JPS59229487A - Electrolytic cell for generating fluorine - Google Patents

Electrolytic cell for generating fluorine

Info

Publication number
JPS59229487A
JPS59229487A JP58102883A JP10288383A JPS59229487A JP S59229487 A JPS59229487 A JP S59229487A JP 58102883 A JP58102883 A JP 58102883A JP 10288383 A JP10288383 A JP 10288383A JP S59229487 A JPS59229487 A JP S59229487A
Authority
JP
Japan
Prior art keywords
cathode
fluorine
anode
electrolytic cell
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58102883A
Other languages
Japanese (ja)
Inventor
Kaichiro Suzuki
鈴木 嘉一郎
Takashi Otoma
音馬 敞
Hidenori Shibata
英則 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP58102883A priority Critical patent/JPS59229487A/en
Publication of JPS59229487A publication Critical patent/JPS59229487A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To electrolyze a hydrofluoric acid to fluorine and hydrogen with excellent electrolytic current efficiency by constituting the cathode in a diaphragm-less type electrolytic cell which electrolyzes the hydrofluoric acid to fluorine and hydrogen into a specific shape so that the re-reaction of the formed fluorine and hydrogen is prevented. CONSTITUTION:A hydrofluoric acid and a salt contg. fluorine are supplied into an electrolytic cell which has an anode 1 formed of carbon and a cathode 2 formed of a louver-shaped or expanded metal, has a skirt 3 between the anode and cathode and above the cathode and is provided with a porous diaphragm consisting of a woven sheet of C or Al in proximity to the cathode. Electricity is conducted to the anode 1 and the cathode 2 to electrolyze the hydrofluoric acid so that gaseous fluorine is generated at the anode and gaseous hydrogen at the anode. The cathode inclines to 45- 90 deg. relative with the horizontal plane. The gaseous hydrogen generated at slopes 8 and perpendicular surfaces 7 ascends on the outside of the cathode along the slopes. Since the contact of said gas with the gaseous fluorine is prevented by the skirt 3 when the gaseous hydrogen diffuses on the liquid surface, the fluorine is recovered from the anode with high electrolytic current efficiency without inducing the reaction to return the fluorine and hydrogen again to the hydrofluoric acid.

Description

【発明の詳細な説明】 本発明は弗素発生用電解槽、特には、高電流効率かつ低
電解電圧で弗酸を電解して弗素と水素を生成せしめうる
弗素発生用電解槽に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrolytic cell for fluorine generation, and particularly to an electrolytic cell for fluorine generation that can generate fluorine and hydrogen by electrolyzing hydrofluoric acid with high current efficiency and low electrolysis voltage.

弗酸を電解して弗素を製造する、いわゆる弗酸電解槽に
は各種のものが提案されているが、本発明はそのうちの
無隔膜電解槽に関するものである。
Various types of so-called hydrofluoric acid electrolytic cells have been proposed for producing fluorine by electrolyzing hydrofluoric acid, and the present invention relates to a diaphragmless electrolytic cell among them.

無隔膜電解槽は、陽極と陰極の間に隔膜が設けられてい
ない電解室に弗酸と弗素含有塩を供給し、これを電解す
るものであるが、従来の電解槽においては、発生した弗
素と水素が電解室′の中で会合して弗酸に戻ることがあ
り、これによる電流効率の低下や、発生した気体(弗素
ガス及び水素ガス)が多量に電極表面またはその近傍に
あって電極面を゛遮蔽し、見掛上有効電極面積低下によ
る電解電圧の上昇を起すという欠点があった。これに対
し、陽陰極間にスカートを設けて水素と弗素の混合を防
ぐと共に、陽陰極間距離を長くしたシ、電極の液浸深さ
を短くすること、あるいは、陽陰極間にモネル等の耐食
性の高い金属網を設けたシして気泡の相互拡散を防止す
ることがとられていた。
A non-diaphragm electrolytic cell supplies hydrofluoric acid and a fluorine-containing salt to an electrolytic chamber without a diaphragm between the anode and cathode, and electrolyzes it. However, in conventional electrolytic cells, the generated fluorine and hydrogen may combine in the electrolytic chamber and return to hydrofluoric acid, resulting in a decrease in current efficiency and a large amount of generated gas (fluorine gas and hydrogen gas) on or near the electrode surface. This has the disadvantage that it "shields" the surface and causes an increase in electrolytic voltage due to a decrease in the apparent effective electrode area. To deal with this, it is necessary to install a skirt between the anode and cathode to prevent hydrogen and fluorine from mixing, to increase the distance between the anode and cathode, to shorten the immersion depth of the electrode, or to install a skirt such as monel between the anode and cathode. A metal mesh with high corrosion resistance was provided to prevent the mutual diffusion of air bubbles.

しかしながら、前者の方法では、極間距離が大になって
摺電圧が上昇したり、電極の液浸深さが小さいことによ
る有効電極面積の減少によシ、単位電解槽尚シの生産量
が少くなるという欠点があった。
However, in the former method, the sliding voltage increases due to the large distance between the electrodes, and the effective electrode area decreases due to the small immersion depth of the electrodes. The disadvantage was that it was less.

また、後者の方法による場合は、モネルのように耐食性
の大きな材質からなる金属網であっても耐用期間は短く
、頻繁に取り換える必要があった。
Furthermore, in the case of the latter method, even if the metal mesh is made of a highly corrosion-resistant material such as Monel, the service life is short and it is necessary to replace it frequently.

