JPH1198777A - Rotor using titanium alloy and manufacture thereof - Google Patents

Rotor using titanium alloy and manufacture thereof

Info

Publication number
JPH1198777A
JPH1198777A JP9259480A JP25948097A JPH1198777A JP H1198777 A JPH1198777 A JP H1198777A JP 9259480 A JP9259480 A JP 9259480A JP 25948097 A JP25948097 A JP 25948097A JP H1198777 A JPH1198777 A JP H1198777A
Authority
JP
Japan
Prior art keywords
titanium alloy
rotor
reinforcing ring
cylinder
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9259480A
Other languages
Japanese (ja)
Other versions
JP3817858B2 (en
Inventor
Masaki Koga
正樹 小賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP25948097A priority Critical patent/JP3817858B2/en
Publication of JPH1198777A publication Critical patent/JPH1198777A/en
Application granted granted Critical
Publication of JP3817858B2 publication Critical patent/JP3817858B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rotor and its manufacture method which improves effective utilization factor of an expensive material such as a titanium alloy, attaining reduction in work cost and improvement in the yield of the material, and is high strength and low in inertia. SOLUTION: In this method of manufacture, a titanium alloy large thickness cylinder 11 is plastically worked by a super plastic gas pressure molding method into a different diameter cylindrical member provided with a shaft part 11b and a rotor peripheral part reinforced ring 11a, in the reinforced ring 11a, a high energy product rate-earth magnet and a core material or the like are housed, in a rotor using a titanium alloy. In a different diametric cylinder member concurrently provided with a structure of shat part 11b and rotor peripheral part reinforced ring 11a of the titanium alloy large thickness cylinder 11 by the super plastic gas pressure molding method, plastic work is applied.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はチタン合金の超塑性
現象を応用して、円筒状のチタン合金に塑性加工を施
し、ロータ部に各種の希土類磁石とか鉄心材料を内蔵さ
せた高強度で低慣性を有するチタン合金を用いた回転子
とその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention applies a superplasticity phenomenon of a titanium alloy to plastically process a titanium alloy in a cylindrical shape, and incorporates various kinds of rare earth magnets or iron core materials in a rotor portion. The present invention relates to a rotor using a titanium alloy having inertia and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来から知られている永久磁石式高速発
電機又は電動機等に採用されている回転子の概略構造の
一例を図20(A)(B)によって説明すると、図中の
1はシャフト、2は希土類磁石、3は非磁性材の金属円
筒、4,4は非磁性材の金属円板である。
2. Description of the Related Art An example of a schematic structure of a rotor employed in a conventionally known permanent magnet high-speed generator or electric motor will be described with reference to FIGS. 20A and 20B. The shaft 2 is a rare earth magnet, 3 is a metal cylinder made of a non-magnetic material, and 4 and 4 are metal disks made of a non-magnetic material.

【0003】この回転子構造では希土類磁石2の強度、
例えば引張強度,曲げ強度,ねじり強度が低く、剛性も
低いため、オーステナイト系ステンレス鋼等の非磁性金
属材料を用いた前記金属円筒3の両端に金属円板4を焼
ばめすることにより、内部にある希土類磁石2を金属円
筒3と金属円板4で拘束して回転子としての強度と剛性
を保持している。
In this rotor structure, the strength of the rare earth magnet 2
For example, since the tensile strength, bending strength, and torsional strength are low and the rigidity is low, the metal discs 4 are shrink-fitted at both ends of the metal cylinder 3 using a non-magnetic metal material such as austenitic stainless steel, so that the internal Is held by the metal cylinder 3 and the metal disk 4 to maintain the strength and rigidity of the rotor.

【0004】更に図21(A)(B)の従来例では、上
記シャフト1の周囲にバルク材又は積層材でなる鉄心5
を配備し、この鉄心5の周縁部に長手方向に沿って断面
くさび型の複数の鉄心溝部6を形成して、該鉄心溝部6
内に希土類磁石2,2を配置し、エポキシ樹脂等の高分
子接着剤を用いて接着する手段が採られている。又、金
属円筒3とともにアラミド繊維(ケブラー)あるいはガ
ラス繊維を用いて外周部円周方向を強化した繊維強化プ
ラスチック材料(FRP)を用いてフープによる補強と
併用することによって希土類磁石2を拘束し、高速回転
に耐える回転子を実現しているのが現状である。
Further, in the conventional example shown in FIGS. 21A and 21B, a core 5 made of a bulk material or a laminated material is provided around the shaft 1.
And a plurality of wedge-shaped core grooves 6 are formed in a peripheral portion of the iron core 5 along the longitudinal direction.
Means are provided in which the rare earth magnets 2 and 2 are disposed and bonded using a polymer adhesive such as an epoxy resin. Further, the rare earth magnet 2 is restrained by using a fiber reinforced plastic material (FRP) reinforced with an aramid fiber (Kevlar) or a glass fiber together with the metal cylinder 3 in the outer circumferential direction, together with the hoop reinforcement, At present, a rotor that can withstand high-speed rotation is realized.

【0005】上記希土類磁石2とは、ネオジムを用いた
Nd−Fe−B系磁石とか、プラセオジウムを用いたP
r−Fe−B系磁石及びサマリウムを用いたSm−Co
系磁石等の活性な希土類元素を主成分として含有する高
磁気エネルギー積の磁石であり、この希土類磁石2は腐
食しやすいので、エポキシコーティングとかアルミクロ
メート皮膜又は銅下地のニッケルメッキなどが施され、
金属円筒3等のロータ部材金属との固着にはエポキシ樹
脂等の高分子接着剤を用いて接着する手段が採られてい
る。
The rare earth magnet 2 may be an Nd—Fe—B magnet using neodymium or a Pd using praseodymium.
Sm-Co using r-Fe-B based magnet and samarium
It is a magnet having a high magnetic energy product containing an active rare earth element as a main component, such as a system magnet, and since the rare earth magnet 2 is easily corroded, it is subjected to an epoxy coating, an aluminum chromate film or a nickel plating of a copper base, and the like.
For fixing to the metal of the rotor member such as the metal cylinder 3, a means for bonding using a polymer adhesive such as an epoxy resin is employed.

【0006】[0006]

【発明が解決しようとする課題】前記の希土類磁石の出
現によって磁気特性の飛躍的な向上が達成され、これら
の強力な磁石を回転子に組み込んだ永久磁石式同期機で
は、誘導機や巻線式同期機に比して単位面積当たりのエ
ネルギー密度が高く、且つ回転速度も増大できるので出
力向上がはかれる上、電動機や発電機の小型化と高性能
化が可能になるという利点がある。しかし以下のような
問題が存在する。
With the advent of the rare earth magnets described above, the magnetic properties have been dramatically improved. In a permanent magnet type synchronous machine incorporating these powerful magnets in a rotor, an induction machine or a winding As compared with the synchronous machine, the energy density per unit area is higher and the rotational speed can be increased, so that the output can be improved, and further, there is an advantage that the motor and the generator can be reduced in size and higher in performance. However, there are the following problems.

【0007】先ず第1に、粉末焼結法によって作製した
希土類磁石は本質的に脆性材料であり、回転子を構成す
る鉄心その他の金属材料に較べて強度,剛性,靭性,変
形能等の機械的特性が不足しているため、電動機等の高
速化とか大容量化に伴って回転子に作用する遠心力が一
段と増大すると、希土類磁石に変形とか破断が生じやす
いという難点がある。
First, the rare earth magnet produced by the powder sintering method is essentially a brittle material, and has mechanical strength, rigidity, toughness, deformability, etc., as compared with the iron core and other metal materials constituting the rotor. When the centrifugal force acting on the rotor is further increased due to the high speed or large capacity of the electric motor or the like, the deformation or breakage of the rare earth magnet is liable to occur due to the lack of mechanical characteristics.

【0008】例えば希土類磁石は粉末焼結法あるいは鍛
造法、圧延法等の手段で作製されており、Nd−Fe−
B系磁石は超急冷磁石粉末のホットプレス法とか、超急
冷磁石粉末の熱間塑性加工法でも作製されているが、N
d−Fe−B系磁石の曲げ強度は約260(MPa)で
あって、通常の鋼の1/2以下であり、弾性率は約15
0(GPa)と鋼の3/4程度である。
For example, rare earth magnets are manufactured by means such as a powder sintering method, a forging method, and a rolling method.
The B-based magnet is manufactured by a hot press method of the super-quenched magnet powder or a hot plastic working method of the super-quenched magnet powder.
The bending strength of the d-Fe-B-based magnet is about 260 (MPa), which is less than half that of ordinary steel, and the elastic modulus is about 15
0 (GPa), which is about / of steel.

【0009】更に破断伸びは約0.2%と鋼の1/10
以下できわめて小さく、しかもほとんど塑性変形せずに
弾性変形のみで破断に至っている。しかし曲げ及び引張
強度に比して圧縮強度は2倍以上大きいという特徴があ
る。Pr−Fe−B系磁石もこれとほぼ同等の強度を持
つが、Sm−Co系磁石の強度は一段と小さくなってい
る。
Further, the elongation at break is about 0.2%, which is 1/10 that of steel.
Below, it is extremely small, and has been broken only by elastic deformation with little plastic deformation. However, the compression strength is more than twice as large as the bending and tensile strength. The Pr-Fe-B based magnet has almost the same strength as this, but the strength of the Sm-Co based magnet is much smaller.

【0010】尚、粉末焼結磁石の強度を低下させている
要因の一つとして、常圧又はやや減圧されたアルゴンガ
ス雰囲気中で粉末焼結した磁石が内包するボイドとか微
小亀裂等の内部欠陥の存在が考えられる。
[0010] One of the factors that reduce the strength of the powder sintered magnet is internal defects such as voids and minute cracks contained in the powder sintered magnet in an argon gas atmosphere at normal pressure or slightly reduced pressure. Is considered possible.

【0011】第2に希土類磁石の耐食性が不足している
ことが挙げられる。前記Nd−Fe−B系,Pr−Fe
−B系,Sm−Co系の各希土類磁石において、その成
分元素の一つであるネオジム,プラセオジウム,サマリ
ウムの各希土類元素は活性なため、これら希土類磁石は
大気中で数日放置すると表面が変色し、腐食が進行す
る。従って通常はエポキシコーティングとかアルミクロ
メート処理もしくは銅下地のニッケルメッキなどが施さ
れた状態で実用に供されている。
Second, the corrosion resistance of the rare earth magnet is insufficient. The Nd-Fe-B system, Pr-Fe
In each of the -B-based and Sm-Co-based rare-earth magnets, neodymium, praseodymium, and samarium, which are one of the constituent elements, are active. Therefore, the surface of these rare-earth magnets is discolored when left in the air for several days. And corrosion progresses. Therefore, it is usually put to practical use in a state where an epoxy coating, an aluminum chromate treatment or a nickel plating of a copper base is applied.

【0012】第3に希土類磁石とロータ部材金属との接
合強度不足が挙げられる。例えばエポキシ樹脂剤で接合
した希土類磁石とロータ部材金属、例えば鋼との引張強
度は、室温で約20(MPa)であり、これはNd−F
e−B系磁石の持つ引張強度の約1/4程度である。し
かも100℃を越える高温では接合強度は更に低下する
ため、運転時に100℃以上に発熱するようなロータ部
では、接合強度はほとんど期待できない。尚、通常のN
d−Fe−B系磁石の使用時耐熱温度は最大140〜1
60℃となっている。
Third, there is insufficient bonding strength between the rare earth magnet and the rotor member metal. For example, the tensile strength of a rare earth magnet joined with an epoxy resin agent and a rotor member metal, for example, steel, is about 20 (MPa) at room temperature, which is Nd-F
It is about 1/4 of the tensile strength of the eB magnet. In addition, the bonding strength is further reduced at a high temperature exceeding 100 ° C., so that almost no bonding strength can be expected in a rotor portion which generates heat at 100 ° C. or more during operation. In addition, normal N
When using d-Fe-B magnets, the maximum heat resistance is 140 to 1
It is 60 ° C.

