JPS58161125A - Magnetic head - Google Patents

Magnetic head

Info

Publication number
JPS58161125A
JPS58161125A JP4271982A JP4271982A JPS58161125A JP S58161125 A JPS58161125 A JP S58161125A JP 4271982 A JP4271982 A JP 4271982A JP 4271982 A JP4271982 A JP 4271982A JP S58161125 A JPS58161125 A JP S58161125A
Authority
JP
Japan
Prior art keywords
film
magnetic
thickness
groove
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4271982A
Other languages
Japanese (ja)
Inventor
Hideo Zama
座間 秀夫
Norio Goto
典雄 後藤
Mitsuo Abe
阿部 光雄
Mitsuharu Tamura
光治 田村
Kanji Kawano
寛治 川野
Katsuo Konishi
小西 捷雄
Teizou Tamura
田村 「てい」三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4271982A priority Critical patent/JPS58161125A/en
Publication of JPS58161125A publication Critical patent/JPS58161125A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3103Structure or manufacture of integrated heads or heads mechanically assembled and electrically connected to a support or housing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3176Structure of heads comprising at least in the transducing gap regions two magnetic thin films disposed respectively at both sides of the gaps
    • G11B5/3179Structure of heads comprising at least in the transducing gap regions two magnetic thin films disposed respectively at both sides of the gaps the films being mainly disposed in parallel planes
    • G11B5/3183Structure of heads comprising at least in the transducing gap regions two magnetic thin films disposed respectively at both sides of the gaps the films being mainly disposed in parallel planes intersecting the gap plane, e.g. "horizontal head structure"

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To control the track width completely and to improve the yield, by forming a non-magnetic film between the first magnetic film and the second magnetic film, and estimating the quantity which is considered to be a factor of all variations to the thickness size of this non-mangetic film. CONSTITUTION:On a non-magnetic glass substrate 11, the first non-magnetic ground film 12 is formed by 3mum or so in thickness, and the first magnetic film 13 is formed by 15mum or so in thickness. In the following process, the second non-magnetic ground film 14 consisting of non-magnetic stainless steel which is same as the first ground film 12 is formed by 2mum or so by DC 4-pole spattering. Subsequently, a groove is formed by a V-shaped diamond cutting tool, a sample is inclined by 45 deg. against the horizontal plane, and by RF spattering, SiO2 is formed by 0.4mum or so on the gap formed face, as a gap spacer film 15. Subsequently, the second magnetic film 16 is formed by 20mum or so. After that, by a U-shaped diamond cutting tool, a U-groove is formed, and decision of the track width and the magnetic separation are executed. In this case, by film thickness of the second ground film 14, depth of the U-groove is controlled suitably.

Description

【発明の詳細な説明】 本発明は、磁気ヘッドのトラック幅が常に一足になるよ
うに製造可能であるような構造をもった磁気ヘッドに関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a magnetic head having a structure that can be manufactured so that the track width of the magnetic head is always one foot.