本発明者等は、従来の電解槽がもつ上記欠点全克服する
手段について種々検討した結果、陰極に特殊な工夫をこ
らすことによって、これらの問題を解決しうろことを見
出し、本発明を完成しえたもので、本発明は電解液面上
に弗素ガスと水素ガスの混合を防ぐ隔壁(スカート)が
設けられ、陽陰極間に形成される電解室に弗酸及び弗素
含有塩を供給し、これを電解して弗素及び水素を発生せ
しめる弗素発生用電解槽において、陰極は開孔性であっ
て、大部分の気体が裏面(陽極との反対面)に移動する
ものであシ、陽極に面した陰極面に近接または接して隔
膜が設けられていることを特徴とする弗素発生用電解槽
を要旨とするものである。
As a result of various studies on ways to overcome all of the above-mentioned drawbacks of conventional electrolytic cells, the inventors of the present invention discovered that these problems could be solved by devising a special method for the cathode, and completed the present invention. In this invention, a partition wall (skirt) is provided on the electrolytic solution surface to prevent mixing of fluorine gas and hydrogen gas, and hydrofluoric acid and a fluorine-containing salt are supplied to an electrolytic chamber formed between anode and cathode. In an electrolytic cell for fluorine generation, in which fluorine and hydrogen are generated by electrolysis, the cathode is open-pored and most of the gas moves to the back side (opposite the anode); The object of the present invention is to provide an electrolytic cell for fluorine generation, characterized in that a diaphragm is provided close to or in contact with the cathode surface.

勿論、上述の隔膜はなくとも目的が充分に達せられるこ
とから無隔膜電解槽については既に特願昭56−198
477号として出願されているが、本願はこれに更に隔
膜を併用することにより、効果が著大になることを見出
してなされた発明である。
Of course, the purpose can be fully achieved even without the above-mentioned diaphragm, so a patent application for an electrolytic cell without a diaphragm has already been filed in 1988-1983.
Although the invention was filed as No. 477, the present invention was made based on the discovery that the effect can be greatly increased by further using a diaphragm in combination with this invention.

本発明に用いられる陰極は従来用いられてきた平板状の
陰極(従来は電解槽の槽壁をそのまま陰極として用いる
ことが多かった。)と異り、開孔性で、かつ気体が裏面
(陽極との反対面)に移動するようなものであることを
特徴とする。
The cathode used in the present invention differs from the flat cathode that has been used in the past (in the past, the wall of the electrolytic cell was often used as the cathode). It is characterized by being like moving to the opposite side).

即ち、陰極面で発生した水素は速かに陰極の開孔部を通
して陰極の裏面に移動するため、陰極近傍に滞留したシ
、陽極側に拡散する気泡が少く、従って、陽極表面また
は付近を上昇または浮遊する弗素ガス気泡と拡散水素ガ
ス気泡が会合、反応することが少く、電流効率を高く維
持することができる。
In other words, since hydrogen generated on the cathode surface quickly moves to the back surface of the cathode through the openings in the cathode, fewer bubbles remain near the cathode and diffuse toward the anode, resulting in hydrogen rising on or near the anode surface. Alternatively, floating fluorine gas bubbles and diffused hydrogen gas bubbles are less likely to associate and react, making it possible to maintain high current efficiency.

更に、水素は陰極裏面に移動することにより陽陰極間、
特に陰極表面近傍に滞留するガス量が極度に減少、陰極
面における気泡の付着や、遮蔽による摺電圧の上昇をき
たさないため、従来の場合に比べて摺電圧の低下効果も
得られる。
Furthermore, hydrogen moves to the back surface of the cathode, and between the anode and cathode,
In particular, the amount of gas remaining in the vicinity of the cathode surface is extremely reduced, and the sliding voltage does not increase due to the adhesion of bubbles on the cathode surface or shielding, so the effect of lowering the sliding voltage can be obtained compared to the conventional case.

本願発明者等は、上記の如き効果1持つ陰極について更
に検討を加えた結果、特定の幾何学的形状特性を持つ場
合に好ましく上記目的が達成されることを見出した。
The inventors of the present application further investigated the cathode having the above effect 1, and found that the above object is preferably achieved when the cathode has specific geometrical characteristics.

以下に、この点について図面によ〕説明する。This point will be explained below with reference to the drawings.

第1図は本発明電解槽の1例についての半載断面図であ
る。工は例えば炭素からなる陽極で、2は陰極である。
FIG. 1 is a half-mounted sectional view of an example of the electrolytic cell of the present invention. 1 is an anode made of carbon, for example, and 2 is a cathode.

3は隔壁(スカート)、4は冷却ジャケット、5は電解
室、6は隔膜である。
3 is a partition wall (skirt), 4 is a cooling jacket, 5 is an electrolysis chamber, and 6 is a diaphragm.

第1図においては、陰極はルーバー状の場合を示し、第
2図は、第1図の陰極の部分拡大図を示す。第2図に示
される陰極はルーバーの羽根が水平面と45°の角度で
配置され、羽根の配置間隔は羽根の垂直厚みと同じであ
り、羽根の巾は上記間隔の3倍となっている状態を示す
。第3図は本発明電解の陰極のルーバー形状について、
別の好ましい態様を示すもので、7が陰極背面に向って
わずかに傾斜している場合を示す。
In FIG. 1, the cathode has a louver shape, and FIG. 2 shows a partially enlarged view of the cathode in FIG. In the cathode shown in Figure 2, the louver blades are arranged at an angle of 45° with the horizontal plane, the interval between the blades is the same as the vertical thickness of the blades, and the width of the blades is three times the above interval. shows. Figure 3 shows the louver shape of the cathode in the electrolysis of the present invention.
Another preferred embodiment is shown in which 7 is slightly inclined toward the back of the cathode.

