率を高く維持することができる。
That is, hydrogen generated on the cathode surface happens to move to the back door f1 of the cathode through the opening of the cathode, so that 7? +
Fewer bubbles remain or diffuse to the anode side, and therefore, fluorine gas bubbles rising or floating on or near the anode surface and diffused water (gas bubbles are less likely to associate and react, maintaining high current efficiency. be able to.

更に、水素は陰極裏面に移動することにより陽陰極間、
竹に陰極表面近傍に油゛醪するガス部が給塵に減り、陰
極面における気泡の付着や、遮蔽による摺電圧の上昇を
きたさないため、従犀−のj、a合に比べて摺電圧の低
下効果も伺られる。
Furthermore, hydrogen moves to the back surface of the cathode, and between the anode and cathode,
The gas area filled with oil near the cathode surface of the bamboo is reduced to dust supply, and the sliding voltage is lower than that of the J and A combinations of J and A, as this reduces the amount of gas that accumulates in the vicinity of the cathode surface. It can also be seen that there is a decreasing effect on

本願発明者°等は、上記の如き効果を持つ陰極について
史に4更劇を加えた結果、特定の幾何学的形状特性を持
つ場合に好1しく上記目的が達成でれることを見出した
The inventors of the present application have made four changes to the history of cathodes having the above-mentioned effects, and have found that the above object can be preferably achieved when the cathode has specific geometrical characteristics.

以下に、この点について図面により説明する。This point will be explained below with reference to the drawings.

第1図は本発明電解槽の1例についての半載断面図であ
る。1id例えば炭素からなる陽極で、−は陰極である
。3は隔壁(スカート)、4は冷却ジャケット、5は電
解室である。第】ンjにおいては、陰極はルーバー状の
場合を示し、第2図は、第1図の陰極の部分拡大図を示
す。第2図に示される陰極はルーバーの羽根が水平面と
45°の角度で配置され、羽根の配置間隔は羽根の垂直
厚みと同じであり、羽根の巾は上記間隔の3倍となって
いる状態を示す。第3図は本発明電解の陰極のルーバー
形状について、別の好ましい態様を示すもので、6が陰
極、背面に向ってわずかに傾斜している場合を示寸。こ
の場合、ガスはより陰極背面に抜けやすい。M極で発生
した水素は羽根の間隙に沿って陰極裏面に抜けるt4j
) Mを以下に説明する。
FIG. 1 is a half-mounted sectional view of an example of the electrolytic cell of the present invention. 1id is an anode made of carbon, for example, and - is a cathode. 3 is a partition wall (skirt), 4 is a cooling jacket, and 5 is an electrolysis chamber. 2 shows a case in which the cathode has a louver shape, and FIG. 2 shows a partially enlarged view of the cathode in FIG. 1. In the cathode shown in Figure 2, the louver blades are arranged at an angle of 45° with the horizontal plane, the interval between the blades is the same as the vertical thickness of the blades, and the width of the blades is three times the above interval. shows. Fig. 3 shows another preferred embodiment of the louver shape of the cathode in the electrolysis of the present invention, where 6 indicates the cathode, which is slightly inclined toward the back surface. In this case, gas is more likely to escape to the back side of the cathode. Hydrogen generated at the M pole escapes to the back surface of the cathode along the gap between the blades t4j
) M will be explained below.

即ち、第2図の7の部分で発生した水素ガスは図の右上
方に向って移動し、これによってガスリフト効果により
′電解液も右上方部に移動する。この時、6の部分で発
生した水素ガスの犬部分は吸引効果によって羽根の間隙
に入りこ与、やはシ右上方部に移動する。
That is, the hydrogen gas generated at the portion 7 in FIG. 2 moves toward the upper right in the figure, and the electrolyte also moves toward the upper right due to the gas lift effect. At this time, the hydrogen gas generated at the part 6 enters the gap between the blades due to the suction effect and moves to the upper right part.

本発明者等は、この羽根の幾何学的配置が特定な場合に
、水素の裏面への脱離が好ましく行われ、電流効率の向
上と電解電圧の低下に好適であることを見出した。
The present inventors have found that when the geometrical arrangement of the blades is specific, hydrogen is preferably desorbed to the back surface, which is suitable for improving current efficiency and reducing electrolysis voltage.