第1図は従来の磁気ヘッド製造方法の工程説明図である
。同図を参照して従来の磁気ヘッドの製造工程を説明す
る。即ち第1図(1)に見られる如く非磁性基@1上に
非磁性下地M2と第1の磁性膜3を形成する。この時、
非磁性下地膜2は1〜6趨程度形成さnるが、この下地
1[2の主目的は第1−(2)の工程のV@影形成よる
非磁性基板1へのクラック等を防ぐことである0次に(
2)に示すようにダイヤバイト等により磁性a3は下地
膜2にまで至るv#1を形成し骸溝の1万の斜面をギャ
ップ形成面として用いる。(3)はギャップを形成する
ための非磁性ギャップスペーサ材←膜)4を形成する工
程であり、所望のギャップ長が得られるようスペーサ膜
4の膜厚を形成する。この時1万の溝斜面にのみギャッ
プスペーサ膜4を形成しても良いが、一般的にはマスク
バッタ等により#1部全面にギャップスペーサ膜4を形
成している。(4)は第2の磁性膜5をギャップスペー
サ膜4の上から形成する工程であり、(5)は第2の磁
性膜5の一部をU字状バイト(−示せず)等により溝(
深さD)を形成して除去する工程である。この時0字バ
イトによる第2Mi性M5の一部を除去する工程には2
つの)大きな目的があるが、その1つは第1磁性膜5の
厚みで決まる管のトラック幅TO制御であり、もう1つ
はギャップを境にして第1磁性膜3と第2i性膜5との
l!IK:#気的分離!得ることである。
FIG. 1 is a process explanatory diagram of a conventional magnetic head manufacturing method. The manufacturing process of a conventional magnetic head will be explained with reference to the same figure. That is, as shown in FIG. 1(1), a nonmagnetic base M2 and a first magnetic film 3 are formed on a nonmagnetic base @1. At this time,
The non-magnetic base film 2 is formed in about 1 to 6 layers, and the main purpose of the base film 2 is to prevent cracks, etc. on the non-magnetic substrate 1 due to V@shading formation in the step 1-(2). That is, the 0th order (
As shown in 2), the magnetic a3 forms a v#1 extending to the base film 2 using a diamond bite or the like, and the 10,000 slopes of the groove are used as the gap forming surface. (3) is a step of forming a non-magnetic gap spacer material (film) 4 for forming a gap, and the thickness of the spacer film 4 is formed so as to obtain a desired gap length. At this time, the gap spacer film 4 may be formed only on the slopes of the 10,000 grooves, but generally the gap spacer film 4 is formed on the entire surface of the #1 portion by using a mask batter or the like. (4) is a step of forming the second magnetic film 5 from above the gap spacer film 4, and (5) is a step of forming a groove in a part of the second magnetic film 5 using a U-shaped tool (not shown) or the like. (
This is a step of forming and removing a depth D). At this time, the step of removing a part of the second Mi property M5 by the 0-character byte requires 2
One of them is to control the track width TO of the tube, which is determined by the thickness of the first magnetic film 5, and the other is to control the track width TO of the tube, which is determined by the thickness of the first magnetic film 5. Tono l! IK: #Emotional separation! It's about getting.

(6)は第2磁性膜5の上から保S狭6を形成する工程
でありその後、巻線穴2巻線1等の工程(図示せず)を
経てヘッドは作成される。
(6) is a step of forming the retaining S narrower 6 from above the second magnetic film 5, and after that, the head is fabricated through steps (not shown) of forming the winding holes 2, the winding 1, etc.

以上のような工程にLv作成された従来ヘッドの最大の
大曳は、第1図(5)の工程によるトラック幅制御のむ
ずかしさである。つまりU字状バイト等による溝形成に
おいて、その深さDの制御が困難であり、浅く擲が形成
されるとスペーサ膜4の上面が第2磁性M5によりおお
われたままとなって、ギャップを境にしての第1磁性a
3と第2磁性膜5との磁気的な分離は得らnf1又、深
すぎると第1磁性換3の厚みにくい込むため、トラック
暢テが小さくなる。ギャップスペーサ膜4はギャップを
形成する為にあるが、通常のVTRヘッド勢のギャップ
は高々[L5〜α6μs程願であるため、角部以外の平
60部にもギャップスペーサ膜を形成することとし、こ
の厚みをなるべく厚くして上記欠点を防ぐために用いる
ことも考えられるが、平面部のギャップスペーサ膜の膜
厚のみをギャップ部に関係なく自由に任意な膜厚に形成
することはできなくなり、従ってこれをトラック幅制御
用として用いることは不適当である。したがってギャッ
プスペーサ膜とは関係なく、トラック幅Tを正確に制御
できる1うな構造の磁気ヘッドが望まれる。
The biggest drawback of the conventional head whose Lv was created through the steps described above is the difficulty in controlling the track width through the step shown in FIG. 1 (5). In other words, when forming a groove using a U-shaped cutting tool, etc., it is difficult to control the depth D, and if the groove is formed shallowly, the upper surface of the spacer film 4 remains covered by the second magnetic M5, and the gap borders the gap. The first magnetic field a
Moreover, if the depth is too deep, the thickness of the first magnetic film 3 will be engulfed, and the track width will become small. The gap spacer film 4 is provided to form a gap, but since the gap in a normal VTR head is at most [L5 to α6 μs], the gap spacer film is also formed on the flat 60 parts other than the corners. Although it is possible to use this thickness as thick as possible to prevent the above drawbacks, it is no longer possible to freely form only the thickness of the gap spacer film on the plane part to an arbitrary film thickness regardless of the gap part. Therefore, it is inappropriate to use this for track width control. Therefore, there is a need for a magnetic head having a structure that allows accurate control of the track width T regardless of the gap spacer film.

不発明の目的は、上記した従来技術のトラック幅制御上
の欠点をなくシ、正確なトラック幅寸法をもち、歩留゛
りよく容易に生産できる構造の磁気ヘッドを提供するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a magnetic head having a structure that eliminates the above-described drawbacks in track width control of the prior art, has accurate track width dimensions, and can be easily produced with high yield.

