JPS58100213A - Manufacture of magnetic head - Google Patents

Manufacture of magnetic head

Info

Publication number
JPS58100213A
JPS58100213A JP19851081A JP19851081A JPS58100213A JP S58100213 A JPS58100213 A JP S58100213A JP 19851081 A JP19851081 A JP 19851081A JP 19851081 A JP19851081 A JP 19851081A JP S58100213 A JPS58100213 A JP S58100213A
Authority
JP
Japan
Prior art keywords
film
soft magnetic
gap
groove
magnetic film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19851081A
Other languages
Japanese (ja)
Inventor
Mitsuharu Tamura
光治 田村
Katsuo Konishi
小西 捷雄
Norio Goto
典雄 後藤
Mitsuo Abe
阿部 光雄
Kanji Kawano
寛治 川野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19851081A priority Critical patent/JPS58100213A/en
Publication of JPS58100213A publication Critical patent/JPS58100213A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3176Structure of heads comprising at least in the transducing gap regions two magnetic thin films disposed respectively at both sides of the gaps
    • G11B5/3179Structure of heads comprising at least in the transducing gap regions two magnetic thin films disposed respectively at both sides of the gaps the films being mainly disposed in parallel planes
    • G11B5/3183Structure of heads comprising at least in the transducing gap regions two magnetic thin films disposed respectively at both sides of the gaps the films being mainly disposed in parallel planes intersecting the gap plane, e.g. "horizontal head structure"
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/313Disposition of layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To reduce the film thickness of a soft magnetic film to track width size efficiently at high yield, by finishing the depth of a groove to the film thickness size when a step or groove is worked in the soft magnetic film, and thus forming a gap surface. CONSTITUTION:On a nonmagnetic substrate 13, a soft magnetic film 14 is formed and step work of size D less than the film thickness size of the film 14 is performed by using a high-hardness cutting tool 15 to remove a removal part until the substrate 13 is exposed, forming a step having a gap surface 17. On the film 14 after the step work, a gap spacer film 13 having such a film thickness that the normal-directional size of the surface 17 is working gap and a soft magnetic film 19 are formed in order and the film thicknesses of the films 14 and 19 are reduced to track width size T to form the working gap 20. Then, an interlayer insulating film 21 and a soft magnetic film 22 are formed and a groove is formed in the film 22. On the film 22, a nonmagnetic material 26 is provided to fill the groove 25, and a nonmagnetic plate 28 is adhered thereupon; and a winding window 29 is bored at a prescribed position, thus manufacturing a head chip.

Description

【発明の詳細な説明】 本発明は磁気ヘッドの製造方法に係り、特に狭ギヤツプ
長磁気ヘッドを歩留りよく製造するのに好適な磁気ヘッ
ドの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a magnetic head, and more particularly to a method of manufacturing a magnetic head suitable for manufacturing a narrow gap length magnetic head with good yield.

記録密度向上にともない山気ヘッド動作ギャップの狭小
化が必要となってきているが、従来磁気ヘッ′ドを製造
するときに用いられてきた第1図に示すような左右の磁
気コア1.1′をギャップスペーサ2を挾んで機械的に
突き合せるようにするギャップボンディング法では、ギ
ャップ長決定要因にギャップスペーサ2の寸法のみなら
ず、突き合せる磁気コア1.1′の面間に制御困難な間
隙があるため、狭ギャップ長としようとすると歩留りが
低下する。このため、第2図に示すように、非磁性絶縁
基板5上に形成した軟磁性膜乙にダイヤモンドバイト7
で施した段差〔第2図(α)のイ〕あるいはダイヤモン
ドバイト7′で施したV字溝〔第2図Cb)のイ〕の側
面をギャップ面8とし、軟磁性膜6.6’〔第2図(α
)の口(A)の口〕でギャップスペーサ膜9を挾むこと
によって動作ギャップおよびヘッド磁路な構成する磁気
ヘッドが提案されている。
With the increase in recording density, it has become necessary to narrow the head operating gap, but the left and right magnetic cores 1.1, as shown in Fig. In the gap bonding method in which the magnetic cores 1 and 1' are mechanically butted together by sandwiching the gap spacer 2, the gap length determining factor is not only the dimension of the gap spacer 2, but also the difference between the surfaces of the magnetic cores 1 and 1' that are difficult to control. Due to the presence of gaps, the yield will decrease if a narrow gap length is attempted. For this reason, as shown in FIG.
The side surface of the step formed by [Fig. 2 (α) A] or the V-shaped groove formed by the diamond bite 7' [Fig. 2 Cb) A] is used as the gap surface 8, and the soft magnetic film 6.6' [ Figure 2 (α
A magnetic head has been proposed in which an operating gap and a head magnetic path are formed by sandwiching a gap spacer film 9 at the opening (A).