即ち、陽極側から陰極を見た時の可視部分(第2図にお
ける太線で示した垂直部分6及び傾斜部分7の合計)の
面積を基準面積にして、水平面に対して45°以上、9
0’以下の陰極面の面積が基準面積の50%以上であり
、水平面に対して45°以上、90’未満の陰極面の面
積が基準面積の20%以上である場合に、陰極裏面に水
素ガスがかも効果的に移動しやすく、上記範囲をはずれ
ると、陰極裏面への水素ガスの抜けは必すしもよくない
In other words, the area of the visible part when looking at the cathode from the anode side (the sum of the vertical part 6 and the inclined part 7 shown by the bold line in FIG. 2) is the reference area, and the angle is 45 degrees or more with respect to the horizontal plane.
When the area of the cathode surface below 0' is 50% or more of the reference area, and the area of the cathode surface at 45° or more and less than 90' with respect to the horizontal plane is 20% or more of the reference area, hydrogen is added to the back surface of the cathode. Gas easily moves effectively, and if the above range is exceeded, hydrogen gas will not necessarily escape to the back surface of the cathode.

ここで、水平面とな纂角度の表示は、陰極面の陰極背後
に向けて上り勾配の面の水平面とな・角度で測定するも
のとする。
Here, the angle between the horizontal plane and the horizontal plane is measured by the angle between the horizontal plane and the upward slope of the cathode surface toward the back of the cathode.

第2図の場合について以上の関係を具体的に示す。ここ
で、図面垂直方向における羽根の巾をbとすると、 (A)  陽極から見た可視部分の陰極面積= (a 
+E a ) b (B)  水平面に対し45°以上、90°以下の陰極
面の面積 = (a+v/T a )b (C)  水平面に対し45°以上、9−00未酒の陰
極面の面積 iab であるから、(B)の(A)に対する割合は100%、
(0)の(A)に対する割合はfab/(a+[a)b
即ち、58.5%となる。
The above relationship will be specifically shown in the case of FIG. Here, if the width of the blade in the vertical direction of the drawing is b, (A) Cathode area of the visible part seen from the anode = (a
+E a ) b (B) Area of the cathode surface at 45° or more and 90° or less with respect to the horizontal plane = (a+v/T a ) b (C) Area of the cathode surface at 45° or more and 9-00 unsalted relative to the horizontal plane iab, so the ratio of (B) to (A) is 100%,
The ratio of (0) to (A) is fab/(a+[a)b
That is, it becomes 58.5%.

第4図〜第7図は本発明電解槽に用いられる陰極の他の
態様を示す断面図で、ともにエキスバンドメタルの場合
を示す。
4 to 7 are cross-sectional views showing other embodiments of the cathode used in the electrolytic cell of the present invention, and both show the case of expanded metal.

第4図は、エキスバンドメタル陰極をM h<側からみ
だ正面図である。
FIG. 4 is a front view of the extended metal cathode from the M h< side.

第5図、第6図、第7図は第4図のA−A断面における
断面[>1を示す。
5, 6, and 7 show a cross section [>1] taken along the line AA in FIG. 4.

第5図はエキスバンドメタルの開孔を形成する部材が一
辺aからなる正方形の断面形状を有する場合で、第6図
ね:上記部材が一辺2a、他辺3aからなる長方形の断
面形状を有し、長辺3aの面が陰極の裏面に向って昇り
傾斜となる場合を示す。
Figure 5 shows a case where the member forming the opening in the expanded metal has a square cross-sectional shape with one side a, and Figure 6: The above member has a rectangular cross-sectional shape with one side 2a and the other side 3a. However, the case where the surface of the long side 3a slopes upward toward the back surface of the cathode is shown.