本発明の要点は、従来技術の欠点であるトラック幅制御
の困難さを解消するために、第1の磁性膜と第2の磁性
膜との間に、基板のそりおよびギャップ面用加工溝深さ
n度、第2磁性膜厚分布郷の溝形成時における溝寸法の
誤差要因を見込んだ厚さの非磁性物質を配置し7’jA
である。この非磁性層はギャップを形成する皮めのギャ
ップスペーサ膜とは異なり、また必らすしも全面にある
必要もない。
The main point of the present invention is that, in order to solve the difficulty of track width control, which is a drawback of the conventional technology, a deep groove is formed between the first magnetic film and the second magnetic film to prevent warping of the substrate and to prevent the gap surface from being machined. A non-magnetic material is placed with a thickness that takes into account error factors in the groove dimensions when forming the grooves of the second magnetic film thickness distribution.
It is. This non-magnetic layer is different from a skin gap spacer film that forms a gap, and does not necessarily have to be on the entire surface.

次に図を参照して本発明の一実施例を説明する。Next, an embodiment of the present invention will be described with reference to the drawings.

第2囚は本発明の一実施例としての磁気ヘッドの飯造工
程説明囚である。同一を参照して以下、説明する。第2
囚(1)は、非磁性ガラス基板(成分は5i02  A
Ji1201−L102−に20 で熱膨張係数130
XI Q ’1 deg、) 11上に第1の非磁性下
jtl1M 12 トして、例えば非磁性ステンレスB
US510をDC4極スパッタで3μm形成し、更に第
1の磁性膜15としてセンダスト膜を5US510 と
四様KDC4極スパッタに!510μm/hrの速度で
15μm形成する。5U8510からなる地下M12の
硬度は第1の磁性膜13としてのセンダスト膜のそれと
同機度であるので、第2図(3)の工程におけるV字状
ダイヤバイトにLる溝形成時の切削にとって都合のよい
材料である。(2)O工程では、本発明によるトラック
幅制御用の農であり、第1の下地膜12と四じ5US5
10 からなる第2非磁性下地膜14を上記四様DC4
極スパッタにより2μl形成する。
The second figure is an explanation of the manufacturing process of a magnetic head as an embodiment of the present invention. The following description will be made with reference to the same. Second
Cap (1) is a non-magnetic glass substrate (component is 5i02A
Ji1201-L102-20 has a thermal expansion coefficient of 130
XIQ'1 deg,
US510 was formed to a thickness of 3 μm using DC 4-pole sputtering, and then a sendust film was formed as the first magnetic film 15 using 5US510 and four-way KDC 4-pole sputtering! A thickness of 15 μm is formed at a rate of 510 μm/hr. Since the hardness of the underground M12 made of 5U8510 is the same as that of the sendust film as the first magnetic film 13, it is convenient for cutting when forming the L groove in the V-shaped diamond bite in the process shown in FIG. 2 (3). It is a good material. (2) In the O process, the track width control according to the present invention is performed, and the first base film 12 and the fourth base film 5US5 are used.
The second non-magnetic base film 14 consisting of 10
Form 2 μl by polar sputtering.

即ち前に述べ次ように@1の非磁性下地膜12はV字状
バイトによる溝形成時の基板がラス11のクラック防止
が主目的であるが、本発明にLり設ける@2の非磁性下
地a14は、第2図(6)v工程において必要なトラッ
ク幅制御が主目的である。
That is, as mentioned previously, the main purpose of the non-magnetic base film 12 of @1 is to prevent cracks in the lath 11 of the substrate when grooves are formed with a V-shaped cutting tool. The main purpose of the underlayer a14 is to control the track width necessary in step (6) v in FIG. 2.