上記提案の磁気へ゛ラドでは、ギャップスペーサ膜9の
みがギャップ長決定要因となり、高寸法精度の狭ギヤツ
プ長磁気ヘッドを高歩留りで製造できるが、ギャップ形
成面8を設けるための基板5上に達する壕での軟磁性膜
6の段差加工あるいは21字溝加工をダイヤモンドバイ
ト7゜7′のみで行っているため、基板5の切削小片が
ダイヤモンドバイト7.7′に取り込まれて、ギャップ
面8を傷つけたり、基板5にクラックが発生するという
問題を生ずる。また、ヘッド磁路な構成する軟磁性膜6
.6′が、第2図(A)に示す例のように、ギャップス
ペーサ膜9を層間膜とする2層構造とする場合は、第2
図(b)ハに示しであるように、ダイヤモンドバイト1
1により軟磁性膜乙の動作ギャップ10近傍まで軟磁性
膜6′に溝加工を施し、この軟磁性膜6′の軟磁性膜6
上における溝幅なヘッドトラック幅に仕上げると加工応
力のため上記層間から軟磁性膜6′が剥離し、歩留りが
著しく低下するという問題を生ずる。
In the above proposed magnetic head, the gap spacer film 9 is the only factor determining the gap length, and a narrow gap length magnetic head with high dimensional accuracy can be manufactured with high yield. Since the step machining or 21-shaped groove machining of the soft magnetic film 6 in the trench is performed only with the diamond cutting tool 7°7', the cut pieces of the substrate 5 are taken into the diamond cutting tool 7.7' and the gap surface 8 is This may cause problems such as damage or cracks in the substrate 5. In addition, the soft magnetic film 6 constituting the head magnetic path
.. 6' has a two-layer structure with the gap spacer film 9 as an interlayer film, as in the example shown in FIG.
As shown in Figure (b) C, the diamond bite 1
1, grooves are formed in the soft magnetic film 6' up to the vicinity of the operating gap 10 of the soft magnetic film B, and the soft magnetic film 6 of the soft magnetic film 6' is
If the head track width is finished to be the same as the groove width above, the soft magnetic film 6' will peel off from between the layers due to processing stress, resulting in a problem that the yield will be significantly reduced.

本発明は上記に鑑みてなされたもので、その目的とする
ところは、第1の軟磁性膜と第2の軟磁性膜とでギャッ
プスペーサ膜を挾むことによって動作ギャップを形成し
てなる磁気ヘッドにおいて、傷のない平担なギャップ面
を有する段差あるいは溝の加工を容易に行うことができ
かつ、歩留りよく動作ギャップ近傍の軟磁性膜の膜厚を
トラック幅寸法に絞り込むことができる磁気ヘッドの製
造方法を提供することにある。
The present invention has been made in view of the above, and its object is to form a magnetic field by forming an operating gap by sandwiching a gap spacer film between a first soft magnetic film and a second soft magnetic film. A magnetic head that can easily process steps or grooves that have a flat, scratch-free gap surface, and that can reduce the thickness of the soft magnetic film near the operating gap to the track width dimension with good yield. The purpose of this invention is to provide a method for manufacturing the same.