この場合、ガスはより陰極背面に抜けやすい。In this case, gas is more likely to escape to the back side of the cathode.

陰極で発生した水素は羽根の間隙に沿って陰極裏面に抜
ける機構を以下に説明する。
The mechanism by which hydrogen generated at the cathode escapes to the back surface of the cathode along the gaps between the blades will be explained below.

即ち、第2図の8の部分で発生した水素ガスは図の右上
方に向って移動し、これによってガスリフト効果によシ
ミ解液も右上方部に移動する。この時、7の部分で発生
した水素ガスの大部分は吸引効果によって羽根の間隙に
入シこみ、や゛tl右上方部に移動する。
That is, the hydrogen gas generated at the portion 8 in FIG. 2 moves toward the upper right in the figure, and the stain-resolving solution also moves toward the upper right due to the gas lift effect. At this time, most of the hydrogen gas generated at the part 7 enters the gap between the blades due to the suction effect and moves to the upper right part of tl.

本発明者等は、この羽根の幾何学的配置が特定な場合に
、水素の裏面への脱離が好ましく行われ、電流効率の向
上と電解電圧の低下に好適であることを見出した。
The present inventors have found that when the geometrical arrangement of the blades is specific, hydrogen is preferably desorbed to the back surface, which is suitable for improving current efficiency and reducing electrolysis voltage.

即ち、陽極側から陰極を見た時の可視部分(第2図にお
ける太線で示した垂直部分7及び傾斜部分8の合計)の
面積を基準面積にして、水平面に対して45°以上、9
0°以下の陰極面の面積が基準面積の50係以上であり
、水平面に対して45°以上、90’未満の陰極面の面
積が基準面積の20係以上である場合に、陰極裏面に水
素ガスが最も効果的に移動しやすく、上記範囲vhずれ
ると、陰極裏面への水素ガスの抜けは必ずしもよくない
That is, the area of the visible part when looking at the cathode from the anode side (the sum of the vertical part 7 and the inclined part 8 shown by the thick line in FIG. 2) is the reference area, and the area is 45 degrees or more with respect to the horizontal plane.
When the area of the cathode surface at 0° or less is 50 times or more of the standard area, and the area of the cathode surface at 45 degrees or more and less than 90' with respect to the horizontal plane is 20 times or more of the standard area, hydrogen is added to the back surface of the cathode. It is easy for gas to move most effectively, and if the above range vh deviates, hydrogen gas will not necessarily escape to the back surface of the cathode.

ここで、水平面となす角度の表示は、陰極面の陰極背後
に向けて上ジ勾配の面の水平面となす角度で測定するも
のとする。
Here, the angle between the cathode surface and the horizontal plane is measured by the angle between the cathode surface and the horizontal surface of the upwardly sloped surface toward the back of the cathode.

第2図の場合について以上の関係を具体的に示す。ここ
で、図面垂直方向における羽根の巾をbとすると、 (4)陽極から見た可視部分の陰極面積−(a + Q
l) b φ)水平面に対し45°以上、90°以下の陰極面の面
積 =(a+0−a)b (0)  水平面に対し45°以上、900未満の陰極
面の面積 =51b であるがら、(B)の(A)に対する割合tiloO%
、(0)の仏)に対する割合はfab/(a+1a)b
即ち、58.5俤となる。
The above relationship will be specifically shown in the case of FIG. Here, if the width of the blade in the vertical direction of the drawing is b, (4) Cathode area of the visible part seen from the anode - (a + Q
l) b φ) Area of the cathode surface that is 45° or more and 90° or less with respect to the horizontal plane = (a + 0 - a) b (0) Area of the cathode surface that is 45° or more and less than 900 with respect to the horizontal plane = 51b However, Ratio of (B) to (A) tiloO%
, the ratio of (0) to France) is fab/(a+1a)b
In other words, it is 58.5 yen.

第4図〜第7図は本発明電解槽に用いられる陰極の他の
態様を示す断面図で、ともにエキスバンドメタルの場合
を示す。
4 to 7 are cross-sectional views showing other embodiments of the cathode used in the electrolytic cell of the present invention, and both show the case of expanded metal.

第4図は、エキスバンドメタル陰極を陽極側からみ九正
面図である。
FIG. 4 is a front view of the expanded metal cathode viewed from the anode side.

第5図、第6図、第7図は第4図のA−A断面における
断面図を示す。
5, 6, and 7 show cross-sectional views taken along the line AA in FIG. 4.

第5図はエキスバンドメタルの開孔を形成する部材が一
辺aからなる正方形の断面形状を有する場合で、第6図
は上記部材がmm2!L1他辺31!Lからなる長方形
の断面形状を有し、長辺(9) 3aの面が陰極の裏面に向って昇シ傾斜となる場合を示
す。
Fig. 5 shows a case where the member forming the opening in the expanded metal has a square cross-sectional shape with one side of a, and Fig. 6 shows the case where the member is mm2! L1 other side 31! It has a rectangular cross-sectional shape consisting of L, and the long side (9) 3a is inclined upward toward the back surface of the cathode.

上述の第2図の場合と同様の計算方法により、第5図の
場合には 45’以上、90°以下の陰極面の面積の割合=50%
45°以上、90’未満の陰極面の面積の割合=50係
とな勺、第6図の場合には 45°以上、90°以下の陰極面の面積の割合=60係
45°以上、90°未満の陰極面の面積の割合=60係
となる。
Using the same calculation method as in the case of Fig. 2 above, in the case of Fig. 5, the ratio of the area of the cathode surface of 45' or more and 90° or less = 50%.
The ratio of the area of the cathode surface that is 45° or more and less than 90' = 50 factor, and in the case of Figure 6, the ratio of the area of the cathode surface that is 45° or more and less than 90° = 60 factor 45° or more, 90 The ratio of the area of the cathode surface less than 60 degrees is calculated.