(8)はV字状ダイヤバイトによる溝形成工程であり、
この鳥の1万の斜面をギャップ形成面として用いるもの
である。V字状バイトの先端角度は本実施例では951
1バイトを用い第2図(3)■αはバイトとlWJ様9
5@の角度が得らnた。また、この時第2図(31Q)
#はヘッドのアジマス角となハ本実施例としては17″
と30″′について行なった。第2内(4)はヘッドの
ギャップ形成工程でTov1試料を水平面に対し45°
#IけRFスパッタによりギャップスペーサ膜15とし
て5102をギャップ形成面にα4μm形成する。ギャ
ップスペーサ膜15の5102膜厚α4μ国はこのヘッ
ドのギャップ長となる。この時平面部の810z(ギャ
ップスペーサ膜15)はギャップ形成面の5i02展に
比べ同程度か少し少ない膜厚となる。次に第2図(5)
 K示す第2の磁性膜16として前記同様にDC4極ス
パッタにょクセンダスト膜を第2磁性1[16として第
1磁性膜13エク淳く約2011−形成する。本実施例
では試料を水平に配置してセンダスト膜スパッタを行な
っ九、第2図(6)は重要な工程でありこの(6)の工
程にエフ、トラック幅の決定及び第1磁性M15と第2
磁性膜16の磁気的分離が行なわnる0本冥施例ではU
字状のダイヤバイトに19U溝を形成しトラック−の決
定と磁気的分離を行なうが、U@の深さがコントロール
さnすに所望の深きLり深く、つまり第2非磁性下地*
140厚みな超えて深く溝が形成されるとトラック輸テ
の減少となり、−万、浅すぎて下地膜14にも達しなか
ったとするとギャップを境にしてのコア(磁性膜13と
16)の磁気的分離が形成されず、ヘッドとして不適当
となる。即ち、非磁性基板11のそりおよび第2fiB
性膜16のDC4極スパッタによる膜厚分布、史にはU
字状バイトの機械的精度勢のバラツキがすべて第21V
(6)の工程にしわ工せられ、このバクツキを吸収しえ
ない限りトラック−の正しい制御ができないと同時に、
磁気的分離もできなくなハヘッドとはならない6本実施
例では1インチ四方のガラス基板11のウーハ−を用い
ると基板のソリは最大1μ閣ぐらいに制御でき、がつU
字状バイトの機械的精度も1μIIまでコントロールで
き、センダスト膜16の膜厚はほとんど均一である友め
上記−差要因を吸収するに足る寸法として本発明にエフ
設ける第2の下地膜14の膜厚を2μ聞とした。
(8) is a groove forming process using a V-shaped diamond bite;
The 10,000 slopes of this bird are used as gap forming surfaces. The tip angle of the V-shaped cutting tool is 951 in this example.
Figure 2 (3) using 1 byte ■α is the byte and lWJ 9
An angle of 5@ was obtained. Also, at this time, Figure 2 (31Q)
# is the azimuth angle of the head, which is 17″ in this example.
and 30"'. In the second case (4), the Tov1 sample was set at 45° to the horizontal plane in the head gap formation process.
A film 5102 having a thickness of α4 μm is formed as a gap spacer film 15 on the gap forming surface by #I RF sputtering. The film thickness α4μ of the gap spacer film 15 is the gap length of this head. At this time, the thickness of 810z (gap spacer film 15) on the flat surface is the same or slightly smaller than that of 5i02 on the gap forming surface. Next, Figure 2 (5)
As the second magnetic film 16 indicated by K, a DC quadrupole sputtered dust film is formed as the second magnetic film 16 by removing the first magnetic film 13 in the same manner as described above. In this example, the sample was placed horizontally and sendust film sputtering was performed. Figure 2 (6) is an important step. 2
In the embodiment in which the magnetic film 16 is magnetically separated, U
A 19U groove is formed in the letter-shaped diamond bite to determine the track and perform magnetic separation, but the depth of the U@ can be controlled to the desired depth, that is, the second non-magnetic base *
If a groove is formed deep beyond 140 mm, the track transport will be reduced, and if it is too shallow to reach the base film 14, the magnetic field of the core (magnetic films 13 and 16) across the gap will decrease. No separation is formed, making it unsuitable as a head. That is, the warpage of the non-magnetic substrate 11 and the second fiB
The film thickness distribution of the magnetic film 16 by DC quadrupole sputtering, history is U
All variations in the mechanical accuracy of the character-shaped tool are the 21st V.
There are wrinkles in the process of (6), and unless this bounce is absorbed, correct control of the truck cannot be achieved.
In this embodiment, if a woofer with a 1-inch square glass substrate 11 is used, the warp of the substrate can be controlled to a maximum of about 1 μm, and the warping of the substrate can be controlled to a maximum of about 1μ.
The mechanical accuracy of the letter-shaped tool can also be controlled to 1 μII, and the thickness of the sendust film 16 is almost uniform. The thickness was set to 2 μm.