【0013】第4に希土類磁石の磁気特性を劣化させな
い高強度接合技術が未確立であることが挙げられる。即
ち、希土類磁石本来の磁気特性を劣化させずに100℃
を越えるロータの発熱温度にも耐え得るような磁石とロ
ータ部材金属との高強度接合技術は確立されていないの
が現状である。前記したように希土類元素はきわめて活
性なため、銀ロウ等の金属系鑞材で希土類磁石とロータ
部材金属を約850〜900℃程度の高温下でロウ付け
しようとしても、希土類元素と鑞材が激しく反応して磁
石の磁気特性を劣化させることなしに接合することはき
わめて困難であり、しかも接合強度は10(MPa)以
下となる。又、Nd−Fe−B系磁石においては鑞材中
の銀元素が磁石の内部深くまで拡散し、磁石の保磁力が
大幅に低下してしまうという難点がある。
Fourth, a high-strength joining technique that does not deteriorate the magnetic properties of the rare-earth magnet has not been established. That is, 100 ° C. without deteriorating the original magnetic properties of the rare earth magnet.
At present, a high-strength joining technique between a magnet and a metal of a rotor member that can withstand the heat generation temperature of the rotor exceeding the above limit has not been established. Since the rare earth element is extremely active as described above, even if an attempt is made to braze the rare earth magnet and the rotor member metal at a high temperature of about 850 to 900 ° C. with a metal brazing material such as silver brazing, the rare earth element and the brazing material are It is extremely difficult to join the magnets without reacting violently and deteriorating the magnetic properties of the magnets, and the joining strength is 10 (MPa) or less. Further, in the Nd-Fe-B magnet, there is a problem that the silver element in the brazing material diffuses deep inside the magnet, and the coercive force of the magnet is greatly reduced.

【0014】前記したように、非磁性金属材料を用いた
金属円筒3の両端に焼ばめすることによって内部にある
希土類磁石2を金属円筒3と金属円板4で拘束し、高遠
心力に耐え、且つ低慣性の回転子を実現するためには、
強度が大きくて比重が小さい高比強度の金属材料を採用
することが望ましい。
As described above, by shrink-fitting both ends of the metal cylinder 3 using a non-magnetic metal material, the rare earth magnet 2 inside is restrained by the metal cylinder 3 and the metal disk 4, and withstands high centrifugal force. In order to realize a rotor with low inertia,
It is desirable to use a high specific strength metal material having high strength and low specific gravity.

【0015】非磁性金属系で比強度が最大な材料は機械
構造用のチタン合金であるが、一般にこのチタン合金
は、流通段階では中実円柱形状の熱間鍛造材として供給
されている。しかもチタン合金は価格的にも高価であ
り、活性金属で難切削材であることから前記中実円柱形
状の熱間鍛造材から薄肉円筒補強環状に機械加工するす
るための加工コストが高くなり、材料の歩留まり,即ち
高価な素材の有効利用率が低下するという課題を有して
いる。
The nonmagnetic metal-based material having the maximum specific strength is a titanium alloy for mechanical structure. Generally, this titanium alloy is supplied as a solid cylindrical hot forging material at the distribution stage. Moreover, titanium alloys are expensive in price, and because they are hard-to-cut materials with active metals, the processing cost for machining the solid cylindrical hot forged material into a thin-walled cylindrical reinforcing ring increases. There is a problem that the yield of the material, that is, the effective utilization rate of the expensive material is reduced.

【0016】そこで本発明は上記に鑑みてなされたもの
であって、非磁性金属系材料である機械構造用のチタン
合金を用いて加工コストの低廉化と材料の歩留まりの向
上をはかり、高価な素材の有効利用率を高めるとともに
高強度で低慣性を有する回転子とその製造方法を提供す
ることを目的とするものである。
Accordingly, the present invention has been made in view of the above, and is intended to reduce the processing cost and improve the material yield by using a titanium alloy for a mechanical structure which is a non-magnetic metal-based material. It is an object of the present invention to provide a rotor having high strength and low inertia while increasing the effective utilization rate of a material, and a method for manufacturing the same.

【0017】[0017]

【課題を解決するための手段】本発明は上記の目的を達
成するために、チタン合金厚肉円筒を超塑性ガス圧成形
法によってシャフト部とロータ外周部補強環を備えた異
径円筒部材に塑性加工し、該ロータ外周部補強環内に高
エネルギー積希土類磁石や鉄心材料等を内蔵したチタン
合金を用いた回転子と、超塑性ガス圧成形法によってチ
タン合金厚肉円筒をシャフト部とロータ外周部補強環の
構造を兼ね備えた異径円筒部材に塑性加工を施し、ロー
タ外周部補強環に高エネルギー積希土類磁石や鉄心材料
等を内蔵させたチタン合金を用いた回転子の製造方法を
基本手段としている。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a method for forming a thick titanium alloy cylinder into a cylindrical member having a shaft portion and a rotor outer peripheral reinforcing ring by superplastic gas pressure molding. A rotor using a titanium alloy with a high-energy product rare earth magnet or an iron core material built in the rotor outer peripheral reinforcing ring inside the rotor, and a titanium alloy thick cylinder by a superplastic gas pressure forming method. Basically, a rotor is manufactured using a titanium alloy with plastic working on a different-diameter cylindrical member that also has the structure of the outer circumferential reinforcing ring and a high-energy product rare earth magnet or iron core material built into the outer circumferential reinforcing ring of the rotor. Means.

【0018】超塑性ガス圧成形法は、金型の内方にチタ
ン合金円筒を挿入固定し、ヒータによりチタン合金円筒
を加熱しながら該金型内に高温高圧の不活性ガスを導入
してチタン金属円筒の内方から加圧処理を行うことによ
り、該チタン金属円筒に超塑性ガス圧成形加工を施し
て、シャフト部とロータ外周部補強環からなる異径円筒
形状に成形する。
In the superplastic gas pressure forming method, a titanium alloy cylinder is inserted and fixed inside a mold, and a high-temperature and high-pressure inert gas is introduced into the mold while heating the titanium alloy cylinder with a heater. By performing a pressure treatment from inside the metal cylinder, the titanium metal cylinder is subjected to superplastic gas pressure forming to be formed into a cylindrical shape having a shaft portion and a rotor outer peripheral reinforcing ring.

【0019】チタン金属円筒が「Ti−4.5Al−3
V−2Fe−2Mo」合金の場合の超塑性ガス圧成形加
工の処理条件として、成形温度780℃±50℃、ひず
み速度は1×10-2/s以下、不活性ガスの圧力は20
〜120MPaとし、チタン金属円筒が「Ti−6Al
−4V」合金の場合の超塑性ガス圧成形加工の処理条件
として、成形温度880℃±50℃、ひずみ速度は1×
10-2/s以下、不活性ガスの圧力は20〜120MP
aとする。
The titanium metal cylinder is "Ti-4.5Al-3".
The processing conditions for superplastic gas pressure forming in the case of “V-2Fe-2Mo” alloy include a forming temperature of 780 ° C. ± 50 ° C., a strain rate of 1 × 10 −2 / s or less, and an inert gas pressure of 20 ° C.
Up to 120 MPa, and the titanium metal cylinder is made of “Ti-6Al
The processing conditions for superplastic gas pressing in the case of a “-4V” alloy include a forming temperature of 880 ° C. ± 50 ° C. and a strain rate of 1 ×
10 -2 / s or less, inert gas pressure is 20 to 120MPa
a.

【0020】具体的な製造方法として、超塑性ガス圧成
形加工方により形成したシャフト部とロータ外周部補強
環からなる異径円筒部材を、補強環の部分で円周方向に
2分割に切断した後、補強環内にチタン合金円板を中心
として両側に希土類磁石を組み合わせて配置し、異径円
筒部材を高温に加熱してシャフト部の両端部に軸方向の
圧縮負荷を加えた状態で焼ばめを行い、補強環の突合わ
せ部を隙間なく合わせてから軸方向に圧縮負荷を加えた
状態で回転させながら補強環の突合わせ部とチタン合金
円板とを電子ビーム溶接により全周にわたって一体接合
する方法を採用する。
As a specific manufacturing method, a cylindrical member formed of a shaft portion and a rotor outer peripheral reinforcing ring formed by superplastic gas pressure forming is cut into two parts in the circumferential direction at the reinforcing ring portion. After that, a rare-earth magnet is placed on both sides of the titanium alloy disk in the reinforcing ring in combination, and the cylindrical members of different diameters are heated to a high temperature and fired while applying an axial compressive load to both ends of the shaft. Fit the butt of the reinforcing ring with no gap, and then rotate the butt of the reinforcing ring and the titanium alloy disc over the entire circumference by electron beam welding while rotating while applying a compressive load in the axial direction. A method of integrally joining is adopted.

【0021】更に前記補強環内に、チタン合金円板を中
心として両側に希土類磁石と非磁性シャフトを組み合わ
せて配置した例と、補強環内にチタン合金円板を中心と
して両側に鉄心を配置し、この鉄心の周縁部長手方向に
沿って設けた鉄心溝部内に希土類磁石を挿入して拘束し
た例と、鉄心として2層中実シャフトを用いた方法を提
供する。
Further, in the reinforcing ring, a rare-earth magnet and a non-magnetic shaft are combined on both sides around the titanium alloy disk, and an iron core is placed on both sides around the titanium alloy disk inside the reinforcing ring. An example is provided in which a rare earth magnet is inserted and constrained in an iron core groove provided along the longitudinal direction of the peripheral edge of the iron core, and a method using a two-layer solid shaft as the iron core.

【0022】鉄心として純鉄,低炭素鋼,低合金鋼等の
強磁性材でなるバルク材を用いるか、ケイ素鋼板を積層
した積層材を用いる。
As the iron core, a bulk material made of a ferromagnetic material such as pure iron, low carbon steel, low alloy steel, or the like, or a laminated material in which silicon steel plates are laminated is used.

【0023】前記補強環内にチタン合金円板を中心とし
て鉄心を強磁性シャフトに圧入して配置し、この鉄心の
周縁部長手方向に沿って設けた鉄心溝部内に希土類磁石
を挿入して拘束した方法を提供する。強磁性シャフトと
して溝付き強磁性シャフトとかアルミダイキャスト製の
シャフトを用いる。
An iron core is pressed into a ferromagnetic shaft centering on a titanium alloy disk in the reinforcing ring, and a rare earth magnet is inserted and restrained in an iron core groove provided along the longitudinal direction of the peripheral edge of the iron core. To provide a way. A grooved ferromagnetic shaft or an aluminum die-cast shaft is used as the ferromagnetic shaft.

【0024】更に前記補強環内に希土類磁石を中心とし
て両側に磁性端板を配置した方法と、補強環内に奇数の
複数個に分割された希土類磁石を配置した方法と、補強
環内に積層型鉄心を強磁性シャフトに圧入して配置し
て、この鉄心の周縁部長手方向に沿って設けた鉄心溝部
内に希土類磁石を挿入して拘束した方法を提供する。
Further, a method of arranging magnetic end plates on both sides around the rare earth magnet in the reinforcing ring, a method of arranging an odd number of divided rare earth magnets in the reinforcing ring, and a method of laminating in the reinforcing ring. The present invention provides a method in which a mold core is press-fitted into a ferromagnetic shaft, and a rare earth magnet is inserted into and constrained in a core groove provided along the longitudinal direction of the periphery of the core.

【0025】前記非磁性金属円筒として、アルミ合金、
チタン合金、オーステナイト系ステンレス鋼、高マンガ
ン鋼機械加工部材等の非磁性金属材料を用いる。
As the non-magnetic metal cylinder, an aluminum alloy,
Use non-magnetic metal materials such as titanium alloy, austenitic stainless steel, and high manganese steel machined members.

【0026】超塑性ガス圧成形法として、金型の一方側
に不活性ガス導入パイプを連結するとともに、金型の他
方側にガス溜めタンクを設け、金型内方にチタン合金円
筒を挿入固定し、ヒータによりチタン合金円筒を加熱し
ながら不活性ガス導入パイプから金型内に高温高圧の不
活性ガスを導入してチタン金属円筒の内方から加圧処理
を行ってシャフト部とロータ外周部補強環からなる異径
円筒形状に成形する方法を基本としている。
As a superplastic gas pressure forming method, an inert gas introduction pipe is connected to one side of the mold, a gas reservoir tank is provided on the other side of the mold, and a titanium alloy cylinder is inserted and fixed inside the mold. Then, while heating the titanium alloy cylinder with a heater, a high-temperature and high-pressure inert gas is introduced into the mold from the inert gas introduction pipe into the mold, and a pressurizing process is performed from the inside of the titanium metal cylinder to form a shaft portion and a rotor outer peripheral portion. It is based on a method of forming into a cylindrical shape having a different diameter composed of a reinforcing ring.