上述の第2図の場合と同様の計算方法により、第5図の
場合には 45°以上、90°以下の一極面の面積の割合−50係
45°以上、90°未満の陰極面の■」イt°の割合=
50チとなり、第6図の場合には 45°以上、90’以下の陰極面の面積の割合=60チ
45°以上、90°未満の陰極面の面柘の割合=60チ
となる。
Using the same calculation method as in the case of Fig. 2 above, in the case of Fig. 5, the ratio of the area of one pole surface of 45° or more and 90° or less - 50 factor of the cathode surface of 45° or more and less than 90° ■” It ° ratio =
In the case of FIG. 6, the ratio of the area of the cathode surface between 45° and 90' is 60 cm.The ratio of the area of the cathode surface between 45° and 90° is 60 cm.

第7図は、薄板に巾の広いスリットを入れ、引張って得
られる、第6図よりも更に該部材の二辺の比が大きい場
合を示す。
FIG. 7 shows a case where the ratio of the two sides of the member obtained by making a wide slit in a thin plate and pulling it is even larger than that in FIG. 6.

上述の如き陰極は、その水平方向の厚さが厚い程、気泡
の引き込み効果が大きいが、余り厚すさ゛ると、気泡及
び電解液の通:11!抵抗が太きくなり、陰極裏面に抜
ける気泡量の減少をきたすので、その厚さく即ち、第2
図の場合の3a。
The larger the thickness of the cathode in the horizontal direction, the greater the effect of drawing in air bubbles, but if the cathode is too thick, air bubbles and electrolyte will pass through. Since the resistance becomes thicker and the amount of bubbles that escape to the back surface of the cathode decreases, the thickness
3a in case of figure.

第5図の場合の5 a 、第6図の場合の55 a /
2)は0.1〜5α程度が好ましく、史には05〜3σ
程度がより好ましい。
5 a in the case of Figure 5, 55 a / in the case of Figure 6
2) is preferably about 0.1 to 5α, and 05 to 3σ for history.
degree is more preferable.

本電極は各種の型の電解槽に使用可畦でセノるが、第1
図に示した形式の電解槽は陰極襄面部に形成される通路
に強い上昇流が生じ、これがまた吸引効果を高めるもの
である。
This electrode can be used in various types of electrolytic cells, but the
In the electrolytic cell of the type shown in the figure, a strong upward flow occurs in the passage formed in the cathode sleeve, which also enhances the suction effect.

また、本発明電解槽の陰極の形状としては、開孔性であ
ることが必要であるが、その開孔率としては30〜90
%、好ましくは40〜80チとするのがよい。また、そ
の開孔が規則性をもって配列されている場合、その繰り
返し単位としては3〜25胡、更には5〜15mとする
のがよい。
In addition, the shape of the cathode of the electrolytic cell of the present invention needs to be porous, and its porosity is 30 to 90.
%, preferably 40 to 80 inches. Further, when the openings are arranged with regularity, the repeating unit is preferably 3 to 25 meters, and more preferably 5 to 15 meters.

本発明電解槽において、陰極背面と槽壁督での距離は特
に限定される必ケはないが、この距離が余りに大きいと
前述の吸引効果を滅し、槽壁からの冷却効果が、単に自
然対流による(のだけになるため冷却効果が大きくなく
、また、逆に余りに小さいと、陰極裏面に排出される水
素ガスの上昇に77為かる抵抗が大きくなり、ガス気泡
及び電解液の吸引効果を阻害するため好ましくなく、結
局、通電量(即ち、水素ガス発生量)、陰極の浸漬深さ
などにもよるが、上記距離は0.3〜4.0 cm、更
には0.5〜2.0 cm程度とするのがよい。
In the electrolytic cell of the present invention, the distance between the back of the cathode and the wall of the cell does not have to be particularly limited, but if this distance is too large, the suction effect described above will be lost, and the cooling effect from the cell wall will simply be due to natural convection. The cooling effect is not great because the cooling effect is only due to The above distance is 0.3 to 4.0 cm, more preferably 0.5 to 2.0 cm, depending on the amount of current applied (that is, the amount of hydrogen gas generated), the immersion depth of the cathode, etc. It is preferable to set it to about cm.