第7図は、薄板に巾の広いスリットを入れ、引張って得
られる、第6図よりも更に該部材の二辺の比が大きい場
合を示す。
FIG. 7 shows a case where the ratio of the two sides of the member obtained by making a wide slit in a thin plate and pulling it is even larger than that in FIG. 6.

上述の如き陰極は、その水平方向の厚さが厚い程、気泡
の引き込み効果が大きいが、余シ厚すぎると、気泡及び
電解液の通過抵抗が大きくなシ、陰極裏面に抜ける気泡
量の減少をきたすので、その厚さく即ち、第2図の場合
の3a。
The greater the thickness of the cathode in the horizontal direction, the greater the effect of drawing in bubbles, but if the cathode is too thick, the resistance to passage of bubbles and electrolyte increases, and the amount of bubbles that escape to the back of the cathode decreases. Therefore, the thickness is 3a in the case of FIG.

M5図の場合のσa1第6図の場合のsJa/2)Fi
o、1〜5etn程度が好ましく、更には0.5〜3(
10) 備程度がよシ好ましい。
σa in the case of M5 diagram sJa/2 in the case of Figure 6) Fi
o, preferably about 1 to 5 etn, more preferably 0.5 to 3 (
10) A good level of preparation is preferred.

本電極は各種の型の電解槽に使用可能であるが、第1図
に示した形式の電解槽は陰極裏面部に形成される通路に
強い上昇流が生じ、これがまた吸引効果を高めるもので
ある。
This electrode can be used in various types of electrolytic cells, but in the electrolytic cell of the type shown in Figure 1, a strong upward flow occurs in the passage formed on the back of the cathode, which also increases the suction effect. be.

また、本発明電解槽の陰極の形状としては、開孔性であ
ることが必要であるが、その開孔率としては30〜90
11、好ましくは40〜80チとするのがよい。また、
その開孔が規則性をもって配列されている場合、その繰
り返し単位としては3〜25■、更には5〜15簡とす
るのがよい。
In addition, the shape of the cathode of the electrolytic cell of the present invention needs to be porous, and its porosity is 30 to 90.
11, preferably 40 to 80 inches. Also,
When the openings are arranged with regularity, the number of repeating units is preferably 3 to 25 squares, more preferably 5 to 15 squares.

本発明電解槽において、陰極背面と槽壁までの距離は特
に限定される必要はないが、この距離が余りに大きいと
前述の吸引効果を減じ、槽壁からの冷却効果が、単に自
然対流によるものだけになるため冷却効果が太きくなく
、ま九、逆に余ヤに小さいと、陰極裏面に排出される水
素ガスの上昇にかかる抵抗が大きくなり、ガス気泡及び
電解液の吸引効果を阻害するため好ま−01) しくなく、結局、通電量(即ち、水素ガス発生量)、陰
極の浸漬深さなどにもよるが、上記距離は0.3〜4.
0−1更には0.5〜2.0の程度とするのがよい。
In the electrolytic cell of the present invention, the distance between the back surface of the cathode and the cell wall does not need to be particularly limited, but if this distance is too large, the above-mentioned suction effect will be reduced, and the cooling effect from the cell wall will be due to mere natural convection. If the cooling effect is too small, the resistance to the rise of hydrogen gas discharged to the backside of the cathode will increase, inhibiting the suction effect of gas bubbles and electrolyte. Therefore, the above distance is 0.3 to 4.5 mm, depending on the amount of current flow (that is, the amount of hydrogen gas generated), the immersion depth of the cathode, etc.
It is preferable to set it to about 0-1, and more preferably about 0.5 to 2.0.

また、電解液の上部には、発生した弗素ガスと水素ガス
が混合しないように隔壁(スカート)を設けることが必
要である。本発明の電解槽においては、電解液中で弗素
ガスと水素ガスが混合されることは極めて少ないもので
あるが、上記隔壁を若干電解液中にまで延長させること
は上記効果全文によく達成させうる。
Further, it is necessary to provide a partition wall (skirt) above the electrolytic solution to prevent the generated fluorine gas and hydrogen gas from mixing. In the electrolytic cell of the present invention, it is extremely rare for fluorine gas and hydrogen gas to be mixed in the electrolyte, but extending the partition wall slightly into the electrolyte can achieve the full effect described above. sell.

隔壁は、電解液面下にわずかな深さに浸漬せしめるのが
好まし°く、本発明電解槽の場合、陽極にて発生した弗
素ガスにはは電極面に沿って上昇するが、液面近傍では
陰極側への拡散が起る。また陰極にて発生した水素ガス
の大部分は陰極裏面に移動するが、1部、陽陰極間に残
留する水素ガスが電解液中を上昇するにつれて陽極側に
拡散し、弗素ガスと会合する。隔壁を若干電解液中に浸
漬せしめるのは、これらを効果02) 的に防止するためである。
It is preferable that the partition wall be immersed to a slight depth below the surface of the electrolytic solution.In the case of the electrolytic cell of the present invention, the fluorine gas generated at the anode rises along the electrode surface, but does not reach the surface of the electrolyte. Diffusion toward the cathode occurs in the vicinity. Most of the hydrogen gas generated at the cathode moves to the back surface of the cathode, but a portion of the hydrogen gas remaining between the anode and cathode diffuses toward the anode as it rises in the electrolyte and combines with fluorine gas. The reason why the partition walls are slightly immersed in the electrolytic solution is to prevent these problems.