本発明の第1の特徴は、第1の軟磁性膜に段差あるいは
溝加工をするときに、まず、この軟磁性膜の膜厚寸法よ
りも浅い段差あるいは溝切り加工を高硬度バイトを用い
て行い、その後エツチングにより上記段差寸法あるいは
上記溝の深さが上記膜厚寸法になるように仕上げてギャ
ップ面を形成するようにした点にある。第2の特徴は、
ヘッド磁路な形成する軟磁性膜が2層積層構造で動作ギ
ャップの部分の軟磁性膜の膜厚をトランク幅寸法となる
ように絞り込んである磁気ヘッドにおいては、さらに、
上記第1の軟磁性膜と第2の軟磁性膜とでギャップスペ
ーサ膜を挾んで形成した動作ギャップの近傍の上層軟磁
性膜にこの軟磁性膜の膜厚寸法より浅い深さの溝加工を
高硬度バイトを用いて行い、その後エツチングにより上
記溝加工部の膜厚を上記トラック幅寸法になるように絞
り込むようにした点にある。
The first feature of the present invention is that when cutting a step or a groove in the first soft magnetic film, first, the step or groove is cut shallower than the thickness of the soft magnetic film using a high-hardness cutting tool. The gap surface is then formed by etching so that the step dimension or the depth of the groove becomes the film thickness dimension. The second feature is
In a magnetic head in which the soft magnetic film forming the head magnetic path has a two-layer laminated structure, and the thickness of the soft magnetic film in the operating gap portion is narrowed down to match the trunk width dimension, furthermore,
A groove with a depth shallower than the film thickness of the soft magnetic film is formed in the upper soft magnetic film near the operating gap formed by sandwiching the gap spacer film between the first soft magnetic film and the second soft magnetic film. This is done using a high-hardness cutting tool, and then etching is performed to reduce the film thickness of the grooved portion to the track width dimension.

以下本発明の方法の一実施例を第3図、第4図を用いて
詳細に説明す。
An embodiment of the method of the present invention will be described in detail below with reference to FIGS. 3 and 4.

第3図はギャップ面として軟磁性膜に設けた段差側面を
利用する場合の製造工程説明図である。まず、非磁性基
板13上に蒸着あるいはスパッタリング法等の薄膜作成
技術を用いて第1の軟磁性膜14を形成し、高硬度バイ
ト15により軟磁性膜14の膜厚寸法より小さいDなる
寸法の段差加工を行った後、段差底面全体の軟磁性膜を
基板13が現われるまでのdなる量のエツチング除去部
16だけ化学エツチング、イオンエツチング等のエツチ
ング法により除去し、ギャップ面17を有する段差を形
成する(第3図A)。なお上記の段差加工において、ギ
ャップアジマス角となる基板130表面とギャップ面1
7とのなす角θは、高硬度バイト15の形状により任意
に選択することができる。次に、ギャップ面17の法線
方向寸法が動作ギャップ長となる膜厚のギャップスペー
サ膜18と第2の軟磁性膜19とを順に段差加工後の軟
磁性膜14上に上述の薄膜作成技術を用いて形成し、軟
磁性膜19019′の部分を研摩により除去し、軟磁性
膜14.19の膜厚をトラック幅寸法Tに絞り込んで動
作ギャップ20を形成する(第3図B)。次に、層間絶
縁膜21.第3の軟磁性M22を上述の薄膜作成技術に
より形成し、高硬度バイト23により軟磁性膜22に膜
厚寸法より小さい深さD′の下向き台形の断面を持つ溝
加工を行う(第3図C)。上記溝加工後に溝底面が層間
絶縁膜21に達するまで上述と同様のエツチング法によ
り軟磁性膜22のエツチング除去部24(エツチング量
d’)を除去して溝25を形成する(第6図D)。
FIG. 3 is an explanatory diagram of the manufacturing process in the case of using a stepped side surface provided in a soft magnetic film as a gap surface. First, a first soft magnetic film 14 is formed on a non-magnetic substrate 13 using a thin film forming technique such as vapor deposition or sputtering, and a dimension D smaller than the film thickness of the soft magnetic film 14 is formed using a high hardness cutting tool 15. After processing the step, the soft magnetic film on the entire bottom surface of the step is removed by an etching method such as chemical etching or ion etching until the substrate 13 appears by an etching amount d, and the step having the gap surface 17 is removed. form (Fig. 3A). In addition, in the step processing described above, the gap azimuth angle is between the substrate 130 surface and the gap surface 1.
The angle θ formed with 7 can be arbitrarily selected depending on the shape of the high-hardness cutting tool 15. Next, a gap spacer film 18 and a second soft magnetic film 19 having a film thickness such that the dimension in the normal direction of the gap surface 17 is the operating gap length are sequentially formed on the soft magnetic film 14 after step processing using the above-mentioned thin film forming technique. A portion of the soft magnetic film 19019' is removed by polishing, and the thickness of the soft magnetic film 14.19 is reduced to the track width dimension T to form the operating gap 20 (FIG. 3B). Next, the interlayer insulating film 21. A third soft magnetic film M22 is formed by the above-mentioned thin film forming technique, and a groove having a downward trapezoidal cross section with a depth D' smaller than the film thickness dimension is formed in the soft magnetic film 22 using a high-hardness cutting tool 23 (Fig. 3). C). After the above groove processing, the etched portion 24 (etching amount d') of the soft magnetic film 22 is removed by the same etching method as described above until the bottom surface of the groove reaches the interlayer insulating film 21, thereby forming a groove 25 (FIG. 6D). ).