また、電解液の上部には、発生した弗素ガスと水素ガス
が混合しないように隔壁(スカート)を設けることが必
要である。本発明の電解槽においては、電解液中で弗素
ガスと水素ガスが混合されることは極めて少ないもので
あるが、上記隔壁を若干電解液中にまで延長させること
は上記効果を更によく達成させうる。
Further, it is necessary to provide a partition wall (skirt) above the electrolytic solution to prevent the generated fluorine gas and hydrogen gas from mixing. In the electrolytic cell of the present invention, it is extremely rare for fluorine gas and hydrogen gas to be mixed in the electrolytic solution, but by extending the partition wall slightly into the electrolytic solution, the above effects can be achieved even better. sell.

隔壁は、電解液面下にわずかな深さに浸漬せしめ−るの
が好ましく、本発明電解槽の場合、陽極にて発生した弗
素ガスはほぼ電極面に沿って上昇するが、液面近傍では
陰極側への拡散が起る。また陰極にて発生した水素ガス
の大部分は陰極裏面に移動するが、1部、陽陰;極間に
残留する水素カスが電解液中を上昇するにつれて陽極側
に拡散し、弗素ガスと会合する。隔壁を若干電解液中に
浸漬せしめるのは、これらを効果的に防止するためであ
る。
It is preferable that the partition wall be immersed to a slight depth below the electrolyte surface. In the case of the electrolytic cell of the present invention, the fluorine gas generated at the anode rises almost along the electrode surface, but near the liquid surface it rises. Diffusion to the cathode side occurs. In addition, most of the hydrogen gas generated at the cathode moves to the back surface of the cathode, but a portion of the hydrogen gas remaining between the anode and the anode diffuses to the anode side as it rises in the electrolyte and combines with fluorine gas. do. The reason why the partition walls are slightly immersed in the electrolyte is to effectively prevent these problems.

本発明電解槽の場合でも、陰極の障漬深さが大きい場合
においては、陰極の底部より発生した水素ガスのうち、
後方に吸引されなかった水素ガスは陰極前面部を上昇中
に陽極側1に拡散する割合が大となる。この場合には、
陰極裏面への吸い込み効果を増すために、陰極前面に廂
(ひさし)を突出させるのがよい。
Even in the case of the electrolytic cell of the present invention, when the depth of obstruction of the cathode is large, out of the hydrogen gas generated from the bottom of the cathode,
A large proportion of the hydrogen gas that is not sucked backwards diffuses toward the anode side 1 while moving up the front surface of the cathode. In this case,
In order to increase the suction effect to the back surface of the cathode, it is preferable to have a ridge protruding from the front surface of the cathode.

第8図は、本発明電解槽の陰極に廂を設置した場合の部
分断面図を示すものである。
FIG. 8 shows a partial cross-sectional view of the electrolytic cell of the present invention in which a casing is installed on the cathode.

第8図において廂8は、陰極前面に突出するようにルー
バーの羽根の下面にとりつけられている。この廂は必ず
しもルーバーの羽根の下面でなく、上面にと9つけられ
ることも可能であるが、ルーバーの羽根の上面は下面に
比べて電極面としてよシ有効に作用するものであるため
廂は羽根の下面にとりつけるのがよい。甘た、この廂は
、その材質について、特に限定することは必要ないが、
耐熱性、耐薬品性等の観虚から弗素樹脂装とするのが好
ましい。また、金属製であって、表面にシートを被覆し
たり、コーティングを施したりしたものを用いてもよい
In FIG. 8, the rib 8 is attached to the lower surface of the louver blade so as to protrude in front of the cathode. This area is not necessarily the bottom surface of the louver blade, but it is also possible to attach it to the top surface, but since the top surface of the louver blade functions more effectively as an electrode surface compared to the bottom surface, the area is It is best to attach it to the underside of the blade. Unfortunately, there is no need to limit the material for this part, but
From the viewpoint of heat resistance, chemical resistance, etc., it is preferable to use a fluororesin coating. Alternatively, it may be made of metal, and its surface may be covered with a sheet or coated.