【0027】更に超塑性ガス圧成形法として、金型の他
方側に蓋部材を設けて閉止した方法と、金型の一方側と
他方側に不活性ガス導入パイプを設けて、両側から金型
内に高温高圧の不活性ガスを導入する方法と、金型の内
径側に波型の溝部を設けて、チタン合金製のベローズを
形成する方法を用いている。
Further, as a superplastic gas pressure molding method, a method in which a lid member is provided on the other side of the mold and the mold is closed, and an inert gas introduction pipe is provided on one side and the other side of the mold, and the mold is provided from both sides. A method of introducing a high-temperature and high-pressure inert gas into the inside and a method of forming a titanium alloy bellows by providing a corrugated groove on the inner diameter side of a mold are used.

【0028】かかるチタン合金を用いた回転子とその製
造方法によれば、ガスタンクから不活性ガスとして高温
高圧のアルゴンガスを金型に導入して圧力媒体とし、ヒ
ータによりチタン金属円筒を加熱しながら所定の圧力を
かけることによってチタン金属円筒が内方から加圧処理
されて超塑性ガス圧成形加工が施され、シャフト部とロ
ータ外周部補強環からなる異径円筒部材に成形すること
ができる。
According to the rotor using the titanium alloy and the method of manufacturing the same, a high-temperature and high-pressure argon gas is introduced into the mold as an inert gas from a gas tank to serve as a pressure medium, and the titanium metal cylinder is heated by a heater. By applying a predetermined pressure, the titanium metal cylinder is pressurized from the inside and subjected to superplastic gas pressure forming, whereby the titanium metal cylinder can be formed into a cylindrical member having a different diameter comprising a shaft portion and a rotor outer peripheral portion reinforcing ring.

【0029】この異径円筒部材のロータ外周部補強環の
部分で円周方向に2分割に切断した後、補強環内にチタ
ン合金円板、希土類磁石、非磁性端板、強磁性シャフト
及び非磁性金属円筒を組み合わせて配置し、加熱しなが
らシャフト部の両端部に軸方向の圧縮負荷を加えた状態
で焼ばめを行い、補強環の突合わせ部を隙間なく合わせ
てから軸方向に圧縮負荷を加えた状態で回転させながら
補強環の突合わせ部とチタン合金円板とを電子ビーム溶
接により全周にわたって一体接合するか、補強環部分の
外周から非磁性金属円筒を焼ばめすることによってチタ
ン合金を用いた回転子が得られる。
After being cut into two parts in the circumferential direction at the rotor outer peripheral reinforcing ring portion of the different diameter cylindrical member, a titanium alloy disk, a rare earth magnet, a non-magnetic end plate, a ferromagnetic shaft and a non-magnetic A magnetic metal cylinder is combined and arranged, and shrink-fit is performed while applying a compressive load in the axial direction to both ends of the shaft while heating. Either joint the butted part of the reinforcing ring and the titanium alloy disk together over the entire circumference by electron beam welding while rotating while applying a load, or shrink fit a non-magnetic metal cylinder from the outer circumference of the reinforcing ring part Thus, a rotor using a titanium alloy is obtained.

【0030】[0030]

【発明の実施の形態】以下本発明にかかるチタン合金を
用いた回転子とその製造方法の各種実施形態例を説明す
る。本発明はチタン合金の超塑性現象を応用して「超塑
性ガス圧成形法」により内外径が一様なチタン合金厚肉
円筒からシャフト部とロータ外周部補強環の構造を兼ね
備えた異径円筒に塑性加工を施した後、ロータ部に高エ
ネルギー積希土類磁石や鉄心材料等を内蔵した高強度で
低慣性を有する回転子を得ることが基本手段となってい
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Various embodiments of a rotor using a titanium alloy according to the present invention and a method for manufacturing the same will be described below. The present invention applies the superplasticity phenomenon of titanium alloy to the superplastic gas pressure forming method, and uses a titanium alloy thick cylinder with uniform inner and outer diameters to form a different diameter cylinder having a structure of a shaft part and a rotor outer peripheral reinforcing ring. The basic means is to obtain a high-strength, low-inertia rotor in which a high-energy product rare-earth magnet, an iron core material, and the like are incorporated in a rotor portion after plastic working is performed.

【0031】上記の「超塑性ガス圧成形法」とは、金属
材料がある特殊条件下で低い変形応力,即ち流動応力を
持続し、くびれ(ネッキング)を生じることなく数百〜
千%以上に伸びる現象を言う。
The above-mentioned "superplastic gas pressing" means that a metal material maintains a low deformation stress, that is, a flow stress under a special condition, and has several hundreds to several hundreds of necks without necking.
A phenomenon that extends to more than 1,000%.

【0032】チタン合金の金属組織において、β相(体
心立方晶)はα相(最密六方晶)よりも辷り方向が多い
ので、難加工性の改善には加工性に優れたβ合金が有効
である。そこで最近ではα+β合金の難加工性の主要因
であるα相をなくすか少なくしたβ合金とか、α+β合
金でもβ安定化元素の多い「ニアβ合金」が時に注目さ
れている。
In the metal structure of the titanium alloy, the β phase (body-centered cubic) has more sliding directions than the α phase (closest hexagonal). It is valid. Therefore, recently, attention has been paid to a β alloy in which the α phase, which is a main factor of the difficult workability of the α + β alloy, has been eliminated or reduced, and a “near β alloy” having a large amount of β stabilizing elements even in the α + β alloy.

【0033】他方で近時の鋼材メーカはチタン合金の超
塑性現象に着目し、できるだけ低い温度で超塑性が得ら
れる「Ti−4.5Al−3V−2Fe−2Mo」合金
(ニアβ合金:SP−700)を開発した。この合金の
特徴は、従来から機械構造用チタン合金として航空機等
で多用されている「Ti−6Al−4V」合金(α+β
合金)に較べて温度が約100℃低い780℃付近で超
塑性が得られ、且つβ安定化元素の量が多く、加工性が
改善されている。
On the other hand, a recent steel maker pays attention to the superplasticity phenomenon of a titanium alloy, and obtains a “Ti-4.5Al-3V-2Fe-2Mo” alloy (near β alloy: SP) capable of obtaining superplasticity at a temperature as low as possible. -700). The feature of this alloy is that a “Ti-6Al-4V” alloy (α + β) which has been widely used in aircraft and the like as a titanium alloy for mechanical structures.
Alloy), superplasticity is obtained at about 780 ° C., which is lower by about 100 ° C., and the amount of β-stabilizing element is large, and workability is improved.

【0034】表1は、「Ti−4.5Al−3V−2F
e−2Mo」合金と「Ti−6Al−4V」合金との両
チタン合金の化学組成を示し、図19はα相粒径約3μ
mでひずみ速度3×10-3/Sの引張試験で得られた両
チタン合金の破断伸び,流動応力(変形応力)の温度特
性を示している。
Table 1 shows "Ti-4.5Al-3V-2F".
e-2Mo "and" Ti-6Al-4V "alloys, the chemical compositions of which are shown in FIG.
3 shows temperature characteristics of elongation at break and flow stress (deformation stress) of both titanium alloys obtained in a tensile test at a strain rate of 3 × 10 −3 / S at m.

【0035】[0035]

【表1】 [Table 1]

【0036】「Ti−6Al−4V」合金は880℃付
近で約400%,「Ti−4.5Al−3V−2Fe−
2Mo」合金は780℃付近で約2500%ときわめて
大きな塑性伸びを生じ、このような温度域では両チタン
合金とも流動応力は約50MPa以下の小さな値を示し
ている。
The "Ti-6Al-4V" alloy is approximately 400% at around 880 ° C., and “Ti-4.5Al-3V-2Fe-
The "2Mo" alloy has a very large plastic elongation of about 2500% around 780 ° C., and in such a temperature range, both titanium alloys show a small flow stress of about 50 MPa or less.

【0037】そこで本発明は、高比強度材ではあるが活
性金属で難切削性を有する高価なチタン合金製で内外径
が一様な寸法の厚肉内筒を金型内で超塑性を発現する高
温域に加熱保持し、その内径部に高温高圧のアルゴンガ
スを吹き込み、円筒中央部を内径側から低ひずみ速度下
で膨張変形させることにより、シャフト部とロータ外周
部補強環の構造を兼ね備えた異径円筒に超塑性加工して
回転子の材料として用いたことが特徴となっている。
Accordingly, the present invention is to develop a thick inner cylinder having a uniform inner and outer diameter in a mold, which is made of an expensive titanium alloy which is a high specific strength material but is an active metal and which is difficult to cut, and exhibits superplasticity in a mold. Heating and holding in the high temperature area, blowing high-temperature and high-pressure argon gas into the inner diameter part, and expanding and deforming the central part of the cylinder from the inner diameter side at a low strain rate, thereby combining the structure of the shaft part and the rotor outer peripheral part reinforcing ring. It is characterized in that it is superplastically processed into a different diameter cylinder and used as a material for a rotor.

【0038】図1,図2は本発明の第1実施形態例を示
す概要図であり、図1はガス加圧成形前のチタン合金円
筒の断面形状を示し、図2は高温高圧アルゴンガスによ
る加圧成形後のチタン合金円筒の断面形状を示してい
る。尚、中実円柱状の素材でなるチタン合金の受入材
は、予め厚肉円筒状に機械加工しておく。
FIGS. 1 and 2 are schematic views showing a first embodiment of the present invention. FIG. 1 shows a cross-sectional shape of a titanium alloy cylinder before gas pressure forming, and FIG. 2 shows a cross-sectional shape of a titanium alloy cylinder after pressure forming. In addition, the receiving material of the titanium alloy which is a solid cylindrical material is machined in advance into a thick cylindrical shape.

【0039】図中の11は超塑性加工を施すべき厚肉円
筒状のチタン合金円筒であり、12,13はチタン合金
円筒11を保持する縦割の2分割金型、14はガス溜め
タンク、15は図外の大容量ガスタンクからバルブを介
して高温高圧のアルゴンガスを供給するパイプ、16は
2分割金型12,13を介してチタン合金円筒11を加
熱するヒータ、17は断熱層、8,9は水冷用配管であ
る。
In the figure, reference numeral 11 denotes a thick-walled cylindrical titanium alloy cylinder to be subjected to superplastic working, 12, 13 a vertically divided two-piece mold for holding the titanium alloy cylinder 11, 14 a gas storage tank, 15 is a pipe for supplying high-temperature and high-pressure argon gas from a large-capacity gas tank (not shown) via a valve; 16 is a heater for heating the titanium alloy cylinder 11 through two-piece molds 12 and 13; 17 is a heat insulating layer; , 9 are water cooling pipes.

【0040】2分割金型12,13の内方にチタン合金
円筒11を挿入後、それぞれの両端フランジ部12a,
12b及び13a,13bを、高圧アルゴンガスを供給
するパイプ15のフランジ部15aとガス溜めタンク1
4のフランジ部14aにボルト締めにより固定する。水
冷用配管8,9は、ガス加圧成形後に2分割金型12,
13と各フランジ部12a,12b,13a,13b及
びチタン合金円筒11の冷却用として用いる。
After the titanium alloy cylinder 11 is inserted into the inside of the two-piece molds 12 and 13, the flanges 12 a and 12 a at both ends of the cylinder 12 are respectively inserted.
12b and 13a, 13b are connected to a flange portion 15a of a pipe 15 for supplying high-pressure argon gas and a gas storage tank 1
4 is fixed to the flange portion 14a by bolting. The water cooling pipes 8 and 9 are divided into two molds 12 and
13 and for cooling the flange portions 12a, 12b, 13a, 13b and the titanium alloy cylinder 11.

【0041】上記ガス溜めタンク14を設けたことによ
り、ガス加圧成形時に高温高圧アルゴンガスの供給側の
みでなく、ガス溜めタンク14側からも加圧力が付与さ
れて、チタン合金円筒11内に均一な内圧を与えること
ができる。
Since the gas storage tank 14 is provided, a pressing force is applied not only from the supply side of the high-temperature and high-pressure argon gas but also from the gas storage tank 14 side during the gas pressure molding, so that the titanium alloy cylinder 11 is A uniform internal pressure can be given.