本発明電解槽の場合でも、陰極の浸漬深さが大きい場合
においては、陰極の底部よ勺発生した水素ガスのうち、
後方に吸引されなかった水素ガスは陰極前面部を上昇中
に陽極側に拡散する割合が大となる。この場合には、陰
極裏面への吸い込み効果を増すために、陰極前面に廂(
ひさし)を突出させるのがよい。
Even in the case of the electrolytic cell of the present invention, when the immersion depth of the cathode is large, out of the hydrogen gas generated from the bottom of the cathode,
A large proportion of the hydrogen gas that is not sucked backwards diffuses toward the anode while moving up the front surface of the cathode. In this case, in order to increase the suction effect to the back of the cathode, a wall (
It is best to make the eaves protrude.

第8図は、本発明電解槽の陰極に廂を設置した場合の部
分断面図を示すものである。
FIG. 8 shows a partial cross-sectional view of the electrolytic cell of the present invention in which a casing is installed on the cathode.

第8図において廂9Fi、陰極前面に突出するようにル
ーバーの羽根の下面にとりつけられている。この廂は必
ずしもルーバーの羽根の下面でなく、上面にとシつけら
れることも可能であるが、ルーバーの羽根の上面は下面
に比べて電極面としてよシ有効に作用するものであるた
め廂は羽根の下面にとりつけるのがよい。また、この廂
は、その材質について、特に限定することは必要ないが
、耐熱性、耐薬品性等の観点から弗素樹脂製とするのが
好ましい。また、金属03) 製であって、表面にシートを被覆したシ、コーティング
を施したシしたものを用いてもよい。
In FIG. 8, the louver blade 9Fi is attached to the lower surface of the louver blade so as to protrude in front of the cathode. This area is not necessarily attached to the bottom surface of the louver blade, but it is also possible to attach it to the top surface, but since the top surface of the louver blade functions more effectively as an electrode surface compared to the bottom surface, the area is It is best to attach it to the underside of the blade. Further, the material of this part is not particularly limited, but it is preferably made of fluororesin from the viewpoint of heat resistance, chemical resistance, etc. Alternatively, a material made of metal 03) whose surface is covered with a sheet or coated may also be used.

この弗素樹脂製シートは、例えば接着剤で羽根に接合さ
れうる。他に差し込みによる固定もボルト締めによる固
定も実際的である。また、この廂は、陰極の浸漬深さが
大きい場合でも、羽根1枚毎に設ける必要は勿論なく、
電解電流密度が15A/dfr?以下の通常の操業条件
では浸漬深さ25tM1につき廂1個ないし2個程度で
よい。
This fluororesin sheet can be bonded to the blade using an adhesive, for example. In addition, fixing by insertion and fixing by bolting are also practical. Moreover, even if the immersion depth of the cathode is large, it is of course not necessary to provide this area for each blade.
Is the electrolytic current density 15A/dfr? Under the following normal operating conditions, one to two pieces per immersion depth of 25 tM1 are sufficient.

廂の数が多い場合には電極の有効面積を減少させること
になるからあま〕多く設けることは好ましくない。
If the number of legs is large, the effective area of the electrode will be reduced, so it is not preferable to provide too many legs.

また、陰極がエキスバンドメタルとか、パンチトメタル
のような開孔部材であるような場合には開孔部を構成す
る部材に、はめ込めるような接続部を設は九廂を該部材
にはめ込んで取シつければよい。
In addition, if the cathode is a perforated member such as expanded metal or punched metal, a connecting part that can be fitted into the member constituting the perforation should be provided, and the nine legs should be fitted into the member. All you have to do is attach it.

以上のような種々の考慮を加えた電解槽においても、更
に電流効率を高めるためには、陰極の陽極側の面に近接
または接して隔膜を設けるα4) ことが必要である。この隔膜によシ、わずかではあるが
、陰極に接近してくることのある弗素をほとんど完全に
遮断することができる。
Even in an electrolytic cell that takes into account the various considerations described above, in order to further increase the current efficiency, it is necessary to provide a diaphragm near or in contact with the anode side surface of the cathode. This diaphragm can almost completely block out fluorine that may approach the cathode, albeit in a small amount.

この隔膜としては電解液が流通できるようになったもの
であることが必要で、そのためには多孔性であることが
好ましい。また、この隔膜は生成弗素ガスと接触する可
能性があることから、耐弗素性であることが好ましい。
This diaphragm needs to be able to allow the electrolyte to flow through it, and for that purpose it is preferably porous. Furthermore, since this diaphragm may come into contact with generated fluorine gas, it is preferably fluorine-resistant.

このような多孔性で、耐弗素性のある隔膜としてはカー
ボンクロス、アルミニウム金網等が好ましく、場合によ
ってはポリテトラフルオロエチレン製クロス等の弗素樹
脂製の織物も使用可能である。
As such a porous and fluorine-resistant diaphragm, carbon cloth, aluminum wire mesh, etc. are preferable, and in some cases, fluororesin fabrics such as polytetrafluoroethylene cloth can also be used.

次に、実施例により本発明を更に詳しく説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例I FTIFm樹脂を内張シした鉄製容器(内容積、縦25
百、横30111、高さ10 Qz)の中央に、正電源
に接続されt縦5備、横20 egg 、高さ65備の
炭素板を陽極として設置した。
Example I Iron container lined with FTIFm resin (inner volume, length 25
A carbon plate connected to a positive power supply and measuring 5 mm long, 20 mm wide, and 65 mm high was installed as an anode in the center of the test tube.