この弗素樹脂製シートは、例えば接着剤で羽根に接合さ
れうる。他に差し込みによる1カ1定もボルト締めによ
る同定も実際的である。寸だ、この廂は、陰極の浸漬深
さが大きい場合でも、羽根1枚毎に設ける必要は勿論々
く、電解電流密度が15A/dm2以下の通常の操業条
件では浸漬深さ25crnにつき廂1伽ないし2個程度
でよい。
This fluororesin sheet can be bonded to the blade using an adhesive, for example. In addition, it is practical to identify by inserting one piece into one and by tightening bolts. Even if the immersion depth of the cathode is large, it is of course necessary to provide this area for each blade, and under normal operating conditions where the electrolytic current density is 15 A/dm2 or less, it is necessary to provide 1 area per immersion depth of 25 crn. One or two pieces is enough.

廂の数が多い場合には電極の有効面積を減少させること
になるからb−iり多く設けることは好ましくない。
If the number of legs is large, the effective area of the electrode will be reduced, so it is not preferable to provide more than bi.

また、陰析がエキスバンドメタルとか、パンチトメタル
のような開孔部材であるような場合には開孔部を構成す
る部材に、はめ込めるような接続部を設けた廂を該部材
にはめ込んで取りつければよい。
In addition, if the negative electrode is a perforated member such as expanded metal or punched metal, a fitting with a connecting part that can be fitted into the member constituting the perforation is fitted into the member. You can attach it with.

次に、実施例により本発明を更に詳しく説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例I PTIFEli樹脂を内張すした鉄製容器(内容積、縦
25crn、横30crr1、高さ100z)の中央に
、正電源に接続された縦5 cm 、横20m、高さ6
5−の炭素板を陽極として設置した。
Example I In the center of an iron container lined with PTIFEli resin (inner volume: 25 crn in length, 30 crr in width, 100 z in height), a container measuring 5 cm in length, 20 m in width, and 6 in height was connected to a positive power source.
A 5- carbon plate was installed as an anode.

次に、第2図に示した如きルーバーを陰椋として設置し
た。即ち、板厚5劃の鉄板から切出して作製した断面が
平行四辺形である厚み511II11の鉄製羽根を45
°の傾斜角になるように7.07惰間隔で配置した。(
第2図でa = 7.07 M )ルーバーを陰極とし
て鉄製容器内面から10切離して設置した。陰極の厚み
(ルーバーの1〕)は15霞とした。
Next, a louver like the one shown in Figure 2 was installed as a shade. In other words, an iron blade with a thickness of 511II11 and a parallelogram cross section cut out from an iron plate with a thickness of 5cm is 45mm.
They were arranged at 7.07 inertia intervals so as to have an inclination angle of .degree. (
In Fig. 2, a = 7.07 M) A louver was installed as a cathode, separated by 10 mm from the inner surface of the iron container. The thickness of the cathode (louver 1) was 15 haze.

この陰極の、陽擺から見た可視部分の面積を基準とする
、水平面に対して45°以上、90°以下の面積の割合
は100チ、また、45°以上、90°未満の面積の割
合は58.5%である。
Based on the area of the visible part of this cathode when viewed from the sun, the ratio of the area that is 45° or more and 90° or less with respect to the horizontal plane is 100 cm, and the ratio of the area that is 45° or more and less than 90° is 58.5%.

次に、隔壁として、モネル製の平板を陽極と陰極の丁度
、中間部に電解液に対する浸漬深さが7cW1となるよ
うに設置した。
Next, as a partition wall, a flat plate made of Monel was placed exactly in the middle between the anode and the cathode so that the immersion depth in the electrolyte was 7 cW1.

上記の如き電解化・に弗酸と弗化カリウムのモル比が2
:1である複塩(融点70℃)を陰極の浸漬深さが55
crnとなるように入れ、電解槽の温度を90°とも 次に、陽陰極間に電流密度12A/dn?で直流を通電
し、弗酸電解を行った。
In the electrolysis described above, the molar ratio of hydrofluoric acid and potassium fluoride is 2.
:1 double salt (melting point 70°C) was immersed in the cathode at a depth of 55°C.
Then, the temperature of the electrolytic cell was set to 90°, and the current density was 12A/dn? between the anode and cathode. Direct current was applied to perform hydrofluoric acid electrolysis.

なお、電流効望は99%、摺電圧は9.8■であった。The current efficiency was 99% and the sliding voltage was 9.8 .