また別のトラック暢加工(7)の工程では、前記同様U
字状バイトにエフ第2の磁性膜16が20μmであるの
でU溝深さを15μ■形成しその後スパッタエッチにL
りU溝底部を約6μIエツチする。
In addition, in another track smoothing process (7), the U
Since the F second magnetic film 16 is 20 μm thick on the letter-shaped cutting tool, a U groove depth of 15 μm is formed, and then an L groove is formed by sputter etching.
Etch the bottom of the U-groove by approximately 6μI.

この時溝部以外の平坦部のセンダスト膜16も約6μm
エッチさnるが残りの膜厚は14μmはど保つことがで
きる。そして本発明によるj1!2の下地膜14の膜厚
は2μm形成さnているため、U字状バイトの精度お上
びスパッタエラtのバラツキは充分吸収され、本発明の
目的であるトラック幅の正確な制御は容易に達成するこ
とができ、かつ製品の歩留りも向上する。
At this time, the sendust film 16 on the flat part other than the groove part is also about 6 μm thick.
Although the etching process is continued, the remaining film thickness can be maintained at 14 μm. Since the film thickness of the base film 14 of j1!2 according to the present invention is 2 μm, variations in the precision of the U-shaped cutting tool and the sputtering error t are sufficiently absorbed, and the track width, which is the objective of the present invention, is fully absorbed. Accurate control can be easily achieved and product yields are also improved.

又別の実施例を第3図に示す、第3図(1)は非磁性基
板がラス21(前記5j!施例と同じ)上に非磁性ステ
ンレス材5uS510からなるAk2!SをRrスパッ
タ!を用い約5 W/cs2のパワーにて4μm形成す
る。所用時間は約2時間程度で形成さnる。
Another embodiment is shown in FIG. 3. In FIG. 3 (1), the non-magnetic substrate is Ak2! made of non-magnetic stainless steel material 5uS510 on the lath 21 (same as the 5j! embodiment). Rr sputter S! It is formed to a thickness of 4 μm using a power of about 5 W/cs2. It takes about 2 hours to form.

この時a23のfiUs!510 の組成かすnM1性
化する場合かめるので注意を要する。そしてこv 5u
s310スパツタ膜23上にセンダストj[!22を前
記IHj様DC4極スパッタにより15μm形成したる
後、V字状ダイヤバイトにエフ■溝を形成し、しかる後
ギャップスペーサI[24として8102膜エク熱膨張
係数の大きいアルミナをRFスパッタにてα4μI全面
に形成する。干してVSSをマスクでおおうマスクスパ
ッタにエフV溝s以外の平坦部に更にR?マスクタにエ
フアルミナ膜25を1.5μI形成する。即ちギャップ
スペーサ膜24と本発明によるトラック幅制御用非磁性
膜25とは同じ材質のアルミナ膜を用いそれぞれに必要
な膜厚を形成する0次に第3図(2)の工程にLり第2
の磁性績26として第1の磁性j[22と同様DC4極
スパッタにより約20μm形成する0次に第3図(3)
の工程により因中の斜m5VU字状ダイヤバイトにより
除去する。不実施例ではダイヤバイトだけで除去してい
るが、前記実施例同様スパッタエッチと併用することも
できる。tた本実施例では第2の非磁性j[25をVS
S以外の全面に形成して説明しているが、−1狗だけに
形成して%工く、艷に前記実施例との併用、即ち第2の
非磁性膜25としてアルミナ膜な2μ礪形成したる後、
ダイヤバイトに工りV擲を形成し、しかる後、ギャップ
スペーサ膜24としてアルミナ膜をV溝部あるいは全面
にα4μm形成してもよい。
At this time, a23's fiUs! When changing the composition of 510 to nM1, care must be taken as it will be cloudy. And this v 5u
Sendust j [! 22 was formed to a thickness of 15 μm by DC 4-pole sputtering using the above-mentioned IHj method, and then an F groove was formed on the V-shaped diamond bite, and then, as gap spacer I [24, alumina with a large coefficient of thermal expansion of 8102 film was formed by RF sputtering. α4μI is formed on the entire surface. Dry it and cover the VSS with a mask. Apply R to the flat part other than the F-V groove s using the mask sputter. A 1.5 .mu.I film of F-alumina film 25 is formed on the mask. That is, the gap spacer film 24 and the non-magnetic film 25 for track width control according to the present invention are made of alumina films made of the same material, and the necessary film thicknesses are formed for each. 2
As the magnetic property 26, the first magnetic j [FIG. 3(3)
It is removed using a diagonal m5VU-shaped diamond bite in the process. In the non-example, the diamond bit alone was used for removal, but as in the previous example, sputter etching can also be used in combination. In this example, the second non-magnetic j[25 is VS
In the explanation, it is formed on the entire surface other than S, but it is formed on only the -1 dog and used in combination with the above embodiment, that is, a 2μ recess of alumina film is formed as the second non-magnetic film 25. After that,
A V-shape may be formed in the diamond bite, and then an alumina film having a thickness of α4 μm may be formed as the gap spacer film 24 on the V-groove portion or the entire surface.