α5) 次に、第2図に示した如きルーバーを陰極として設置し
た。即ち、板厚511II++の鉄板から切出して作製
した断面が平行四辺形である厚み5mの鉄製羽根を45
°の傾斜角になるように7.07情間隔で配置した。(
第2図でa = 7.07 van )ルーバーを陰極
として鉄製容器内面がら10flllfi離して設置し
た。陰極の厚み(ルーバーの巾)#1155wとした。
α5) Next, a louver as shown in FIG. 2 was installed as a cathode. In other words, a 5 m thick iron blade with a parallelogram cross section cut out from an iron plate with a thickness of 511II++ is
They were arranged at intervals of 7.07° so that the angle of inclination was 7.07°. (
In Fig. 2, a = 7.07 van) A louver was used as a cathode and was placed 10 flllfi away from the inner surface of the iron container. The thickness of the cathode (width of the louver) was set to #1155w.

この陰極の、陽極から見た可視部分の面積を基準とする
、水平面に対して45°以上、90°以下の面積の割合
は100チ、また、45°以上、90°未満の面積の割
合は58.5%である。
Based on the area of the visible part of this cathode as seen from the anode, the ratio of the area that is 45° or more and 90° or less with respect to the horizontal plane is 100 cm, and the ratio of the area that is 45° or more and less than 90° is It is 58.5%.

次に、隔壁として、モネル製の平板を陽極と陰極の丁度
、中間部に電解液に対する浸漬深さが7cmとなるよう
に設置した。
Next, as a partition wall, a Monel flat plate was placed exactly in the middle between the anode and the cathode so that the immersion depth in the electrolyte was 7 cm.

次に、21mX67cy++で厚さ1禦のカーボンクロ
ス(開孔率35チ)を陰極の陽極側の面に接して配置し
た。
Next, a carbon cloth measuring 21 m x 67 cy++ and having a thickness of 1 mm (porosity: 35 mm) was placed in contact with the anode side surface of the cathode.

上記の如き電解槽に弗酸と弗化カリウムのモル比が2:
1である複塩(融点70℃)を陰極06) の浸漬深さが55c′Inとな・るように入れ、電解槽
の温度を90’とじ几。
In the electrolytic cell as described above, the molar ratio of hydrofluoric acid and potassium fluoride is 2:
The double salt No. 1 (melting point 70°C) was added so that the immersion depth of the cathode 06) was 55cm In, and the temperature of the electrolytic cell was raised to 90°C.

次に、陽陰極間に電流密度14A/−で直流を通電し、
弗酸電解を行った。
Next, a direct current is passed between the anode and cathode at a current density of 14 A/-,
Hydrofluoric acid electrolysis was performed.

なお、電流効率Fi9991、摺電圧#′i9.8V”
t’あった。
In addition, current efficiency Fi9991, sliding voltage #'i9.8V"
There was t'.

実施例2 陰極として、開孔部長径20簡、開孔部短径10111
1線形状2mX5mmの鉄製エキスバンドメタルを用い
、隔膜として線径0.5..20メツシユのアルミニウ
ム金網を用いること以外は実施例1と同様に弗酸電解を
行った。
Example 2 As a cathode, the major diameter of the opening is 20 mm, and the minor diameter of the opening is 10111.
A single-wire 2m x 5mm iron expanded metal is used as a diaphragm with a wire diameter of 0.5mm. .. Hydrofluoric acid electrolysis was carried out in the same manner as in Example 1 except that a 20-mesh aluminum wire mesh was used.

なお、この陰極の、陽極から見た可視部分の面積を基準
とする、水平面に対して45°以上、90’以下の面積
の割合は約66%、また、45゜以上、90°未満の面
積の割合は約52%である。
Furthermore, based on the area of the visible part of this cathode as seen from the anode, the ratio of the area that is 45° or more and 90' or less with respect to the horizontal plane is approximately 66%, and the area that is 45° or more and less than 90° The ratio is approximately 52%.

また、電流効率は98%、摺電圧は969vであった。Further, the current efficiency was 98% and the sliding voltage was 969v.

実施例3 実施例1において、陰極の浸漬深さ?55111α7) とし、がっ、陰極のルーバー羽根の下面にテフロン製の
薄板を陰極前面に1.0cn1突出するように、陰極下
端よシ約5ctnの個所及び約20crnの個所の2ケ
所にボルト止めで取りつけ、実施例1と同じカーボンク
ロス隔膜を陰極面カラ1cIn離して配置すること以外
は、実施例1と同様にして電解を行った。
Example 3 In Example 1, the immersion depth of the cathode? 55111α7) Attach a thin Teflon plate to the bottom of the cathode louver blade so that it protrudes 1.0cn1 from the front of the cathode, and bolt it to two places, one about 5ctn and about 20crn from the bottom end of the cathode. Electrolysis was carried out in the same manner as in Example 1, except that the same carbon cloth diaphragm as in Example 1 was placed at a distance of 1 cIn from the cathode surface.

また、電流効率は100チ、摺電圧は9.8vであった
Further, the current efficiency was 100 cm, and the sliding voltage was 9.8 V.

また、電流密度を22A/−に高めたところ電流効率は
98チであった。次に、上記テフローン製薄板を堆力は
すして電流密度18A/−で比較測定した所、電流効率
は93.51であった。
Further, when the current density was increased to 22 A/-, the current efficiency was 98 cm. Next, when the Teflon thin plate was comparatively measured at a current density of 18 A/- after removing the sediment force, the current efficiency was 93.51.

電流密度の高い領域で取付薄板の効果が顕著である。The effect of the thin mounting plate is noticeable in areas with high current density.