【0042】実施に際して、図外の大容量ガスタンクか
らパイプ15を介して不活性ガスとしての高温高圧のア
ルゴンガスを導入して圧力媒体とし、ヒータ16により
加熱しながらチタン金属円筒11に対して所定の圧力と
温度をかけ、図2の矢印pに示したようにチタン金属円
筒11の内方から加圧処理を行うことによってチタン金
属円筒11に超塑性ガス圧成形加工を施し、該チタン金
属円筒11をシャフト部11b,11bとロータ外周部
補強環11aからなる異径円筒形状に成形する。
In practice, a high-temperature and high-pressure argon gas as an inert gas is introduced from a large-capacity gas tank (not shown) through a pipe 15 to serve as a pressure medium. Pressure and temperature, and a superplastic gas pressure forming process is performed on the titanium metal cylinder 11 by performing a pressure treatment from the inside of the titanium metal cylinder 11 as shown by an arrow p in FIG. 11 is formed into a cylindrical shape having different diameters composed of shaft portions 11b, 11b and a rotor outer peripheral portion reinforcing ring 11a.

【0043】超塑性ガス圧成形加工の処理条件は、チタ
ン金属円筒11が「Ti−4.5Al−3V−2Fe−
2Mo」合金(ニアβ合金:SP−700)の場合に
は、成形温度780℃±50℃とし、ひずみ速度は1×
10-2/s以下、好ましくは5×10-3/s以下とす
る。又、不活性ガスとしてのアルゴンガスの圧力は20
〜120MPaとする。尚、アルゴンガスの圧力はひず
み速度条件を満たす範囲内で設定することが必要であ
る。
The processing conditions of the superplastic gas pressure forming process are as follows: the titanium metal cylinder 11 is "Ti-4.5Al-3V-2Fe-
In the case of a “2Mo” alloy (near β alloy: SP-700), the molding temperature is 780 ° C. ± 50 ° C., and the strain rate is 1 ×
10 −2 / s or less, preferably 5 × 10 −3 / s or less. The pressure of argon gas as an inert gas is 20
To 120 MPa. The pressure of the argon gas needs to be set within a range that satisfies the strain rate condition.

【0044】チタン金属円筒11が「Ti−6Al−4
V」合金(α+β合金)の場合には、成形温度880℃
±50℃とし、ひずみ速度は1×10-2/s以下、好ま
しくは5×10-3/s以下とする。アルゴンガスの圧力
は20〜120MPaとする。このアルゴンガスの圧力
は、ひずみ速度条件を満たす範囲内で設定することが必
要である。
The titanium metal cylinder 11 is made of "Ti-6Al-4".
In the case of V "alloy (α + β alloy), the molding temperature is 880 ° C
The temperature is set to ± 50 ° C., and the strain rate is set to 1 × 10 −2 / s or less, preferably 5 × 10 −3 / s or less. The pressure of the argon gas is set to 20 to 120 MPa. The pressure of this argon gas needs to be set within a range that satisfies the strain rate condition.

【0045】得られたシャフト部11b,11bとロー
タ外周部補強環11aからなる異径円筒部材を、補強環
11aの部分で円周方向に2分割に切断して以下に記す
回転子の組付工程に供する。
The obtained cylindrical member composed of the shaft portions 11b, 11b and the outer peripheral portion reinforcing ring 11a is cut into two parts in the circumferential direction at the portion of the reinforcing ring 11a, and a rotor as described below is assembled. Provide to the process.

【0046】図3(A)(B)は本発明の第2実施形態
例を示す回転子構造(a)の概要図であり、11b,1
1bは図2の装置により得られた異径円筒部材を補強環
11aの部分で円周方向に2分割したチタン合金円筒1
1のシャフト部、11aは同補強環、18はチタン合金
円板、2,2は希土類磁石、19はチタン合金円筒を接
合する電子ビーム溶接部である。以下に製造工程を簡単
に説明すると、(1)希土類磁石2,2間にチタン合金
円板18を組み合わせて、チタン合金円筒の補強環11
a内に配置し、(2)異径管状のチタン合金円筒11を
約300℃〜350℃の高温に加熱してシャフト部11
b,11bの両端部に軸方向の圧縮負荷を加えた状態で
焼ばめを行い、(3)チタン合金円筒11の補強環11
aの突合わせ部にほとんど隙間ができないように設定し
(クリアランスは0.3mm以下)、(4)チタン合金
円筒11のシャフト部11b,11b両端部を図外の回
転治具のチャックにはさみ、軸方向に僅かに圧縮負荷を
加えた状態で回転させながら電子ビーム溶接部19で補
強環11aの突合わせ部とチタン合金円板18とを全周
にわたって一体接合する。
FIGS. 3A and 3B are schematic diagrams of a rotor structure (a) showing a second embodiment of the present invention.
1b is a titanium alloy cylinder 1 obtained by dividing the different diameter cylindrical member obtained by the apparatus of FIG.
Reference numeral 1 denotes a shaft portion, 11a denotes the same reinforcing ring, 18 denotes a titanium alloy disk, 2, 2 denotes a rare earth magnet, and 19 denotes an electron beam welding portion for joining a titanium alloy cylinder. The manufacturing process will be briefly described below. (1) A titanium alloy disc 18 is combined between the rare earth magnets 2 and 2 to form a titanium alloy cylinder reinforcing ring 11.
a) heating the titanium alloy cylinder 11 having a different diameter to a high temperature of about 300 ° C. to 350 ° C.
b and 11b are shrink-fitted with an axial compressive load applied to both ends, and (3) the reinforcing ring 11 of the titanium alloy cylinder 11
The clearance is set so that there is almost no gap at the abutting portion (a) (clearance is 0.3 mm or less). (4) The shaft portions 11b and both ends of the titanium alloy cylinder 11 are sandwiched between chucks of a rotating jig (not shown). The butting portion of the reinforcing ring 11a and the titanium alloy disk 18 are integrally joined over the entire circumference by the electron beam welding portion 19 while rotating while slightly applying a compressive load in the axial direction.

【0047】上記の工程中、電子ビーム溶接部19は真
空雰囲気中での溶接作業で形成し、その際の真空度は1
×10-1Pa以上の高真空、例えば1×10-2Pa以上
とすることが好ましい。
During the above steps, the electron beam weld 19 is formed by a welding operation in a vacuum atmosphere, and the degree of vacuum at this time is 1
It is preferable to set the high vacuum of × 10 -1 Pa or more, for example, 1 × 10 -2 Pa or more.

【0048】上記第1,第2実施形態例で説明したよう
に、中実円柱状の素材でなる受入材を厚肉円筒状のチタ
ン合金円筒11に機械加工する工程と、超塑性加工を施
した異径円筒部材をロータ部中央の補強環11aで円周
方向に2分割する切断工程を除けば、その後の切削加工
工程が省略されるので、回転子を製造する際の機械加工
工数の大幅な削減と材料の歩留まり,即ち高価な素材の
有効利用率が向上してコストを大きく低減することがで
きる。
As described in the first and second embodiments, a step of machining a solid cylindrical receiving material into a thick cylindrical titanium alloy cylinder 11 and a step of performing superplastic processing. Except for the cutting step of dividing the obtained different-diameter cylindrical member into two parts in the circumferential direction by the reinforcing ring 11a at the center of the rotor part, the subsequent cutting step is omitted, so that the number of machining steps in manufacturing the rotor is greatly reduced. Thus, the cost and the yield of the material, that is, the effective utilization rate of the expensive material can be improved, and the cost can be greatly reduced.

【0049】又、シャフト部11bとロータ外周部補強
環11aを一体化部材としたことで回転子としての部品
点数が削減され、且つシャフト部11b,補強環11a
部とも高比強度,軽量化を可能として、回転子として小
型化と高性能化,低慣性化をはかる事ができる。
Further, by forming the shaft portion 11b and the rotor outer peripheral reinforcing ring 11a as an integral member, the number of parts as a rotor is reduced, and the shaft portion 11b and the reinforcing ring 11a are reduced.
The parts can have high specific strength and light weight, and the rotor can be downsized, high performance, and low inertia.

【0050】図4(A)(B)(C)は本発明の第3実
施形態例を示す回転子構造(b)の概要図であり、11
b,11bは2分割されたチタン合金円筒のシャフト
部、11aは同補強環、20,20は非磁性シャフト、
18はチタン合金円板、2,2は希土類磁石、19は電
子ビーム溶接部である。非磁性シャフト20,20には
アルミ合金熱間鍛造品とかチタン合金、オーステナイト
系ステンレス鋼、高マンガン鋼機械加工部材等の2層中
実シャフトの非磁性金属材料を用いる。製造工程を簡単
に説明すると、(1)非磁性シャフト20,20と希土
類磁石2,2及びチタン合金円板18を図示のように組
み合わせて、チタン合金円筒11の補強環11a内に配
置し、(2)チタン合金円筒11を約300℃〜350
℃の高温に加熱してシャフト部11b,11b両端部に
軸方向の圧縮負荷を加えた状態で焼ばめし、(3)チタ
ン合金円筒11の補強環11aの突合わせ部にほとんど
隙間ができないように設定し、(4)チタン合金円筒1
1のシャフト部11b,11b両端部を回転治具のチャ
ックにはさみ、軸方向に僅かに圧縮負荷を加えた状態で
回転させながら電子ビーム溶接部19で補強環11aの
突合わせ部とチタン合金円板18とを全周にわたって一
体接合する。
FIGS. 4A, 4B and 4C are schematic views of a rotor structure (b) showing a third embodiment of the present invention.
b and 11b are shaft parts of a titanium alloy cylinder divided into two parts, 11a is the same reinforcing ring, 20 and 20 are non-magnetic shafts,
Reference numeral 18 denotes a titanium alloy disk, reference numerals 2 and 2 denote rare earth magnets, and reference numeral 19 denotes an electron beam weld. For the non-magnetic shafts 20, 20, use is made of a non-magnetic metal material of a two-layer solid shaft such as an aluminum alloy hot forged product, a titanium alloy, an austenitic stainless steel, or a high manganese steel machined member. The manufacturing process will be briefly described. (1) The non-magnetic shafts 20, 20, the rare-earth magnets 2, 2, and the titanium alloy disk 18 are combined as shown in the figure and placed in the reinforcing ring 11a of the titanium alloy cylinder 11, (2) Titanium alloy cylinder 11 is heated at about 300 ° C. to 350 ° C.
C. and then shrink-fitted with an axial compressive load applied to both ends of the shaft portions 11b, 11b so that (3) almost no gap is formed at the butting portion of the reinforcing ring 11a of the titanium alloy cylinder 11. (4) Titanium alloy cylinder 1
The two ends of the shaft portions 11b, 11b are sandwiched between chucks of a rotary jig, and while rotating under a slight compressive load in the axial direction, the butted portion of the reinforcing ring 11a and the titanium alloy circle are rotated by the electron beam welding portion 19. The plate 18 and the entire periphery are integrally joined.

【0051】図5(A)(B)は本発明の第4実施形態
例を示す回転子構造(c)の概要図であり、11b,1
1bはチタン合金円筒11のシャフト部、11aは同補
強環、5,5はバルク材でなる鉄心、6,6は鉄心溝
部、18はチタン合金円板、2,2は希土類磁石、19
は電子ビーム溶接部である。鉄心5,5のバルク材に
は、純鉄とか低炭素鋼,低合金鋼等の強磁性材を用い
る。製造工程を簡単に説明すると、(1)バルク材でな
る鉄心5,5の周縁部に長手方向に沿って設けた断面く
さび型の鉄心溝部6,6内に希土類磁石2,2を挿入し
て機械的に拘束し、(2)チタン合金円板18を鉄心
5,5間に挟んでチタン合金円筒11の補強環11a内
に配置し、(2)チタン合金円筒11を約300℃〜3
50℃の高温に加熱してシャフト部11b,11b両端
部に軸方向の圧縮負荷を加えた状態で焼ばめし、(3)
チタン合金円筒11の補強環11aの突合わせ部にほと
んど隙間ができないように設定し、(4)チタン合金円
筒11のシャフト部11b,11b両端部を回転治具の
チャックにはさみ、軸方向に僅かに圧縮負荷を加えた状
態で回転させながら電子ビーム溶接部19で補強環11
aの突合わせ部とチタン合金円板18とを全周にわたっ
て一体接合する。
FIGS. 5A and 5B are schematic diagrams of a rotor structure (c) showing a fourth embodiment of the present invention.
1b is a shaft portion of the titanium alloy cylinder 11, 11a is the same reinforcing ring, 5 and 5 are iron cores made of bulk material, 6 and 6 are iron core grooves, 18 is a titanium alloy disk, 2, 2 is a rare earth magnet, 19
Is an electron beam weld. As the bulk material of the iron cores 5, 5, a ferromagnetic material such as pure iron or low carbon steel or low alloy steel is used. The manufacturing process will be briefly described. (1) Inserting the rare-earth magnets 2, 2 into wedge-shaped core grooves 6, 6 provided along the longitudinal direction on the peripheral edges of the cores 5, 5 made of bulk material. Mechanically constrained, (2) the titanium alloy disk 18 is placed in the reinforcing ring 11a of the titanium alloy cylinder 11 between the iron cores 5 and 5;
(3) Heating to a high temperature of 50 ° C. and shrink-fitting while applying an axial compressive load to both ends of the shaft portions 11b, 11b
(4) The both ends of the shaft portions 11b and 11b of the titanium alloy cylinder 11 are sandwiched between chucks of a rotating jig, and slightly set in the axial direction. While rotating under a compressive load, the reinforcing ring 11 is
The butted portion (a) and the titanium alloy disk 18 are integrally joined over the entire circumference.