以上の加工を施した後、第3図Eに示すように、第3の
軟磁性膜22の上に非磁性物質26を上述の薄膜作成技
術やプラズマ溶射等のコーティング技術を用いて数10
μmの厚さに形成するかあるいは、第3図Fに示すよう
に、ガラス27により溝25を埋めて、その上に非磁性
板28を接着する。その後、第3図Gに示すように、所
定位置に巻線窓29を超音波加工によりあけてヘッドチ
ップの製造を完成する。
After performing the above processing, as shown in FIG.
Alternatively, as shown in FIG. 3F, the groove 25 is filled with glass 27 and a non-magnetic plate 28 is bonded thereon. Thereafter, as shown in FIG. 3G, a winding window 29 is opened at a predetermined position by ultrasonic machining to complete the manufacture of the head chip.

なお、溝25の加工において、イオンエツチング法など
のように、層間膜21と軟磁性膜22とのエツチングレ
ートの差があまり大きくない場合は、エツチング加工で
動作ギャップ20近傍の軟磁性膜の膜厚をトラック幅寸
法に絞り込むことが可能であるから、第3図Bの軟磁性
膜19019′の部分の除去のための研摩工程で必ずし
も軟磁性膜14.19の膜厚をトラック幅寸法Tに仕上
げる必要がなく1寸法T以上の寸法であればよい。
Note that in processing the groove 25, if the difference in etching rate between the interlayer film 21 and the soft magnetic film 22 is not very large, such as by ion etching, etching may be used to remove the soft magnetic film near the operating gap 20. Since it is possible to reduce the thickness to the track width dimension, it is not necessary to reduce the thickness of the soft magnetic film 14.19 to the track width dimension T in the polishing process for removing the soft magnetic film 19019' portion shown in FIG. 3B. There is no need for finishing, and any dimension of one dimension T or more is sufficient.

しかし、上述のエツチングレートに大きな差がある場合
は、上述のようにトラック幅寸法Tに仕上げる必要があ
る。
However, if there is a large difference in etching rate as described above, it is necessary to finish the track width dimension T as described above.

第3図Gにおいては、磁路は軟磁性膜14.22と19
.22とで構成されているが−、ヘッド磁路が1組の単
層膜で構成される場合は、第1の軟磁性膜14をトラッ
ク幅寸法T以上の膜厚に形成し第6図Bにおいて、研摩
をギャップスペーサ膜1Bに達するまで行い、第3図C
の溝加工のみで動作ギャップ20近傍の軟磁性膜の膜厚
をトラック幅寸法Tに絞り込んでもよい。
In Figure 3G, the magnetic path consists of soft magnetic films 14, 22 and 19.
.. However, if the head magnetic path is composed of a set of single-layer films, the first soft magnetic film 14 is formed to have a thickness equal to or larger than the track width dimension T, as shown in FIG. 6B. , polishing was performed until the gap spacer film 1B was reached, and as shown in FIG.
The thickness of the soft magnetic film in the vicinity of the operating gap 20 may be narrowed down to the track width dimension T by only groove processing.