実施例2 陰極として、開孔部長径20wn、開孔部短径1011
Il、線形状2wI×5瓢の鉄製エキスバンドメタルを
用いること以外は、実施例1と同様に弗帳宵1解を行っ
た。
Example 2 As a cathode, the major diameter of the opening is 20wn, and the minor diameter of the opening is 1011
A test was carried out in the same manner as in Example 1, except that an iron expanded metal with a linear shape of 2wI x 5gours was used.

な−お、この陰極の、陰極から見た可視部分の面積を基
準とする、水平面に対して45°以上、90°以下の面
積の割合は約66チ、また、45゜以上、90°未満の
面積の割合は約52%である。
Furthermore, based on the area of the visible part of this cathode as seen from the cathode, the ratio of the area that is 45° or more and 90° or less with respect to the horizontal plane is approximately 66 degrees, and 45° or more and less than 90°. The area ratio is about 52%.

また、電流効率は98チ、摺電圧rp 9.9 Vであ
った。
Further, the current efficiency was 98 cm, and the sliding voltage rp was 9.9 V.

実施例3 実施例1において、陰極の浸漬深さを55Crnとし、
かつ、陰極のルーバー羽根の下面にテフロン製の薄板を
陰極前面に1. Oc1n突出、・す逼ように、゛陰極
下端より約5crnの個所及び約20crnの個所の2
ケ所にボルト止めで取りつけたこと以外は実施例1と同
様にして電解を行った。
Example 3 In Example 1, the immersion depth of the cathode was 55 Crn,
In addition, a thin Teflon plate is placed on the lower surface of the cathode louver blade in front of the cathode. Oc1n protrusion, ・As shown in the figure, there are 2 points at about 5 crn and about 20 crn from the lower end of the cathode.
Electrolysis was carried out in the same manner as in Example 1, except that it was attached with bolts at the following locations.

また、電流効率は100%、摺電圧は9.8Vであった
Further, the current efficiency was 100%, and the sliding voltage was 9.8V.

また、電流密度を18A/1i、5に高めたところ電流
効率は98チであった。次に、上記テフロン製薄板を取
りはずして電流密度I BA/dmjで比較測定した所
、電流効率は93.5%であった。
Further, when the current density was increased to 18A/1i, 5, the current efficiency was 98chi. Next, the Teflon thin plate was removed and comparative measurement was performed using current density I BA/dmj, and the current efficiency was 93.5%.

電流密度の高い領域で取付薄板の効果が顕著である。The effect of the thin mounting plate is noticeable in areas with high current density.

比較例 従来用いられている電解槽として、鉄製容器(内容積2
2.5crnX 30mX 100m)を陰極とし、5
 cm X 20 cm x 650の炭素板を陽極と
するものを用意した。(陽陰極間距離は実施例1の場合
と同じになるようにした。) その他は実施例1と同様にして電解を行った所、電解室
内で弗素と水素の会合が起り、寸だ滞留ガスが多いため
、電流効率は83%と低く、摺電圧は103vと高かっ
た。
Comparative Example As a conventionally used electrolytic cell, an iron container (inner volume 2
2.5crnX 30mX 100m) as a cathode,
A carbon plate measuring 20 cm x 650 cm was prepared as an anode. (The distance between the anode and cathode was made to be the same as in Example 1.) When electrolysis was otherwise carried out in the same manner as in Example 1, fluorine and hydrogen association occurred in the electrolytic chamber, resulting in a large amount of residual gas. As a result, the current efficiency was as low as 83%, and the sliding voltage was as high as 103V.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明電解槽の1例についての半裁断面図で
ある。第2図は第1図の陰極の部分拡大図である。第3
図は、本発明電解槽の他の好ましい陰極の部分断面拡大
図である。 第4図は、本発明電解槽の陰極がエキスバンドメタルの
場合の陽極側からみだ正面図である。 第5図、第6図、第7図は本発明電解槽に用いられる陰
極がエキスバンドメタルの場合の第4図A−A断面につ
いての部分断面拡大図である。 栃8図は、本発明電解槽のルーバー型陰柘に廂を設けた
場合の陰極の部分拡大断面図である。 1・・・陽極 2・・・陰極 3・・・隔壁(スカート) 4・・・冷却ジャケット 5・・・電解室 6・・・陽極側からみた陰極の可視部器7・・・陽極側
からみた陰極の可視部分8・・・廂 才/用 才′周    73用 1ン1丼;5゜5!3− j@C1688(6)才4r
I 才、く閉   7乙rr    t7■/ / / 3冴
FIG. 1 is a half-cut sectional view of an example of the electrolytic cell of the present invention. FIG. 2 is a partially enlarged view of the cathode in FIG. 1. Third
The figure is an enlarged partial sectional view of another preferred cathode of the electrolytic cell of the present invention. FIG. 4 is a front view from the anode side when the cathode of the electrolytic cell of the present invention is made of expanded metal. FIGS. 5, 6, and 7 are partially enlarged cross-sectional views of the section AA in FIG. 4 when the cathode used in the electrolytic cell of the present invention is an expanded metal. Figure 8 is a partially enlarged cross-sectional view of the cathode when a louvered shade of the electrolytic cell of the present invention is provided with a sill. 1... Anode 2... Cathode 3... Partition wall (skirt) 4... Cooling jacket 5... Electrolytic chamber 6... Visible part of the cathode seen from the anode side Unit 7... From the anode side Visible part of the cathode seen 8... 异sai / sai 'circumference 73 1 n 1 bowl; 5° 5! 3 - j@C1688 (6) sai 4r
I sai, closing 7 otrr t7■/ / / 3 sae