【0052】図6(A)(B)は本発明の第5実施形態
例を示す回転子構造(d)の概要図であり、11b,1
1bはチタン合金円筒11のシャフト部、11aは同補
強環、5,5はバルク材でなる2層中実シャフトで構成
された鉄心、6,6は鉄心溝部、18はチタン合金円
板、2,2は希土類磁石、19は電子ビーム溶接部であ
る。製造工程は第4実施形態例と略一致している。
FIGS. 6A and 6B are schematic views of a rotor structure (d) showing a fifth embodiment of the present invention.
1b is a shaft portion of the titanium alloy cylinder 11, 11a is the same reinforcing ring, 5 and 5 are iron cores composed of a two-layer solid shaft made of a bulk material, 6 and 6 are iron core grooves, 18 is a titanium alloy disk, 2 , 2 are rare earth magnets and 19 is an electron beam weld. The manufacturing process is substantially the same as that of the fourth embodiment.

【0053】この第5実施形態例は、鉄心5,5として
2層中実シャフトを用いたことにより、第4実施形態例
に比して剛性をより一層高めた例である。
The fifth embodiment is an example in which rigidity is further increased as compared with the fourth embodiment by using two-layer solid shafts as the iron cores 5 and 5.

【0054】図7(A)(B)(C)は本発明の第6実
施形態例を示す回転子構造(e)の概要図であり、11
b,11bはチタン合金円筒11のシャフト部、11a
は同補強環、5,5は積層材でなる鉄心、6,6は鉄心
溝部、18はチタン合金円板、2,2は希土類磁石、1
9は電子ビーム溶接部である。鉄心5,5の積層材には
ケイ素鋼板,例えば6.5%高ケイ素鋼板を積層して用
いる。製造工程は第4実施形態例と略一致している。
FIGS. 7A, 7B and 7C are schematic views of a rotor structure (e) showing a sixth embodiment of the present invention.
b, 11b are shaft portions of the titanium alloy cylinder 11, 11a
Is the reinforcing ring, 5, 5 is an iron core made of a laminated material, 6, 6 is an iron core groove, 18 is a titanium alloy disk, 2, 2 is a rare earth magnet, 1
9 is an electron beam welding part. As a laminated material of the iron cores 5, 5, a silicon steel plate, for example, a 6.5% high silicon steel plate is laminated and used. The manufacturing process is substantially the same as that of the fourth embodiment.

【0055】図8(A)(B)(C)は本発明の第7実
施形態例を示す回転子構造(f)の概要図であり、11
b,11bはチタン合金円筒11のシャフト部、11a
は同補強環、21は強磁性シャフト、5,5は積層材で
なる鉄心、6,6は鉄心溝部、18はチタン合金円板、
2,2は希土類磁石、19は電子ビーム溶接部である。
製造工程を簡単に説明すると、(1)積層材でなる鉄心
5,5とチタン合金円板18を強磁性シャフト21に圧
入してチタン合金円筒11の補強環11a内に配置し、
(2)鉄心5,5の周縁部に長手方向に沿って設けた断
面くさび型の鉄心溝部6,6内に希土類磁石2,2を挿
入して機械的に拘束し、(3)チタン合金円筒11を約
300℃〜350℃の高温に加熱してシャフト部11
b,11b両端部に軸方向の圧縮負荷を加えた状態で焼
ばめし、(4)チタン合金円筒11の補強環11aの突
合わせ部にほとんど隙間ができないように設定し、
(5)チタン合金円筒11のシャフト部11b,11b
両端部を回転治具のチャックにはさみ、軸方向に僅かに
圧縮負荷を加えた状態で回転させながら電子ビーム溶接
部19で補強環11aの突合わせ部とチタン合金円板1
8とを全周にわたって一体接合する。
FIGS. 8A, 8B and 8C are schematic views of a rotor structure (f) showing a seventh embodiment of the present invention.
b, 11b are shaft portions of the titanium alloy cylinder 11, 11a
Is the reinforcing ring, 21 is a ferromagnetic shaft, 5 and 5 are iron cores made of a laminated material, 6 and 6 are iron core grooves, 18 is a titanium alloy disk,
Reference numerals 2 and 2 denote rare earth magnets, and 19 denotes an electron beam weld.
The manufacturing process will be briefly described. (1) The iron cores 5 and 5 made of a laminated material and the titanium alloy disk 18 are pressed into the ferromagnetic shaft 21 and arranged in the reinforcing ring 11 a of the titanium alloy cylinder 11.
(2) The rare earth magnets 2, 2 are inserted into the wedge-shaped iron core grooves 6, 6 provided along the longitudinal direction on the periphery of the iron cores 5, 5, and are mechanically restrained. (3) Titanium alloy cylinder 11 to a high temperature of about 300 ° C. to 350 ° C.
b and 11b are shrink-fitted with an axial compressive load applied to both ends, and (4) the titanium alloy cylinder 11 is set so that there is almost no gap at the butting portion of the reinforcing ring 11a,
(5) Shaft portions 11b, 11b of titanium alloy cylinder 11
Both ends are sandwiched between chucks of a rotary jig, and the butted portion of the reinforcing ring 11a and the titanium alloy disk 1 are rotated by the electron beam welding portion 19 while rotating while applying a slight compressive load in the axial direction.
And 8 are integrally joined over the entire circumference.

【0056】図9(A)(B)(C)は本発明の第8実
施形態例を示す回転子構造(g)の概要図であり、11
b,11bはチタン合金円筒11のシャフト部、11a
は同補強環、21aは溝付き強磁性シャフト、22,2
2は溝部に嵌合固定されたキー、5,5は積層材でなる
鉄心、6,6は鉄心溝部、18はチタン合金円板、2,
2は希土類磁石、23,23は非磁性端板、19は電子
ビーム溶接部である。非磁性端板23,23にはアルミ
合金とかチタン合金、オーステナイト系ステンレス鋼、
高マンガン鋼機械加工部材等の非磁性金属材料を用い
る。製造工程を簡単に説明すると、(1)キー22を溝
付き強磁性シャフト21aの溝部に取付け、積層材でな
る鉄心5,5とチタン合金円板18、非磁性端板23,
23を組み合わせて溝付き強磁性シャフト21aに圧入
し、(2)鉄心5,5の周縁部に長手方向に沿って設け
た断面くさび型の鉄心溝部6,6内に希土類磁石2,2
を挿入して機械的に拘束し、(3)チタン合金円筒11
を約300℃〜350℃の高温に加熱してシャフト部1
1b,11b両端部に軸方向の圧縮負荷を加えた状態で
焼ばめし、(4)チタン合金円筒11の補強環11aの
突合わせ部にほとんど隙間ができないように設定し、
(5)チタン合金円筒11のシャフト部11b,11b
両端部を回転治具のチャックにはさみ、軸方向に僅かに
圧縮負荷を加えた状態で回転させながら電子ビーム溶接
部19で補強環11aの突合わせ部とチタン合金円板1
8とを全周にわたって一体接合する。
FIGS. 9A, 9B and 9C are schematic views of a rotor structure (g) showing an eighth embodiment of the present invention.
b, 11b are shaft portions of the titanium alloy cylinder 11, 11a
Is the reinforcing ring, 21a is a grooved ferromagnetic shaft, 22, 2
2 is a key fitted and fixed in the groove, 5, 5 is an iron core made of a laminated material, 6, 6 is an iron core groove, 18 is a titanium alloy disk, 2,
2 is a rare earth magnet, 23 and 23 are non-magnetic end plates, and 19 is an electron beam weld. Aluminum alloys or titanium alloys, austenitic stainless steel,
Use a non-magnetic metal material such as a high manganese steel machined member. The manufacturing process will be briefly described. (1) The key 22 is attached to the groove of the grooved ferromagnetic shaft 21a, and the iron cores 5 and 5 made of a laminated material, the titanium alloy disk 18, the non-magnetic end plate 23,
23 are press-fitted into the grooved ferromagnetic shaft 21a, and (2) the rare earth magnets 2, 2 are inserted into the wedge-shaped core grooves 6, 6 provided along the longitudinal direction on the periphery of the iron cores 5, 5.
(3) Titanium alloy cylinder 11
Is heated to a high temperature of about 300 to 350 ° C.
1b and 11b are shrink-fitted with an axial compressive load applied to both ends thereof. (4) The titanium alloy cylinder 11 is set so that there is almost no gap at the butting portion of the reinforcing ring 11a.
(5) Shaft portions 11b, 11b of titanium alloy cylinder 11
Both ends are sandwiched between chucks of a rotary jig, and the butted portion of the reinforcing ring 11a and the titanium alloy disk 1 are rotated by the electron beam welding portion 19 while rotating while applying a slight compressive load in the axial direction.
And 8 are integrally joined over the entire circumference.

【0057】図10(A)(B)(C)は本発明の第9
実施形態例を示す回転子構造(h)の概要図であり、1
1b,11bはチタン合金円筒11のシャフト部、11
aは同補強環、24はアルミダイキャスト製シャフト、
5,5は積層材でなる鉄心、6,6は鉄心溝部、18は
チタン合金円板、2,2は希土類磁石、19は電子ビー
ム溶接部である。
FIGS. 10A, 10B and 10C show a ninth embodiment of the present invention.
FIG. 3 is a schematic diagram of a rotor structure (h) showing an embodiment example,
1b and 11b are shaft portions of the titanium alloy cylinder 11;
a is the same reinforcing ring, 24 is an aluminum die-cast shaft,
Reference numerals 5 and 5 are iron cores made of a laminated material, 6 and 6 are iron core grooves, 18 is a titanium alloy disc, 2 and 2 are rare earth magnets, and 19 is an electron beam welded portion.

【0058】この例はアルミダイキャスト製のシャフト
24によってチタン合金円筒11,11の中空部にアル
ミ合金を充填して剛性を改善したことが特徴となってい
る。製造工程は第8実施形態例と略一致している。
This embodiment is characterized in that the hollow portions of the titanium alloy cylinders 11, 11 are filled with an aluminum alloy by an aluminum die-cast shaft 24 to improve rigidity. The manufacturing process is substantially the same as that of the eighth embodiment.