第4図はギャップ面として軟磁性膜に設けたV字溝側面
を利用する場合の製造工程説明図である。この場合は、
まず、第3図と同様蒸着あるいはスパッタリング法等の
薄膜作成技術で非磁性基板16上に形成した第1の軟磁
性膜14に高硬度バイト30で軟磁性膜14の膜厚寸法
より浅い深さDのV字溝加工を行い、V字頂点が少なく
とも基板130表面に達するまでは化学エツチングある
いはイオンエツチング等のエツチング法により軟磁性膜
14のエツチング除去部31(エツチング量d)を除去
し、ギャップ面32を形成する(第4図A)。なお、ギ
ャップアジマス角θは、高硬度バイト30の形状、バイ
ト30のセックインク条件で自由に決めることができる
。またV字溝は第3図Cに破線で示しである下向き台形
薄であってもよい。次に、ギャップ面32の法線方向寸
法が動作ギャップ長となる膜厚の絶縁物のギャップスペ
ーサ膜33と第2の軟磁性膜34とを順KV字溝加工後
の軟磁性膜14上に上述の薄膜作成技術を用いて形成し
、高硬度バイト23で底面が少なくとも軟磁性膜34に
形成されているV字溝底部に達するまで、すなわち、溝
深さD′の溝加工を行う(第4図B)。なお、第2の軟
磁性膜34は上述のV字溝深さ以上の膜厚となるように
形成する。次に、動作ギャップ35近傍の軟磁性膜の膜
厚がトラック幅寸法Tになるまで、イオンエツチング法
により寸法d′のエツチング除去部36を除去して溝3
7とする(第4図C)。
FIG. 4 is an explanatory view of the manufacturing process in the case where the side surface of the V-shaped groove provided in the soft magnetic film is used as the gap surface. in this case,
First, the first soft magnetic film 14 is formed on a non-magnetic substrate 16 using a thin film forming technique such as vapor deposition or sputtering as shown in FIG. A V-shaped groove D is formed, and the etched portion 31 (etching amount d) of the soft magnetic film 14 is removed by an etching method such as chemical etching or ion etching until the V-shaped apex reaches at least the surface of the substrate 130. A surface 32 is formed (FIG. 4A). Note that the gap azimuth angle θ can be freely determined depending on the shape of the high-hardness cutting tool 30 and the security ink conditions of the cutting tool 30. The V-groove may also have a downward trapezoidal shape, as shown in broken lines in FIG. 3C. Next, an insulating gap spacer film 33 and a second soft magnetic film 34 having a film thickness such that the dimension in the normal direction of the gap surface 32 is the operating gap length are placed on the soft magnetic film 14 after the KV groove has been processed. The thin film is formed using the above-mentioned thin film forming technique, and the groove is processed with a high-hardness cutting tool 23 until the bottom surface reaches at least the bottom of the V-shaped groove formed in the soft magnetic film 34, that is, the groove depth is D'. Figure 4B). The second soft magnetic film 34 is formed to have a thickness equal to or greater than the depth of the V-shaped groove described above. Next, the etched portion 36 having the dimension d' is removed by ion etching until the thickness of the soft magnetic film near the operating gap 35 reaches the track width dimension T.
7 (Figure 4C).

次に、溝37にガラス27を埋め込み、その上方に非磁
性板28を接着しく第4図D)、所定位置に巻線窓29
を超音波加工によりあけヘッドチップを完成する(第4
図E)。
Next, the glass 27 is embedded in the groove 37, the non-magnetic plate 28 is glued above it (Fig. 4D), and the winding window 29 is placed in a predetermined position.
Complete the drilled head chip by ultrasonic processing (4th
Figure E).