又、更に他の一実施例な第4図に示す、前記実施例四様
非磁性基板ガラス21上に5US310膜23を第1の
非磁性下地膜として4μI形成しその膜上にセンダス)
a22を15μ−形成する。
Further, as shown in FIG. 4, which is still another embodiment, a 5US310 film 23 of 4 μl is formed as a first non-magnetic base film on the non-magnetic substrate glass 21 according to the above-mentioned embodiment, and a sender film is applied on the film.
15 μm of a22 is formed.

しかるのち必要とする部分だけに本発明にLる第2の非
磁性膜としてアルミナ膜25をマスクスパッタ#Iるい
は全面にスパッタ後エツチングなどに1り除去し2μ■
形成する。セしてwJ4図(2)の如く(1)にLり形
成され九アルミナl[25とセンダスト膜22の一部分
をダイヤパ9.4トにエフ切削してV溝を形成し、しか
る後(3)によりギャップスペーサ膜としてアルミナ膜
24を所望のギャップ長になるようスパッタして形成す
る。(4)は前記実施例同様U字状バイトにエッチw1
sを除去しギャップを境にしての磁気分層とトラック−
加工をする。
Thereafter, the alumina film 25 as the second non-magnetic film according to the present invention is removed only from the necessary portions by mask sputtering #I or by etching after sputtering on the entire surface to form a 2 μm film.
Form. As shown in Fig. 4 (2), a part of the alumina l[25 and sendust film 22 is cut into a diamond pad 9.4 to form a V-groove, and then (3) ), an alumina film 24 is formed as a gap spacer film by sputtering to a desired gap length. (4) is etched w1 on the U-shaped cutting tool as in the previous example.
Magnetic layer and track across the gap by removing s
Process.

本実施例では、トラック輪制御用としてV第1)非磁性
a25を必要最小限に限定するために、膜厚が厚くなる
につれ農の内部応力勢KLって生じる膜の接着強度低下
を着しく改善するという効果をtっ1馳る。
In this example, in order to limit the non-magnetic a25 to the necessary minimum for track wheel control, we take precautions to prevent the adhesive strength of the film from decreasing due to the internal stress force KL as the film thickness increases. I can see the effect of improvement.

なお本発明の一実施例としての磁気ヘッドの摺動面の模
式図を第5−に示す、即ち第5図中の矢印は磁気ヘッド
の主磁路を示しており、第1の磁性膜は第1層主磁路3
4と第1層主磁路34とに分割さt′L%第2層の磁性
膜は第2層主磁路35と第1層主磁路34とに分割さ詐
るものである。
A schematic diagram of the sliding surface of a magnetic head as an embodiment of the present invention is shown in Fig. 5-, that is, the arrow in Fig. 5 indicates the main magnetic path of the magnetic head, and the first magnetic film is 1st layer main magnetic path 3
The magnetic film of the second layer is divided into a second layer main magnetic path 35 and a first layer main magnetic path 34.

その#1か、31は非磁性基板、52は第1下地膜、s
3はギャップ、58は保−膜% 39は第2下地展、を
そn−t’n示す。
#1 or 31 is a non-magnetic substrate, 52 is a first base film, s
3 indicates the gap, 58 indicates the retention film %, and 39 indicates the second base layer expansion.

本発明によれば、第1磁性膜とwJ2磁性膜との間に非
磁性膜を形成し、#非磁性層厚寸法だけ加工精度に全格
が生じるのでトラック幅加工精度が着しく同上する。そ
して非磁性基板のそり、第二磁性膜厚のバラツキ、U字
状バイト等による加工量バラツキなど全てのバラツキの
要因となる量を第一と第二の磁性膜間に形成する非磁性
膜の膜厚寸法に見込むことにエフ完全にトラック暢制御
が可能となる。
According to the present invention, a nonmagnetic film is formed between the first magnetic film and the wJ2 magnetic film, and the overall machining accuracy is achieved by the #nonmagnetic layer thickness dimension, so that the track width machining accuracy is significantly improved. Then, the amount of the non-magnetic film formed between the first and second magnetic films, which is the cause of all variations, such as warpage of the non-magnetic substrate, variation in the thickness of the second magnetic film, and variation in processing amount due to the U-shaped cutting tool, etc. It becomes possible to completely control track smoothness by considering the film thickness dimension.