【0059】図11(A)(B)(C)は本発明の第1
0実施形態例を示す回転子構造(i)の概要図であり、
11b,11bはチタン合金円筒11のシャフト部、1
1aは同補強環、2は希土類磁石、23,23は非磁性
端板、25は非磁性金属円筒である。非磁性金属円筒2
5にはアルミ合金とかチタン合金、オーステナイト系ス
テンレス鋼、高マンガン鋼機械加工部材等の非磁性金属
材料を用いる。製造工程を簡単に説明すると、(1)非
磁性端板23,23間に希土類磁石2を組み合わせてチ
タン合金円筒11の補強環11a内に配置し、(2)チ
タン合金円筒11を約300℃〜350℃の高温に加熱
してシャフト部11b,11b両端部に軸方向の圧縮負
荷を加えた状態で補強環11aの部分の外周から非磁性
金属円筒25を焼ばめすることによって2分割されたチ
タン合金円筒11を機械的に拘束し、(3)チタン合金
円筒11のシャフト部11b,11b両端部を回転治具
のチャックにはさみ、軸方向に僅かに圧縮負荷を加えた
状態で回転させながら一体接合する。
FIGS. 11A, 11B and 11C show the first embodiment of the present invention.
FIG. 7 is a schematic diagram of a rotor structure (i) showing a zeroth embodiment;
11b, 11b are shaft portions of the titanium alloy cylinder 11, 1
1a is the reinforcing ring, 2 is a rare earth magnet, 23 and 23 are non-magnetic end plates, and 25 is a non-magnetic metal cylinder. Non-magnetic metal cylinder 2
5 is made of a non-magnetic metal material such as an aluminum alloy, a titanium alloy, an austenitic stainless steel, or a high-manganese steel machined member. The manufacturing process will be briefly described. (1) The rare earth magnet 2 is combined between the non-magnetic end plates 23 and 23 and disposed in the reinforcing ring 11a of the titanium alloy cylinder 11, and (2) the titanium alloy cylinder 11 is heated to about 300 ° C. The non-magnetic metal cylinder 25 is shrunk from the outer periphery of the reinforcing ring 11a in a state where the non-magnetic metal cylinder 25 is heated to a high temperature of about 350 ° C. and an axial compressive load is applied to both ends of the shaft portions 11b. (3) Both ends of the shaft portions 11b, 11b of the titanium alloy cylinder 11 are sandwiched between chucks of a rotating jig, and rotated while slightly applying a compressive load in the axial direction. While joining together.

【0060】この例では、前記各例で用いたチタン合金
円板18は使用していないため、電子ビーム溶接を不要
としたことが特徴となっている。
This embodiment is characterized in that electron beam welding is unnecessary because the titanium alloy disk 18 used in each of the above embodiments is not used.

【0061】図12(A)(B)(C)は本発明の第1
1実施形態例を示す回転子構造(j)の概要図であり、
11b,11bはチタン合金円筒11のシャフト部、1
1aは同補強環、2,2,2は奇数の複数個に分割され
た希土類磁石、23,23は非磁性端板、25は非磁性
金属円筒である。非磁性金属円筒25にはアルミ合金と
かチタン合金、オーステナイト系ステンレス鋼、高マン
ガン鋼機械加工部材等の非磁性金属材料を用いる。
FIGS. 12A, 12B and 12C show the first embodiment of the present invention.
It is a schematic diagram of a rotor structure (j) showing one embodiment,
11b, 11b are shaft portions of the titanium alloy cylinder 11, 1
1a is the reinforcing ring, 2, 2, and 2 are odd-numbered divided rare earth magnets, 23 and 23 are non-magnetic end plates, and 25 is a non-magnetic metal cylinder. For the non-magnetic metal cylinder 25, a non-magnetic metal material such as an aluminum alloy, a titanium alloy, an austenitic stainless steel, or a high-manganese steel machined member is used.

【0062】本例は奇数の複数個に分割された希土類磁
石2,2,2と非磁性端板23及び非磁性金属円筒25
を組み合わせたことが特徴となっている。製造工程は第
10実施形態例(図11)と略一致している。
In this embodiment, the odd-numbered rare-earth magnets 2, 2, 2 and the non-magnetic end plate 23 and the non-magnetic metal cylinder 25 are used.
It is characterized by combining. The manufacturing process is substantially the same as that of the tenth embodiment (FIG. 11).

【0063】図13(A)(B)(C)は本発明の第1
2実施形態例を示す回転子構造(k)の概要図であり、
11b,11bはチタン合金円筒11のシャフト部、1
1aは同補強環、21は強磁性シャフト、5は積層材で
なる鉄心、23,23は非磁性端板、6,6は鉄心溝
部、2,2は希土類磁石、25は非磁性金属円筒であ
る。製造工程を簡単に説明すると、(1)非磁性端板2
3,23間に積層材でなる鉄心5を組み合わせて強磁性
シャフト21に圧入し、(2)鉄心5の周縁部に長手方
向に沿って設けた断面くさび型の鉄心溝部6,6内に希
土類磁石2,2を挿入して機械的に拘束し、(3)チタ
ン合金円筒11を約300℃〜350℃の高温に加熱し
てシャフト部11b,11b両端部に軸方向の圧縮負荷
を加えた状態で補強環11aの部分の外周から非磁性金
属円筒25を焼ばめすることによって2分割されたチタ
ン合金円筒11を機械的に拘束し、(3)チタン合金円
筒11のシャフト部11b,11b両端部を回転治具の
チャックにはさみ、軸方向に僅かに圧縮負荷を加えた状
態で回転させながら一体接合する。
FIGS. 13A, 13B and 13C show the first embodiment of the present invention.
It is a schematic diagram of a rotor structure (k) showing a second embodiment,
11b, 11b are shaft portions of the titanium alloy cylinder 11, 1
1a is the reinforcing ring, 21 is a ferromagnetic shaft, 5 is an iron core made of a laminated material, 23 and 23 are nonmagnetic end plates, 6 and 6 are iron core grooves, 2 and 2 are rare earth magnets, and 25 is a nonmagnetic metal cylinder. is there. The manufacturing process will be briefly described. (1) Non-magnetic end plate 2
The core 5 made of a laminated material is combined between the ferrules 3 and 23 and press-fitted into the ferromagnetic shaft 21. (2) Rare earth elements are inserted into the wedge-shaped core grooves 6 and 6 provided along the longitudinal direction at the periphery of the core 5. (3) The titanium alloy cylinder 11 was heated to a high temperature of about 300 ° C. to 350 ° C. to apply an axial compressive load to both ends of the shaft portions 11b and 11b. By shrink-fitting the nonmagnetic metal cylinder 25 from the outer periphery of the reinforcing ring 11a in the state, the titanium alloy cylinder 11 divided into two parts is mechanically restrained, and (3) the shaft portions 11b, 11b of the titanium alloy cylinder 11 Both ends are sandwiched between chucks of a rotary jig, and are integrally joined while rotating while slightly applying a compressive load in the axial direction.

【0064】この例でも前記各例で用いたチタン合金円
板18は使用していないため、電子ビーム溶接を不要と
している。
Also in this example, since the titanium alloy disk 18 used in each of the above examples is not used, electron beam welding is unnecessary.

【0065】図14(A)(B)(C)は本発明の第1
3実施形態例を示す回転子構造(l)の概要図であり、
11b,11bはチタン合金円筒11のシャフト部、1
1aは同補強環、5は積層材でなる鉄心、6,6は鉄心
溝部、2,2は希土類磁石、25は非磁性金属円筒であ
る。鉄心5,5の積層材にはケイ素鋼板,例えば6.5
%高ケイ素鋼板を積層して用いる。製造工程は (1)積層材でなる鉄心5,5の周縁部に長手方向に沿
って設けた断面くさび型の鉄心溝部6,6内に希土類磁
石2,2を挿入して機械的に拘束してからチタン合金円
筒11の補強環11a内に挿入し、(2)チタン合金円
筒11を約300℃〜350℃の高温に加熱してシャフ
ト部11b,11b両端部に軸方向の圧縮負荷を加えた
状態で補強環11aの部分の外周から非磁性金属円筒2
5を焼ばめすることによって2分割されたチタン合金円
筒11を機械的に拘束し、(3)チタン合金円筒11の
シャフト部11b,11b両端部を回転治具のチャック
にはさみ、軸方向に僅かに圧縮負荷を加えた状態で回転
させながら一体接合する。
FIGS. 14A, 14B and 14C show the first embodiment of the present invention.
It is a schematic diagram of a rotor structure (l) showing a third embodiment,
11b, 11b are shaft portions of the titanium alloy cylinder 11, 1
1a is the reinforcing ring, 5 is an iron core made of a laminated material, 6 and 6 are iron core grooves, 2, 2 are rare earth magnets, and 25 is a non-magnetic metal cylinder. The laminated material of the iron cores 5, 5 is made of a silicon steel plate, for example, 6.5.
% High silicon steel sheets are laminated and used. The manufacturing process is as follows: (1) Insert rare earth magnets 2 and 2 into core grooves 6 and 6 having a wedge-shaped cross section provided along the longitudinal direction at the peripheral edges of iron cores 5 and 5 made of a laminated material and mechanically restrain them. (2) The titanium alloy cylinder 11 is heated to a high temperature of about 300 ° C. to 350 ° C. to apply an axial compressive load to both ends of the shaft portions 11b and 11b. The non-magnetic metal cylinder 2 from the outer periphery of the reinforcing ring 11a
5 is shrink-fitted to mechanically restrain the titanium alloy cylinder 11 divided into two parts. (3) The both ends of the shaft portions 11b and 11b of the titanium alloy cylinder 11 are sandwiched between chucks of a rotary jig, and are axially moved. They are joined together while rotating with a slight compression load applied.

【0066】この例ではチタン合金円板18と強磁性シ
ャフト21は使用していないため、電子ビーム溶接を不
要とするとともに構成が簡易化されていることが特徴と
なっている。
In this example, since the titanium alloy disk 18 and the ferromagnetic shaft 21 are not used, the feature is that electron beam welding is not required and the configuration is simplified.

【0067】次に本発明で採用した「超塑性ガス圧成形
法」による異径円筒部材の製造方法の各種変形例を説明
する。尚、装置の要部は図1,図2に示した第1実施形
態例と基本的に同一であるため、同一部分に同一の符号
を付して表示してある。
Next, various modifications of the method of manufacturing a cylindrical member having a different diameter by the "superplastic gas pressure forming method" employed in the present invention will be described. Since the main parts of the apparatus are basically the same as those of the first embodiment shown in FIGS. 1 and 2, the same parts are denoted by the same reference numerals.

【0068】図15(A)(B)は本発明の第14実施
形態例を示す超塑性ガス圧成形装置の概要図であり、そ
れぞれガス加圧成形前とガス加圧成形後のチタン合金円
筒11の断面形状を示している。主要な構成要素とし
て、12,13はチタン合金円筒11を保持する縦割の
2分割金型、15は高温高圧のアルゴンガスを供給する
パイプ、16は金型12,13を介してチタン合金円筒
11を加熱するヒータ、17は断熱層、8,9は水冷用
配管である。
FIGS. 15A and 15B are schematic views of a superplastic gas pressure forming apparatus showing a fourteenth embodiment of the present invention, in which a titanium alloy cylinder before and after gas pressure forming, respectively. 11 shows a cross-sectional shape. As main components, 12 and 13 are vertically divided two-piece molds for holding the titanium alloy cylinder 11, 15 is a pipe for supplying high-temperature and high-pressure argon gas, and 16 is a titanium alloy cylinder via the molds 12 and 13. 11 is a heater for heating, 17 is a heat insulating layer, and 8 and 9 are water cooling pipes.

【0069】本例では第1実施形態例で用いたガス溜め
タンク14(図1参照)に代えて、蓋部材26を用いた
ことが特徴となっている。
This embodiment is characterized in that a lid member 26 is used in place of the gas storage tank 14 (see FIG. 1) used in the first embodiment.

【0070】かかる第14実施形態例によれば、2分割
金型12,13の内方にチタン合金円筒11を挿入後、
両端フランジ部12a,12b及び13a,13bをそ
れぞれ高圧アルゴンガスを供給するパイプ15のフラン
ジ部15aとガス溜めタンク14のフランジ部14aに
ボルト締めにより固定し、図外の大容量ガスタンクから
パイプ15を介して不活性ガスとしての高温高圧のアル
ゴンガスを導入して圧力媒体とし、ヒータ16により加
熱しながらチタン金属円筒11に対して所定の圧力と温
度をかけることにより、pに示したようにチタン金属円
筒11に超塑性ガス圧成形加工を施してシャフト部11
b,11bとロータ外周部補強環11aからなる異径円
筒形状に成形することができる。又、蓋部材26を設け
たことによってガス加圧成形時にアルゴンガスの供給側
のみでなく、蓋部材26側からも加圧力が付与されるの
で、チタン合金円筒11内に均一な内圧を与えることが
できる。
According to the fourteenth embodiment, after the titanium alloy cylinder 11 is inserted inside the two-part molds 12 and 13,
Both end flange portions 12a, 12b and 13a, 13b are fixed to the flange portion 15a of the pipe 15 for supplying high-pressure argon gas and the flange portion 14a of the gas storage tank 14 by bolting, and the pipe 15 is connected from a large-capacity gas tank (not shown). A high pressure and high temperature argon gas as an inert gas is introduced as a pressure medium, and a predetermined pressure and temperature are applied to the titanium metal cylinder 11 while being heated by the heater 16, thereby obtaining titanium as shown in p. A superplastic gas pressure forming process is applied to the metal cylinder
b, 11b and a rotor outer peripheral reinforcing ring 11a can be formed into a cylindrical shape having a different diameter. Further, by providing the cover member 26, a pressing force is applied not only from the argon gas supply side but also from the cover member 26 side at the time of gas pressure molding, so that a uniform internal pressure is provided in the titanium alloy cylinder 11. Can be.