Claims (1)

【特許請求の範囲】 (1)電解液面上に弗素ガスと水素ガスの混合を防ぐ隔
壁(スカート)が設けられ陽陰極間に形成される電解室
に弗酸及び弗素含有塩を供気体が裏面(陽極との反対面
)に移動するものであることを特徴とする弗素発生用電
解槽。 (2)  陰極は、陽極側から見た時の可視部分の陰極
面積を是準面積として、水平面に対して45°以上、9
0°以下の陰極面の面積が基準面積の50%以上であり
、かつ水平面に対して45°以上、90°未満の陰極面
・の面積が基準面積の20%以上である特許請求の範囲
第(1)項の弗素発生用電解槽。 (8)陰極がルーバー状あるいはエキスバンドメタルで
ある特許請求の範囲第(1)項又は第(2)項のいずれ
かの弗素発生用電解槽。 (4) 陰極の水平方向の厚みが0.1〜5漸である特
許請求の範囲第(2)項の弗素発生用電解槽。 (6)  陽陰極間に隔壁(スカート)が陽陰極間の電
解液中に浸漬してなる特許請求の範囲第(1)項の弗素
発生用電解槽。 (6)  陰極背部の空間(陰極・背面と槽壁の間の距
離)が0.3〜2cmである特許請求の範囲第(1)項
、第(4)項又は第(5)項いずれかの弗素発生用電解
槽。 (′7)  陰極かその下部に廂(ひさし)を設けたも
のである特許請求の範囲第(1)〜(8)項いずれかの
弗素発生用電解槽。
[Claims] (1) Hydrofluoric acid and a fluorine-containing salt are supplied to an electrolytic chamber formed between an anode and a cathode in which a partition wall (skirt) is provided on the surface of the electrolytic solution to prevent mixing of fluorine gas and hydrogen gas. An electrolytic cell for fluorine generation characterized in that the electrolytic cell moves to the back side (the side opposite to the anode). (2) The cathode should be placed at an angle of 45° or more with respect to the horizontal plane, with the area of the cathode in the visible part when viewed from the anode side being the standard area.
The area of the cathode surface at 0° or less is 50% or more of the reference area, and the area of the cathode surface at 45° or more and less than 90° with respect to the horizontal plane is 20% or more of the reference area. The electrolytic cell for fluorine generation described in (1). (8) The electrolytic cell for fluorine generation according to claim 1 or 2, wherein the cathode is louvered or expanded metal. (4) The electrolytic cell for fluorine generation according to claim (2), wherein the horizontal thickness of the cathode is 0.1 to 5 mm. (6) The electrolytic cell for fluorine generation according to claim (1), wherein a partition wall (skirt) between the anode and cathode is immersed in an electrolytic solution between the anode and cathode. (6) Any one of claims (1), (4), or (5) in which the space behind the cathode (distance between the cathode/back surface and the tank wall) is 0.3 to 2 cm. Electrolytic cell for fluorine generation. ('7) The electrolytic cell for fluorine generation according to any one of claims (1) to (8), wherein an eave is provided at the cathode or below the cathode.
JP56198477A 1981-12-11 1981-12-11 Electrolytic cell for fluorine generation Expired JPS5937351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56198477A JPS5937351B2 (en) 1981-12-11 1981-12-11 Electrolytic cell for fluorine generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56198477A JPS5937351B2 (en) 1981-12-11 1981-12-11 Electrolytic cell for fluorine generation