比較例 従来用いられている電解槽として、鉄製容器(内容積2
2.53X 30tMX 100儒)を陰極とし、5f
fiX 20crnX 65mの炭素板を陽極とするも
のを用意した。(陽陰極間距離は実施例1a8) の場合と同じになるようにした。) その他は実施例1と同様にして電解を行った所、電解室
内で弗素と水素の会合が起り、ま九滞留ガスが多いため
、電流効率は83%と低く、摺電圧は10.3Vと高か
った。
Comparative Example As a conventionally used electrolytic cell, an iron container (inner volume 2
2.53X 30tMX 100f
A fiX 20crnX 65m carbon plate as an anode was prepared. (The distance between the anode and cathode was set to be the same as in Example 1a8). ) Other than that, electrolysis was carried out in the same manner as in Example 1, but due to association of fluorine and hydrogen in the electrolysis chamber and a large amount of retained gas, the current efficiency was as low as 83% and the sliding voltage was 10.3V. it was high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明電解槽の1例についての半載断面図で
ある。第2図は第1図の陰極の部分拡大図である。第3
図は、本発明電解槽の他の好ましい陰極の部分断面拡大
図である。 第4図は、本発明電解槽の陰極がエキスバンドメタルの
場合の陽極側からみた正面図である。 第5図、第6図、第7図は本発明電解槽に用いられる陰
極がエキスバンドメタルの場合の第4図A −A断面に
ついての部分断面拡大図である。 第8図は、本発明電解槽のルーパー型陰極に廂を設けた
場合の陰極の部分拡大断面図である。 1・・・・・・陽極 2・・・・・・陰極 3・・・・・・隔壁(スカート) (19) 4・・・・・・冷却ジャケット 5・・・・・・電解室 6・・・・・・隔膜 7・・・・・・陽極側からみた陰極の可視部分8・・・
・・・陽極側からみた陰極の可視部分9・・・・・・廂 (20) 、t4川 才5川   オ6用    オフ用。 才8)肩。 手続補正書肪式) %式% 1、事件の表示 昭和58年特許願第102883号 2、発明の名称 弗素発生用電解槽 3、補正をする者 事件との関係  特許出願人 住 所  東京都千代田区丸の内二丁目1番2号名称 
(004)旭硝子株式会社 8、補正の内容  明細書及び図面の浄書(内容に変更
なし)以、示 439−
FIG. 1 is a half-mounted sectional view of an example of the electrolytic cell of the present invention. FIG. 2 is a partially enlarged view of the cathode in FIG. 1. Third
The figure is an enlarged partial sectional view of another preferred cathode of the electrolytic cell of the present invention. FIG. 4 is a front view of the electrolytic cell of the present invention when the cathode is made of expanded metal when viewed from the anode side. 5, 6, and 7 are partially enlarged cross-sectional views taken along the line A-A in FIG. 4 when the cathode used in the electrolytic cell of the present invention is an expanded metal. FIG. 8 is a partially enlarged sectional view of the looper-type cathode of the electrolytic cell of the present invention in which a rim is provided. 1... Anode 2... Cathode 3... Partition wall (skirt) (19) 4... Cooling jacket 5... Electrolytic chamber 6. ...Diaphragm 7... Visible part of the cathode viewed from the anode side 8...
...Visible part of the cathode seen from the anode side 9...20 (20), For t4 Kawasai 5 Kawa O6 For off. Age 8) Shoulder. Procedural amendment format) % formula % 1. Indication of the case Patent Application No. 102883 filed in 1988 2. Name of the invention Electrolytic cell for fluorine generation 3. Person making the amendment Relationship to the case Patent applicant address Chiyoda, Tokyo Ward Marunouchi 2-1-2 Name
(004) Asahi Glass Co., Ltd. 8, Contents of the amendment: Reprint of the specification and drawings (no changes to the contents), as shown below: 439-

Claims (9)