【0071】チタン金属円筒11にガス加圧成形を行っ
た後に水冷用配管8,9に冷却水を流して2分割金型1
2,13と各フランジ部12a,12b,13a,13
b及びチタン合金円筒11を冷却する。
After performing gas pressure molding on the titanium metal cylinder 11, cooling water is flowed through the water cooling pipes 8 and 9 to form the two-part mold 1.
2, 13 and each flange portion 12a, 12b, 13a, 13
b and the titanium alloy cylinder 11 are cooled.

【0072】図16(A)(B)は本発明の第15実施
形態例を示す超塑性ガス圧成形装置の概要図であり、基
本的な構成は第1,第14実施形態例と同一であるた
め、同一の符号を付して表示してある。この例ではチタ
ン合金円筒11を保持する縦割の2分割金型12,13
の一方側にアルゴンガスを供給するパイプ15を設ける
とともに該2分割金型12,13の他方側にもアルゴン
ガスを供給するパイプ15aを設けたことが特徴となっ
ている。
FIGS. 16A and 16B are schematic views of a superplastic gas pressure forming apparatus showing a fifteenth embodiment of the present invention. The basic structure is the same as that of the first and fourteenth embodiments. For this reason, the same reference numerals are assigned and displayed. In this example, vertically divided two-part molds 12 and 13 for holding a titanium alloy cylinder 11
Is characterized in that a pipe 15 for supplying argon gas is provided on one side and a pipe 15a for supplying argon gas is also provided on the other side of the two-piece molds 12 and 13.

【0073】かかる第15実施形態例によれば、2分割
金型12,13の内方にチタン合金円筒11を挿入して
固定した後、図外の大容量ガスタンクからパイプ15及
びパイプ15aの両方から高温高圧のアルゴンガスを導
入してチタン金属円筒11に所定の圧力と温度をかける
ことにより、チタン金属円筒11に超塑性ガス圧成形加
工を施すことができる。従ってチタン金属円筒11内へ
のガス充填速度が早くなり、より均一な内圧を付与する
ことができる。
According to the fifteenth embodiment, after the titanium alloy cylinder 11 is inserted and fixed inside the two-part molds 12 and 13, both the pipe 15 and the pipe 15a are removed from the large-capacity gas tank (not shown). By applying a predetermined pressure and temperature to the titanium metal cylinder 11 by introducing a high-temperature and high-pressure argon gas from above, the titanium metal cylinder 11 can be subjected to superplastic gas pressure forming. Therefore, the gas filling rate into the titanium metal cylinder 11 is increased, and a more uniform internal pressure can be applied.

【0074】図17(A)(B)は本発明の第16実施
形態例を示す超塑性ガス圧成形装置の概要図であり、こ
の例では第1実施形態例(図1参照)におけるチタン合
金円筒11を保持する縦割の2分割金型12,13に代
えて、横割の2分割金型12c,13cを設けたことが
特徴となっている。
FIGS. 17 (A) and 17 (B) are schematic views of a superplastic gas pressure forming apparatus showing a sixteenth embodiment of the present invention. In this embodiment, the titanium alloy in the first embodiment (see FIG. 1) is used. It is characterized in that, instead of the vertically split two-part molds 12 and 13 for holding the cylinder 11, two horizontally split molds 12c and 13c are provided.

【0075】かかる第16実施形態例による動作態様は
第1実施形態例と基本的に同一である。尚、横割の2分
割金型12c,13cを用いる場合には金型に僅かな抜
きテーパを設ける必要がある。
The operation of the sixteenth embodiment is basically the same as that of the first embodiment. In the case where the horizontally split two-part molds 12c and 13c are used, it is necessary to provide the mold with a slight taper.

【0076】図18(A)(B)は本発明の第17実施
形態例を示す超塑性ガス圧成形装置の概要図であり、本
例はチタン合金円筒11を保持する縦割の2分割金型1
2,13の内径側に予め波型の溝部27を形成したこと
が特徴となっている。
FIGS. 18A and 18B are schematic views of a superplastic gas pressure forming apparatus showing a seventeenth embodiment of the present invention. In this embodiment, a vertically split two-piece metal holding a titanium alloy cylinder 11 is shown. Type 1
It is characterized in that corrugated grooves 27 are formed in advance on the inner diameter sides of 2, 13.

【0077】かかる第17実施形態例によれば、2分割
金型12,13の内方にチタン合金円筒11を挿入して
固定した後、パイプ15から高温高圧のアルゴンガスを
導入してチタン金属円筒11に所定の圧力と温度をかけ
て超塑性ガス圧成形加工を施すことにより、チタン合金
製のベローズ28を製作することができる。
According to the seventeenth embodiment, after the titanium alloy cylinder 11 is inserted and fixed inside the two-piece molds 12 and 13, a high-temperature and high-pressure argon gas is introduced from the pipe 15 to form the titanium metal cylinder. The bellows 28 made of a titanium alloy can be manufactured by subjecting the cylinder 11 to superplastic gas pressure forming under a predetermined pressure and temperature.

【0078】チタン合金の強度はオーステナイト系ステ
ンレス鋼と大差ないが、弾性係数は約0.6倍であるた
め、同一負荷に対するベローズの撓みは本実施形態例で
得られたベローズ28の方がかなり大きく、ステンレス
性のベローズに比してばね性に優れている。このベロー
ズ28は従来の溶接方式によらない「継ぎ目」なしの物
品であり、真空しゃ断器,真空保持ケース等の非磁性ベ
ローズとして採用して有効である。
Although the strength of the titanium alloy is not much different from that of the austenitic stainless steel, the elasticity of the bellows 28 obtained in the present embodiment is considerably larger than that of the austenitic stainless steel since the elasticity is about 0.6 times. It is large and has excellent spring properties compared to stainless steel bellows. The bellows 28 is an article without a "seam" which does not depend on the conventional welding method, and is effectively used as a non-magnetic bellows for a vacuum circuit breaker, a vacuum holding case, and the like.

【0079】[0079]

【発明の効果】以上詳細に説明したように、本発明にか
かるチタン合金を用いた回転子とその製造方法によれ
ば、圧力媒体として不活性ガスを金型に導入して、チタ
ン金属円筒を加熱しながら所定の圧力をかけることによ
ってチタン金属円筒が内方から加圧処理されて超塑性ガ
ス圧成形加工が施され、シャフト部とロータ外周部補強
環からなる異径円筒部材に成形することができる。従っ
て中実円柱状の素材でなる受入材を厚肉円筒状のチタン
合金円筒に機械加工する工程と、超塑性加工を施した異
径円筒部材をロータ部中央の補強環で円周方向に2分割
する切断工程を除けば、その後の切削加工工程が省略さ
れて回転子を製造する際の機械加工工数が大幅に削減さ
れ、材料の歩留まりを高めて高価な素材の有効利用率が
向上するという効果が得られる。
As described above in detail, according to the rotor using the titanium alloy according to the present invention and the method for manufacturing the same, an inert gas is introduced into the mold as a pressure medium to form the titanium metal cylinder. By applying a predetermined pressure while heating, the titanium metal cylinder is pressurized from the inside and subjected to superplastic gas pressure forming, and formed into a cylindrical member of different diameter consisting of a shaft part and a reinforcing ring on the outer periphery of the rotor. Can be. Therefore, a step of machining a solid cylindrical cylindrical receiving material into a thick cylindrical titanium alloy cylinder, and a step of circumferentially forming a superplastically processed different-diameter cylindrical member with a reinforcing ring at the center of the rotor portion. Excluding the cutting process, the subsequent cutting process is omitted, which significantly reduces the number of machining steps required to manufacture the rotor, increases the material yield, and improves the effective utilization rate of expensive materials. The effect is obtained.

【0080】超塑性ガス圧成形法として、金型の一方側
に不活性ガス導入パイプを連結するとともに、金型の他
方側にガス溜めタンクを設けるか、金型の他方側に蓋部
材を設けて閉止したことにより、不活性ガスの供給側の
みでなく、ガス溜めタンクもしくは蓋部材側からも加圧
力が付与されてチタン合金円筒内に均一な内圧を与える
ことができる。更に金型の一方側と他方側との両側から
金型内に高温高圧の不活性ガスを導入することにより、
チタン金属円筒内へのガス充填速度が早くなり、より均
一な内圧を付与することができる。
As a superplastic gas pressure forming method, an inert gas introduction pipe is connected to one side of the mold, and a gas reservoir tank is provided on the other side of the mold, or a lid member is provided on the other side of the mold. As a result, the pressing force is applied not only from the supply side of the inert gas but also from the gas storage tank or the lid member side, and a uniform internal pressure can be provided in the titanium alloy cylinder. Further, by introducing a high-temperature and high-pressure inert gas into the mold from both sides of the mold on one side and the other side,
The gas filling rate into the titanium metal cylinder is increased, and a more uniform internal pressure can be applied.

【0081】回転子の製造時には、異径円筒部材のロー
タ外周部補強環の部分で円周方向に2分割に切断した
後、補強環内にチタン合金円板、希土類磁石、非磁性端
板、強磁性シャフト及び非磁性金属円筒を組み合わせて
配置し、シャフト部の両端部に軸方向の圧縮負荷を加え
た状態で焼ばめを行い、補強環の突合わせ部とチタン合
金円板とを全周にわたって一体接合するか、補強環部分
の外周から非磁性金属円筒を焼ばめすることにより完成
するため、部品点数と組付工数が少ない上、シャフト
部、補強環部ともに高比強度であり、軽量化を可能とし
て回転子として小型化,高性能化及び低慣性化をはかる
ことができる。
In the manufacture of the rotor, after cutting into two parts in the circumferential direction at the portion of the rotor outer peripheral reinforcing ring of the different diameter cylindrical member, a titanium alloy disk, a rare earth magnet, a non-magnetic end plate, A ferromagnetic shaft and a non-magnetic metal cylinder are combined and arranged. Shrink fitting is performed in a state where an axial compression load is applied to both ends of the shaft. It is completed by joining together over the circumference or shrink-fitting a non-magnetic metal cylinder from the outer periphery of the reinforcing ring, so the number of parts and assembly man-hours are small, and both the shaft and the reinforcing ring have high specific strength. In addition, the rotor can be reduced in size, higher in performance, and lower in inertia by enabling weight reduction.

【0082】得られた回転子は、補強環内にチタン合金
円板、希土類磁石、非磁性端板、強磁性シャフト等とと
もに組み込まれているため、希土類磁石の持つ脆性が補
填され、希土類磁石の本来の磁気特性を低下させること
なしに高速回転機等に利用可能な回転子を得ることがで
きる。従って電動機等の高速化とか大容量化に伴って回
転子に作用する遠心力が増大しても、希土類磁石に変形
とか破断が生じる惧れは大幅に軽減することができる。
Since the obtained rotor is incorporated in a reinforcing ring together with a titanium alloy disk, a rare earth magnet, a non-magnetic end plate, a ferromagnetic shaft and the like, the brittleness of the rare earth magnet is compensated for and the rare earth magnet A rotor that can be used for a high-speed rotating machine or the like can be obtained without lowering the original magnetic characteristics. Therefore, even if the centrifugal force acting on the rotor increases as the speed of the electric motor or the like increases or the capacity increases, the fear that the rare earth magnet is deformed or broken can be greatly reduced.