Publications (2)

Publication Number Publication Date
JPS58100688A true JPS58100688A (en) 1983-06-15
JPS5937351B2 JPS5937351B2 (en) 1984-09-08

Family

ID=16391754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56198477A Expired JPS5937351B2 (en) 1981-12-11 1981-12-11 Electrolytic cell for fluorine generation

Country Status (1)

Country Link
JP (1) JPS5937351B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63130790A (en) * 1986-11-21 1988-06-02 Mitsui Toatsu Chem Inc Improved electrolytic cell
JPS63130789A (en) * 1986-11-21 1988-06-02 Mitsui Toatsu Chem Inc Improved electrolytic cell
KR100288862B1 (en) * 1998-06-30 2001-06-01 박호군 Improved Process for Preapring Fluorine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6260241U (en) * 1985-10-03 1987-04-14

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63130790A (en) * 1986-11-21 1988-06-02 Mitsui Toatsu Chem Inc Improved electrolytic cell
JPS63130789A (en) * 1986-11-21 1988-06-02 Mitsui Toatsu Chem Inc Improved electrolytic cell
KR100288862B1 (en) * 1998-06-30 2001-06-01 박호군 Improved Process for Preapring Fluorine

Also Published As

Publication number Publication date
JPS5937351B2 (en) 1984-09-08

Similar Documents

Publication Publication Date Title
US4080270A (en) Production of alkali metal carbonates in a membrane cell
US4574037A (en) Vertical type electrolytic cell and electrolytic process using the same
Hine et al. Hydrodynamic Studies of Bubble Effects on the IR‐Drops in a Vertical Rectangular Cell
US4740287A (en) Multilayer electrode electrolytic cell
US4927509A (en) Bipolar electrolyzer
JPS6024186B2 (en) Alkali metal halide electrolysis method
Tanaka et al. Dissolution of hydrogen and the ratio of the dissolved hydrogen content to the produced hydrogen in electrolyzed water using SPE water electrolyzer
US20020189936A1 (en) Electrolytic cell
Bongenaar-Schlenter et al. The effect of the gas void distribution on the ohmic resistance during water electrolytes
RU2051990C1 (en) Monopolar electrolyzer for obtaining chlorine and alkali
US5225060A (en) Bipolar, filter press type electrolytic cell
US4761216A (en) Multilayer electrode
JPS58100688A (en) Electrolytic cell for generating fluorine
US4770756A (en) Electrolytic cell apparatus
US5938901A (en) Liquid permeation-type gas-diffusion electrode
US4055474A (en) Procedures and apparatus for electrolytic production of metals
US5879521A (en) Gas-diffusion cathode and salt water electrolytic cell using the gas-diffusion cathode
JPS59133384A (en) Electrolytic cell
WO2020085066A1 (en) Fluorine gas production device
FI56557C (en) DIAFRAGMACELL MED ETT FLERTAL AVDELNINGAR FOER FRAMSTAELLNING AV KLOR OCH ALKALIMETALLHYDROXID
JPS59229487A (en) Electrolytic cell for generating fluorine
US4568433A (en) Electrolytic process of an aqueous alkali metal halide solution
US4035279A (en) Electrolytic cell
EP0077982A1 (en) An electrolysis process and electrolytic cell
JPS61259198A (en) Electrolytic bath for high-activity tritium-change water