第4図Eにおいては、磁路は左右に分離された軟磁性膜
14.34によって構成され、動作ギャップ35は、左
側の第1の軟磁性膜14と右側の第2の軟磁性膜34と
で形成される。ギャップスペーサ膜33は、ギャップ面
以外では軟磁性膜14゜34の層間膜となっているから
、上述の如く絶縁物であれば同時に層間絶縁の役割も果
たすが、特に絶縁物である必要はない。また、第4図の
V字溝部分とその他の軟磁性膜14.34の層間部とに
異なる物質のものを用いてもよい。第4図Cにおけるイ
オンエツチングは化学エッチでもかまわないが、軟磁性
膜14.34の層間膜に対するエツチングレートが軟磁
性膜34のエツチングレートに対して十分小さい場合は
、第4図Aにおけるエツチング後の軟磁性膜14の膜厚
をトラック幅寸法Tにする必要がある。また、第4図り
の工程は、第3図Eと同様にコーティング技術あるいは
薄膜作成技術を用いて非磁性物質を数10μmの厚さに
付着させてもよい。
In FIG. 4E, the magnetic path is constituted by soft magnetic films 14.34 separated on the left and right, and the operating gap 35 is formed between the first soft magnetic film 14 on the left side and the second soft magnetic film 34 on the right side. is formed. Since the gap spacer film 33 is an interlayer film between the soft magnetic films 14 and 34 except for the gap plane, if it is an insulator as described above, it will also serve as interlayer insulation, but it does not need to be an insulator. . Furthermore, different materials may be used for the V-shaped groove portion in FIG. 4 and the other interlayer portions of the soft magnetic film 14, 34. The ion etching in FIG. 4C may be chemical etching, but if the etching rate for the interlayer film of the soft magnetic film 14.34 is sufficiently smaller than the etching rate of the soft magnetic film 34, the etching in FIG. It is necessary to set the thickness of the soft magnetic film 14 to the track width dimension T. Further, in the step of Figure 4, the non-magnetic material may be deposited to a thickness of several tens of micrometers using a coating technique or a thin film forming technique as in Figure 3E.

第3図、第4図において、第3図Aの段差付は加工、第
4図AのV字溝加および第3図C1第4図Bの高硬度バ
イトによる溝加工は、ヘッド磁路前部の動作ギャップ近
傍のみでも、あるいは、ヘッド磁路前部から後部までに
わたるものであってもよい。高硬度バイトの材質として
は、必ずしも従来例のダイヤモンドバイトである必要は
なく、ヘッド磁路な構成する軟磁性膜の材質によっては
、一般的なバイト材料である高速度鋼製のものでもよく
、サファイヤ、ルビー等は当然使用可能であり、その他
、セラミックスバイト、超硬バイトでも使用可能な場合
がある。
In Figs. 3 and 4, the steps shown in Fig. 3A are processed, the V-shaped grooves shown in Fig. 4A, and the grooves processed with a high-hardness cutting tool shown in Fig. 3C1 and Fig. 4B are processed in front of the head magnetic path. It may be only near the operating gap of the head, or it may extend from the front to the rear of the head magnetic path. The material of the high-hardness cutting tool does not necessarily have to be the conventional diamond cutting tool. Depending on the material of the soft magnetic film that constitutes the head magnetic path, it may be made of high-speed steel, which is a common tool material. Naturally, sapphire, ruby, etc. can be used, and ceramic bits and carbide bits may also be used.

上記した本発明の製造方法の実施例によればギャップ形
成面を有する段差あるいは1字溝加工において、高硬度
パイ) 15.30が基板13まで達しないから、従来
問題となっていた基板13にクラックが発生したり、ギ
ャップ形成面17.32に傷がついたりすることを防止
することができる。
According to the above-described embodiment of the manufacturing method of the present invention, when machining a step or a single-shaped groove having a gap forming surface, the high hardness (P) 15.30 does not reach the substrate 13, which has been a problem in the past. It is possible to prevent cracks from occurring and damage to the gap forming surface 17.32.