本発明は非磁性基板を大きくじ1つの基板上に多数のヘ
ッドを作成するような場合に適用すればそのような場合
にはバラツキなどの量もそれだけ多くなる友め特に効果
がある。
The present invention is particularly effective when applied to a case where a large number of heads are fabricated on a single non-magnetic substrate, in which case the amount of variation increases accordingly.

本実施例では溝形状をV字状にて説明しているが、この
形状に限るものではなし、tたトラック幅加工および磁
気的分離工程での加工形状も率なるU字状だけに限るも
のではなしさらにはその手法tバイトによる除去あるい
はスパッタエッチだけに限るものではなく、さらにその
手法の組み合わせも本実施例だけに限るものではない、
tた第1の磁性膜お工びW、2の磁性膜を単層膜にて説
明しているが、センダストなどの抵抗等を考慮すればそ
の渦電流損等を考えて絶縁層たとえば5ioz。
In this example, the groove shape is explained as a V-shape, but it is not limited to this shape, and the processed shape in the track width processing and magnetic separation process is also limited to the leading U-shape. In addition, the method is not limited to removal using a t-bite or sputter etching, and the combination of methods is not limited to only this example.
Although the first magnetic film W and the second magnetic film are described as a single-layer film, the insulating layer is, for example, 5 oz., considering the resistance of Sendust, etc., and the eddy current loss.

ki205などの非導通非磁性膜をα05〜α1μms
度形成して多層磁性層とし、これを所望の厚さに形成し
てそれぞれ第1磁性膜および第2磁性換としてもよいこ
とは明らかである。
Non-conductive non-magnetic film such as ki205 α05~α1μms
It is clear that a multilayer magnetic layer may be formed by forming a multilayer magnetic layer, and this may be formed to a desired thickness to serve as the first magnetic film and the second magnetic layer, respectively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(1)〜(6)は従来の磁気ヘッド製造方法の工
程説明図、第2因(1)〜(7)は不発明の一実施例と
しての磁気ヘッドの製造工程説明図、第3図(1)〜(
3)は他の実施例としての磁気ヘッドの製造工程説明図
、第4囚(1)〜(4)は更に別の実施例としての磁気
ヘッドの製造1根脱明−1W43図は不発明の一実施例
としての磁気ヘクトの摺動面を示す模式図である。 符号説明 1.11,21.51・・・非磁性基板、2.12,2
5.52・・・非磁性下地膜、3.1!S、22154
.36・・・第1磁性腺、4,15,24.!SiS・
・・ギャップスペーサ膜、5゜16.26.!55.3
7・・・第2磁性膜、6,38・・・保り農、14.2
4,25.59・・・第2下地展。 代理人ffj!1士 薄 1)利 幸 ブ l 図 (1)(2) (3)(4) 才2 図 (3)(4) (5)(6) /1 (7) 牙 3 図 才 4 図 127− タ 5 図 第1頁の続き ■発 明 者 田村幀三 勝田市大字稲田1410番地株式会 社日立製作所東海工場内
Figures 1 (1) to (6) are process explanatory diagrams of a conventional magnetic head manufacturing method; Figure 3 (1) - (
3) is an explanatory diagram of the manufacturing process of a magnetic head as another embodiment, and 4th prisoner (1) to (4) is an explanatory diagram of the manufacturing process of a magnetic head as another embodiment. FIG. 2 is a schematic diagram showing a sliding surface of a magnetic hect as an example. Code explanation 1.11, 21.51...Nonmagnetic substrate, 2.12, 2
5.52...Nonmagnetic base film, 3.1! S, 22154
.. 36... first magnetic gland, 4, 15, 24. ! SiS・
・Gap spacer film, 5°16.26. ! 55.3
7...Second magnetic film, 6,38...Main farming, 14.2
4, 25.59...Second foundation exhibition. Agent ffj! 1 Shi Usui 1) Ri Yukibu l Figure (1) (2) (3) (4) Sai2 Figure (3) (4) (5) (6) /1 (7) Fang 3 Figure 127- 5 Continuation of figure 1 ■ Inventor Hozo Tamura 1410 Oaza Inada, Katsuta City, Tokai Factory, Hitachi, Ltd.