【特許請求の範囲】[Claims] (1)電解液面上に弗素ガスと水素ガスの混合を防ぐ隔
壁(スカート)が設けられ陽陰極間に形成される電解室
に弗酸及び弗素含有塩を供給し、これを電解して弗素及
び水素を発生せしめる弗素発生用電解槽において、陰極
は開孔性であって、大部分の気体が裏面(陽極との反対
面)に移動するものであり、陽極に面した陰極面に近接
または接して隔膜が設けられていることを特徴とする弗
素発生用電解槽。
(1) Hydrofluoric acid and a fluorine-containing salt are supplied to an electrolytic chamber formed between an anode and a cathode, which is provided with a partition wall (skirt) on the surface of the electrolytic solution to prevent mixing of fluorine gas and hydrogen gas, and is electrolyzed to produce fluorine gas. In the electrolytic cell for fluorine generation that generates hydrogen, the cathode is open-pored and most of the gas moves to the back side (the opposite side to the anode), and the cathode is close to or near the cathode side facing the anode. An electrolytic cell for fluorine generation, characterized in that a diaphragm is provided in contact with the cell.
(2)陰極は、陽極側から見た時の可視部分の陰極面積
を基準面積として、水平面に対して45°以上、90°
以下の陰極面の面積が基準面積の50%以上であり、か
つ水平面に対して45°以上、90°未満の陰極面の面
積が基準面積の20係以上である特許請求の範囲第(1
)項の弗素発生用電解槽。
(2) The cathode shall be placed at an angle of 45° or more and 90° with respect to the horizontal plane, using the visible area of the cathode when viewed from the anode side as the reference area.
The area of the following cathode surfaces is 50% or more of the reference area, and the area of the cathode surfaces at an angle of 45 degrees or more and less than 90 degrees with respect to the horizontal plane is 20 times or more of the reference area.
) Electrolytic cell for fluorine generation.
(3)陰極がルーパー状あるいはエキスバンドメタルで
ある特許請求の範囲第(1)項又は第(2)項のいずれ
かの弗素発生用電解槽。
(3) The electrolytic cell for fluorine generation according to claim (1) or (2), wherein the cathode is looper-shaped or expanded metal.
(4)陰極の水平方向の厚みが0.1〜5cn1である
特許請求の範囲第(2)項の弗素発生用電解槽。
(4) The electrolytic cell for fluorine generation according to claim (2), wherein the cathode has a horizontal thickness of 0.1 to 5 cn1.
(5)陽陰極間に隔壁(スカート)が陽陰極間の電解液
中に浸漬してなる特許請求の範囲第(1)項の弗素発生
用電解槽。
(5) The electrolytic cell for fluorine generation according to claim (1), wherein a partition wall (skirt) between the anode and cathode is immersed in an electrolytic solution between the anode and cathode.
(6)陰極背部の空間(陰極の背面と槽壁の間の距離)
が0.3〜2crRである特許請求の範囲第(1)項、
第(4)項又は第(5)項いずれかの弗素発生用電解槽
(6) Space behind the cathode (distance between the back of the cathode and the tank wall)
Claim (1), wherein is 0.3 to 2 crR;
The electrolytic cell for fluorine generation according to either paragraph (4) or paragraph (5).
(7)陰極がその下部に廂(ひさし)を設けたものであ
る特許請求の範囲第(1)〜(3)項いずれかの弗素発
生用電解槽。
(7) The electrolytic cell for fluorine generation according to any one of claims (1) to (3), wherein the cathode has an eaves provided at its lower part.
(8)  隔膜は耐弗素性のある多孔性の隔膜である特
許請求の範囲第(1)項の弗素発生用電解槽。
(8) The electrolytic cell for fluorine generation according to claim (1), wherein the diaphragm is a porous diaphragm having fluorine resistance.
(9)  耐弗素性のある多孔性の隔膜が炭素またはア
ルミニウムの織物シートである特許請求の範囲第(8)
項の弗素発生用電解槽。
(9) Claim No. 8, wherein the fluorine-resistant porous diaphragm is a woven carbon or aluminum sheet.
Electrolytic cell for fluorine generation.
JP58102883A 1983-06-10 1983-06-10 Electrolytic cell for generating fluorine Pending JPS59229487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58102883A JPS59229487A (en) 1983-06-10 1983-06-10 Electrolytic cell for generating fluorine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58102883A JPS59229487A (en) 1983-06-10 1983-06-10 Electrolytic cell for generating fluorine

Publications (1)

Publication Number Publication Date
JPS59229487A true JPS59229487A (en) 1984-12-22

Family

ID=14339262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58102883A Pending JPS59229487A (en) 1983-06-10 1983-06-10 Electrolytic cell for generating fluorine

Country Status (1)

Country Link
JP (1) JPS59229487A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2927635A1 (en) * 2008-02-14 2009-08-21 Snecma Propulsion Solide Sa SEPARATION MEMBRANE FOR ELECTROLYSIS INSTALLATION
CN114040997A (en) * 2019-06-21 2022-02-11 三菱重工业株式会社 Electrolytic smelting furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2927635A1 (en) * 2008-02-14 2009-08-21 Snecma Propulsion Solide Sa SEPARATION MEMBRANE FOR ELECTROLYSIS INSTALLATION
EP2093310A1 (en) * 2008-02-14 2009-08-26 Snecma Propulsion Solide Installation for electrolysis
US8038854B2 (en) 2008-02-14 2011-10-18 Snecma Propulsion Solide Electrolysis installation
CN114040997A (en) * 2019-06-21 2022-02-11 三菱重工业株式会社 Electrolytic smelting furnace

Similar Documents

Publication Publication Date Title
JPH08225975A (en) Compensated-pressure electrochemical cell
Gyenge et al. Influence of surfactants on the electroreduction of oxygen to hydrogen peroxide in acid and alkaline electrolytes
RU2051990C1 (en) Monopolar electrolyzer for obtaining chlorine and alkali
US4064021A (en) Method of improving electrolyte circulation
JPS59229487A (en) Electrolytic cell for generating fluorine
JPS59133384A (en) Electrolytic cell
US4474612A (en) Vertically extending plate electrode for gas-forming electrolyzers
US3297561A (en) Anode and supporting structure therefor
US4497112A (en) Method for making double L-shaped electrode
JPS5937351B2 (en) Electrolytic cell for fluorine generation
Fukunaka et al. Mass‐Transfer Rate on a Plane Vertical Cathode with Hydrogen Gas Evolution
WO2016086364A1 (en) Ionic membrane electrolytic bath
PL133880B1 (en) Permeable electrode for an electrolytic cell
JPH11323584A (en) Electrolytic cell with ion exchange membrane
US4035279A (en) Electrolytic cell
WO2020105369A1 (en) Hydrogen production method
JP3320834B2 (en) Bipolar electrolytic cell
US3838035A (en) Mercury cell with coated anode
JP3310737B2 (en) Gas collection type gas diffusion electrode and electrolytic cell using the same
JP3061334B2 (en) Electrolyte anode chamber
WO2013182755A1 (en) Bubble collector guide and use thereof
Scott et al. A study of current distribution in a DEM cell during bromate formation
JPH05320970A (en) Ion exchange membrane electrolyzer
Amadi et al. Air agitation for electrodeposition processes. II. Experimental
JP2902789B2 (en) Cathode of electrolytic equipment for fluorine gas production