また、第3図C0第4図Bの溝加工においても高硬度バ
イト23が強度が十分でない軟磁性膜22と14.19
.34と14の層間まで達しないから層間からの軟磁性
膜22.54の剥離という問題が生じるのを避けること
ができる。
Also, in the groove machining shown in FIG. 3 C0 and FIG.
.. Since it does not reach the space between the layers 34 and 14, the problem of peeling of the soft magnetic film 22, 54 from between the layers can be avoided.

以上説明したように、本発明によれば、傷のない平担な
ギャップ面を有する段差あるいは溝の加工を容易に行う
ことができ、かつ、歩留りよく動作ギャップ近傍の軟磁
性膜の膜厚をトラック幅寸法に絞り込むことができると
いう効果がある。
As explained above, according to the present invention, it is possible to easily process steps or grooves having a flat gap surface without scratches, and to reduce the thickness of the soft magnetic film near the operating gap with good yield. This has the effect of narrowing down the dimensions to the track width dimension.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のフェライト磁気ヘッドの正面図、第2図
は従来の軟磁性膜を用いた磁気ヘッドの製造方法を説明
するための製造工程説明図で、(a)は段差側面をギャ
ップ形成面とする場合の図で、(b)はV字溝側面をギ
ャップ形成面とする場合の図、第3図、第4図は本発明
の軟磁性膜を用いた磁気ヘッドの製造方法の一実施例を
説明するための製造工程説明図で、第3図は段差側面を
ギャップ形成面とする場合の図、第4図はV字溝側面を
ギャップ形成面とする場合の図である。
Figure 1 is a front view of a conventional ferrite magnetic head, Figure 2 is a manufacturing process explanatory diagram for explaining the manufacturing method of a conventional magnetic head using a soft magnetic film, and (a) is a gap formed on the side surface of a step. (b) is a diagram when the side surface of the V-shaped groove is used as the gap forming surface, and FIGS. 3 and 4 are diagrams showing one method for manufacturing a magnetic head using the soft magnetic film of the present invention. These are manufacturing process explanatory diagrams for explaining the embodiment, in which FIG. 3 is a diagram when the step side surface is used as the gap forming surface, and FIG. 4 is a diagram when the V-shaped groove side surface is used as the gap forming surface.

Claims (1)