Claims (1)

【特許請求の範囲】 1、 非磁性基板上に第1の磁性膜を形成し、そのの上
に非磁性下地膜を形成し、該下地膜の表面から前記第1
の磁性膜の厚み寸法を貫ぬく溝を形成し、該溝の少なく
とも一つの斜面をギャップ面とするため、該斜面にギャ
ップスペーサとなる非磁性膜(以下、スペーサ膜という
)を被着し、さらにその上から@2の磁性膜を被着させ
た後、前記スペーサ膜を被着させた前記斜面の頂上部付
近において、第2の磁性膜表面から前記非磁性下地膜の
厚み範囲にわたる材料を除去することにより、前記第1
の磁性膜と第2の磁性膜が、それらの間にはさまれ次前
記スに一す膜により磁気的に分離されるようにして成る
ことを特徴とする磁気ヘッド。 2、特許請求の範囲第1項記載の磁気へラドにおいて、
上記溝か上記第1の磁性膜の表面からその厚み寸法を貫
くよう形成され、上記非磁性下地膜が上記溝の少なくと
も一つの斜面に被着されたスペーサ膜と同じ材料で、か
つ、スペーサ膜より厚く形成されたことを特徴とする磁
気ヘッド。
[Claims] 1. A first magnetic film is formed on a non-magnetic substrate, a non-magnetic base film is formed thereon, and the first magnetic film is formed from the surface of the base film.
A groove is formed that penetrates the thickness of the magnetic film, and in order to make at least one slope of the groove a gap surface, a non-magnetic film (hereinafter referred to as a spacer film) serving as a gap spacer is deposited on the slope, Further, after depositing a magnetic film @2 on top of the second magnetic film, a material is applied from the surface of the second magnetic film to the thickness range of the non-magnetic base film near the top of the slope on which the spacer film is deposited. By removing the first
1. A magnetic head comprising: a magnetic film and a second magnetic film sandwiched between them and magnetically separated by a film between the first and second magnetic films. 2. In the magnetic herad according to claim 1,
The groove is formed so as to penetrate from the surface of the first magnetic film through its thickness, and the non-magnetic base film is made of the same material as the spacer film deposited on at least one slope of the groove, and the spacer film is A magnetic head characterized by being formed thicker.
JP4271982A 1982-03-19 1982-03-19 Magnetic head Pending JPS58161125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4271982A JPS58161125A (en) 1982-03-19 1982-03-19 Magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4271982A JPS58161125A (en) 1982-03-19 1982-03-19 Magnetic head

Publications (1)

Publication Number Publication Date
JPS58161125A true JPS58161125A (en) 1983-09-24

Family

ID=12643870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4271982A Pending JPS58161125A (en) 1982-03-19 1982-03-19 Magnetic head

Country Status (1)

Country Link
JP (1) JPS58161125A (en)

Similar Documents

Publication Publication Date Title
JP2979509B2 (en) Method of manufacturing a flat magnetic head by forming a cavity in a non-magnetic wafer
JPS58161125A (en) Magnetic head
JP2633097B2 (en) Manufacturing method of magnetic head
JPH0253217A (en) Smoothing of active surface of magnetic head
JPS61151818A (en) Thin film magnetic head
JPH0628617A (en) Magnetic head and its production
JP2853434B2 (en) Manufacturing method of thin film head slider
JP2669965B2 (en) Manufacturing method of magnetic head
JP2977112B2 (en) Manufacturing method of magnetic head
JPH04353607A (en) Magnetic head and manufacture thereof
JP2680750B2 (en) Manufacturing method of magnetic head
JPS61211809A (en) Thin film magnetic head
JPH03181011A (en) Production of magnetic head
JPH0589430A (en) Thin-film magnetic head
JP2889072B2 (en) Thin film laminated magnetic head chip and manufacturing method thereof
JPS5853019A (en) Manufacture for magnetic head
JPS63304413A (en) Thin film magnetic head and its manufacture
JPS60258715A (en) Production of thin film magnetic head
JPS58100213A (en) Manufacture of magnetic head
JPH04103009A (en) Manufacture of thin film magnetic head
JPH0241083B2 (en) KINZOKUJISEIHAKUMAKUGATAJIKIHETSUDONOSEIZOHOHO
JPS6249652B2 (en)
JPS61107512A (en) Thin film magnetic head
JPH0550044B2 (en)
JPS61151817A (en) Thin film magnetic head