【特許請求の範囲】 1、 側面がギャップ面となる段差あるいは溝を設けた
第1の軟磁性膜と第2の軟磁性膜とでギャップスペーサ
膜を挾むことにより動作ギャップおよびヘッド磁路を形
成してなる磁気ヘッドにおいて、前記第1の軟磁性膜に
段差あるいは溝加工をするときに、まず、該軟磁性膜の
膜厚寸法よりも浅い段差あるいは溝切り加工を高硬度バ
イトを用いて行い、その後エツチングにより前記段差寸
法あるいは前記溝の深さが前記膜厚寸法になるように仕
上げてギャップ面を形成することを特徴とする磁気ヘッ
ドの製造方法。 2 側面がギャップ面となる段差あるいは溝を設けた第
1の軟磁性膜と第2の軟磁性膜とでギャップスペーサ膜
を挾むことにより動作ギャップを形成し、ヘッド磁路な
形成する軟磁性膜が2層積層構造で前記動作ギャップの
部分の軟磁性膜の膜厚をトラック幅寸法となるように絞
り込んである磁気ヘッドにおいて。 前記第1の軟磁性膜に段差あるいは溝加工をするときに
、まず、該軟磁性膜の膜厚寸法よりも浅い段差あるいは
溝切り加工を高硬度バイトを用いて行い、その後エツチ
ングにより前記段差寸法あるいは前記溝の深さが前記膜
厚寸法になるように仕上げてギャップ面を形成し、前記
第1の軟磁性膜と前記第2の軟磁性膜トでギャップスペ
ーサ膜を挾んで形成した動作ギャップの近傍の上層軟磁
性膜に該軟磁性膜の膜厚寸法より浅い深さの溝加工を高
硬度バイトを用いて行い、その後エツチングにより該溝
加工部の膜厚を前記トラック幅寸法になるように絞り込
むことを特徴とする磁気ヘッドの製造方法。
[Claims] 1. The operating gap and head magnetic path are created by sandwiching a gap spacer film between a first soft magnetic film and a second soft magnetic film, each of which has a step or groove whose side surface serves as a gap surface. In the formed magnetic head, when cutting a step or groove in the first soft magnetic film, first cut the step or groove shallower than the thickness of the soft magnetic film using a high-hardness cutting tool. A method for manufacturing a magnetic head, characterized in that the step size or the depth of the groove is finished to the film thickness size by etching to form a gap surface. 2. An operating gap is formed by sandwiching a gap spacer film between a first soft magnetic film and a second soft magnetic film, each having a step or groove whose side surface becomes a gap surface, and a soft magnetic field that forms a head magnetic path. A magnetic head in which the film has a two-layer laminated structure and the thickness of the soft magnetic film in the operating gap portion is narrowed down to match the track width dimension. When cutting a step or groove in the first soft magnetic film, first cut the step or groove shallower than the thickness of the soft magnetic film using a high-hardness cutting tool, and then etching the step or groove. Alternatively, the depth of the groove is finished to the film thickness dimension to form a gap surface, and a working gap is formed by sandwiching a gap spacer film between the first soft magnetic film and the second soft magnetic film. A groove with a depth shallower than the film thickness of the soft magnetic film is formed in the upper layer near the soft magnetic film using a high-hardness cutting tool, and then etching is performed to make the film thickness of the grooved portion equal to the track width dimension. A method for manufacturing a magnetic head, which is characterized by narrowing down the steps to:
JP19851081A 1981-12-11 1981-12-11 Manufacture of magnetic head Pending JPS58100213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19851081A JPS58100213A (en) 1981-12-11 1981-12-11 Manufacture of magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19851081A JPS58100213A (en) 1981-12-11 1981-12-11 Manufacture of magnetic head

Publications (1)

Publication Number Publication Date
JPS58100213A true JPS58100213A (en) 1983-06-14

Family

ID=16392331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19851081A Pending JPS58100213A (en) 1981-12-11 1981-12-11 Manufacture of magnetic head

Country Status (1)

Country Link
JP (1) JPS58100213A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60160012A (en) * 1984-01-31 1985-08-21 Canon Inc Production of magnetic head

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60160012A (en) * 1984-01-31 1985-08-21 Canon Inc Production of magnetic head

Similar Documents

Publication Publication Date Title
JPS58100213A (en) Manufacture of magnetic head
JPS6341126B2 (en)
KR930002392B1 (en) Magnetic head
JPS57141009A (en) Thin film magnetic head and its production
JP2680750B2 (en) Manufacturing method of magnetic head
JP2669965B2 (en) Manufacturing method of magnetic head
JPS58121118A (en) Thin film magnetic head
JPS58179924A (en) Production of magnetic head
JP2889072B2 (en) Thin film laminated magnetic head chip and manufacturing method thereof
JPS618710A (en) Manufacture of magnetic head
JPS5832217A (en) Production of thin film magnetic head substrate
JPS60258715A (en) Production of thin film magnetic head
JPH0612620A (en) Manufacture of magnetic head
JPS58161125A (en) Magnetic head
JPH05151520A (en) Production of magnetic head
JPH03181011A (en) Production of magnetic head
JPS5853019A (en) Manufacture for magnetic head
JPS5868213A (en) Magnetic head
JPH05314428A (en) Composite magnetic head
JPS6390013A (en) Magnetic head
JPH087212A (en) Production of magnetic head
JPH11213321A (en) Production of magnetic head and magnetic head
JPH09180119A (en) Nonmagnetic substrate for magnetic head and manufacture of magnetic head as well as laminated magnetic head
JPH0337809A (en) Production of thin-film magnetic head
JPS63266607A (en) Magnetic head