【0083】従って本発明によれば、回転子を製造する
際の工数の大幅な削減と高価な素材の有効利用率の向上
をはかるとともに、希土類磁石の持つ脆性とか強度,剛
性,靭性等の不足をカバーし、磁気特性を劣化させるこ
となく高速大容量化された電動機の回転子を提供するこ
とができる。
Therefore, according to the present invention, the man-hour for manufacturing the rotor is significantly reduced, the effective utilization rate of expensive materials is improved, and the brittleness, strength, rigidity, toughness, etc. of the rare-earth magnet are insufficient. And a high-speed and large-capacity motor rotor without deteriorating the magnetic characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態例におけるガス加圧成形
前のチタン合金円筒の断面形状を示す概要図。
FIG. 1 is a schematic view showing a cross-sectional shape of a titanium alloy cylinder before gas pressure forming according to a first embodiment of the present invention.

【図2】第1実施形態例における不活性ガスによる加圧
成形後のチタン合金円筒の断面形状を示す概要図。
FIG. 2 is a schematic diagram showing a cross-sectional shape of a titanium alloy cylinder after pressure molding with an inert gas in the first embodiment.

【図3】図3(A)は第2実施形態例を示す要部断面
図、図3(B)は図3(A)のB−B線に沿う断面図。
FIG. 3A is a cross-sectional view of a main part showing a second embodiment, and FIG. 3B is a cross-sectional view taken along line BB of FIG. 3A.

【図4】図4(A)は第3実施形態例を示す要部断面
図、図4(B)は図3(A)のB−B線に沿う断面図、
図4(C)は図4(A)のC−C線に沿う断面図。
4A is a cross-sectional view of a main part showing a third embodiment, FIG. 4B is a cross-sectional view taken along line BB of FIG. 3A,
FIG. 4C is a cross-sectional view taken along line CC of FIG. 4A.

【図5】図5(A)は第4実施形態例を示す要部断面
図、図5(B)は図5(A)のB−B線に沿う断面図。
FIG. 5A is a cross-sectional view of a principal part showing a fourth embodiment, and FIG. 5B is a cross-sectional view taken along line BB of FIG. 5A.

【図6】図6(A)は第5実施形態例を示す要部断面
図、図6(B)は図6(A)のB−B線に沿う断面図。
FIG. 6A is a cross-sectional view of a principal part showing a fifth embodiment, and FIG. 6B is a cross-sectional view taken along line BB of FIG. 6A.

【図7】図7(A)は第6実施形態例を示す要部断面
図、図7(B)は図7(A)のB−B線に沿う断面図、
図7(C)は図7(A)のC−C線に沿う断面図。
7A is a cross-sectional view of a main part showing a sixth embodiment, FIG. 7B is a cross-sectional view taken along line BB of FIG. 7A,
FIG. 7C is a cross-sectional view taken along line CC of FIG. 7A.

【図8】図8(A)は第7実施形態例を示す要部断面
図、図8(B)は図8(A)のB−B線に沿う断面図、
図8(C)は図8(A)のC−C線に沿う断面図。
8A is a cross-sectional view of a main part showing a seventh embodiment, FIG. 8B is a cross-sectional view taken along line BB of FIG. 8A,
FIG. 8C is a cross-sectional view taken along line CC of FIG. 8A.

【図9】図9(A)は第8実施形態例を示す要部断面
図、図9(B)は図9(A)のB−B線に沿う断面図、
図9(C)は図9(A)のC−C線に沿う断面図。
9A is a cross-sectional view of a principal part showing an eighth embodiment, FIG. 9B is a cross-sectional view taken along the line BB of FIG. 9A,
FIG. 9C is a cross-sectional view taken along line CC of FIG. 9A.

【図10】図10(A)は第9実施形態例を示す要部断
面図、図10(B)は図10(A)のB−B線に沿う断
面図、図10(C)は図10(A)のC−C線に沿う断
面図。
10A is a sectional view of an essential part showing a ninth embodiment, FIG. 10B is a sectional view taken along the line BB of FIG. 10A, and FIG. Sectional drawing which follows the CC line of 10 (A).

【図11】図11(A)は第10実施形態例を示す要部
断面図、図11(B)は図11(A)のB−B線に沿う
断面図、図11(C)は図11(A)のC−C線に沿う
断面図。
11A is a sectional view of a main part showing a tenth embodiment, FIG. 11B is a sectional view taken along line BB of FIG. 11A, and FIG. Sectional drawing which follows the CC line of 11 (A).

【図12】図12(A)は第11実施形態例を示す要部
断面図、図12(B)は図12(A)のB−B線に沿う
断面図、図12(C)は図12(A)のC−C線に沿う
断面図。
12A is a cross-sectional view of an essential part showing an eleventh embodiment, FIG. 12B is a cross-sectional view taken along the line BB of FIG. 12A, and FIG. Sectional drawing which follows the CC line of 12 (A).

【図13】図13(A)は第12実施形態例を示す要部
断面図、図13(B)は図13(A)のB−B線に沿う
断面図、図13(C)は図13(A)のC−C線に沿う
断面図。
13A is a sectional view of a main part showing a twelfth embodiment, FIG. 13B is a sectional view taken along the line BB of FIG. 13A, and FIG. Sectional drawing which follows the CC line of 13 (A).

【図14】図14(A)は第13実施形態例を示す要部
断面図、図14(B)は図14(A)のB−B線に沿う
断面図、図14(C)は図14(A)のC−C線に沿う
断面図。
14A is a sectional view of a principal part showing a thirteenth embodiment, FIG. 14B is a sectional view taken along the line BB of FIG. 14A, and FIG. Sectional drawing which follows the CC line of 14 (A).

【図15】図15(A)は第14実施形態例を示すガス
加圧成形前のチタン合金円筒の断面形状を示す概要図、
図15(B)はガス加圧成形後のチタン合金円筒の断面
形状を示す概要図。
FIG. 15A is a schematic diagram showing a cross-sectional shape of a titanium alloy cylinder before gas pressure forming according to a fourteenth embodiment,
FIG. 15B is a schematic diagram showing a cross-sectional shape of a titanium alloy cylinder after gas pressure molding.

【図16】図16(A)は第15実施形態例を示すガス
加圧成形前のチタン合金円筒の断面形状を示す概要図、
図16(B)はガス加圧成形後のチタン合金円筒の断面
形状を示す概要図。
FIG. 16A is a schematic diagram showing a cross-sectional shape of a titanium alloy cylinder before gas pressure forming according to a fifteenth embodiment,
FIG. 16B is a schematic view showing a cross-sectional shape of a titanium alloy cylinder after gas pressure molding.

【図17】図17(A)は第16実施形態例を示すガス
加圧成形前のチタン合金円筒の断面形状を示す概要図、
図17(B)はガス加圧成形後のチタン合金円筒の断面
形状を示す概要図。
FIG. 17A is a schematic diagram showing a cross-sectional shape of a titanium alloy cylinder before gas pressure forming according to a sixteenth embodiment,
FIG. 17B is a schematic diagram showing a cross-sectional shape of a titanium alloy cylinder after gas pressure molding.

【図18】図18(A)は第17実施形態例を示すガス
加圧成形前のチタン合金円筒の断面形状を示す概要図、
図18(B)はガス加圧成形後のチタン合金円筒の断面
形状を示す概要図。
FIG. 18A is a schematic view showing a cross-sectional shape of a titanium alloy cylinder before gas pressure forming according to a seventeenth embodiment,
FIG. 18B is a schematic diagram showing a cross-sectional shape of a titanium alloy cylinder after gas pressure molding.

【図19】「Ti−4.5Al−3V−2Fe−2M
o」合金と「Ti−6Al−4V」合金の引張試験で得
られた破断伸び,流動応力の温度特性を示すグラフ。
FIG. 19: “Ti-4.5Al-3V-2Fe-2M”
7 is a graph showing temperature characteristics of elongation at break and flow stress obtained in a tensile test of an “o” alloy and a “Ti-6Al-4V” alloy.

【図20】従来の希土類磁石を用いた回転子の概略構造
を示す要部断面図。
FIG. 20 is an essential part cross-sectional view showing a schematic structure of a rotor using a conventional rare earth magnet.

【図21】従来の希土類磁石を用いた他の回転子の概略
構造を示す要部断面図。
FIG. 21 is a sectional view of a main part showing a schematic structure of another rotor using a conventional rare earth magnet.

【符号の説明】[Explanation of symbols]

1…シャフト 2…希土類磁石 3…金属円筒 4…金属円板 5…鉄心 6…鉄心溝部 8,9…水冷用配管 11…チタン合金円筒 11a…補強環 11b…シャフト部 12,13…2分割金型 14…ガス溜めタンク 16…ヒータ 17…断熱層 18…チタン合金円板 19…電子ビーム溶接部 20…非磁性シャフト 21…強磁性シャフト 21a…溝付きシャフト 22…キー 23…非磁性端板 24…(アルミダイキャスト製)シャフト 25…非磁性金属円筒 26…蓋部材 27…溝部 DESCRIPTION OF SYMBOLS 1 ... Shaft 2 ... Rare earth magnet 3 ... Metal cylinder 4 ... Metal disk 5 ... Iron core 6 ... Iron core groove part 8, 9 ... Water cooling piping 11 ... Titanium alloy cylinder 11a ... Reinforcement ring 11b ... Shaft part 12, 13 ... 2 split metal Mold 14 ... Gas storage tank 16 ... Heater 17 ... Heat insulation layer 18 ... Titanium alloy disc 19 ... Electron beam welded part 20 ... Non-magnetic shaft 21 ... Ferromagnetic shaft 21a ... Slotted shaft 22 ... Key 23 ... Non-magnetic end plate 24 … Shaft (made of aluminum die-cast) 25… non-magnetic metal cylinder 26… lid member 27… groove

Claims (23)

【特許請求の範囲】[Claims] 【請求項1】 チタン合金厚肉円筒を超塑性ガス圧成形
法によってシャフト部とロータ外周部補強環を備えた異
径円筒部材に塑性加工し、該ロータ外周部補強環内に高
エネルギー積希土類磁石や鉄心材料等を内蔵したことを
特徴とするチタン合金を用いた回転子。
1. A titanium alloy thick-walled cylinder is plastically processed by superplastic gas pressure forming into a cylindrical member having a shaft portion and a rotor outer peripheral portion reinforcing ring, and a high-energy product rare earth element is provided in the rotor outer peripheral reinforcing ring. A rotor using a titanium alloy, which has a built-in magnet and iron core material.
【請求項2】 超塑性ガス圧成形法によってチタン合金
厚肉円筒をシャフト部とロータ外周部補強環の構造を兼
ね備えた異径円筒部材に塑性加工を施し、ロータ外周部
補強環に高エネルギー積希土類磁石や鉄心材料等を内蔵
させたことを特徴とするチタン合金を用いた回転子の製
造方法。
2. A titanium alloy thick-walled cylinder is subjected to plastic working by a superplastic gas pressure forming method to a cylindrical member having a shaft portion and a rotor outer peripheral portion reinforcing ring, which has a high energy product. A method for manufacturing a rotor using a titanium alloy, characterized by incorporating a rare earth magnet, an iron core material, and the like.
【請求項3】 超塑性ガス圧成形法として、金型の内方
にチタン合金円筒を挿入固定し、ヒータによりチタン合
金円筒を加熱しながら該金型内に高温高圧の不活性ガス
を導入してチタン金属円筒の内方から加圧処理を行うこ
とにより、該チタン金属円筒に超塑性ガス圧成形加工を
施して、シャフト部とロータ外周部補強環からなる異径
円筒形状に成形したことを特徴とする、チタン合金を用
いた回転子の製造方法。
3. As a superplastic gas pressure forming method, a titanium alloy cylinder is inserted and fixed inside a mold, and a high-temperature and high-pressure inert gas is introduced into the mold while heating the titanium alloy cylinder with a heater. Pressurizing from the inside of the titanium metal cylinder by applying superplastic gas pressure forming to the titanium metal cylinder to form a cylinder having a different diameter comprising a shaft and a rotor outer peripheral reinforcing ring. A method for manufacturing a rotor using a titanium alloy.
【請求項4】 チタン金属円筒が「Ti−4.5Al−
3V−2Fe−2Mo」合金の場合の超塑性ガス圧成形
加工の処理条件として、成形温度780℃±50℃、ひ
ずみ速度は1×10-2/s以下、不活性ガスの圧力は2
0〜120MPaとしたことを特徴とする請求項2又は
請求項3の何れか1項に記載のチタン合金を用いた回転
子の製造方法。
4. The titanium metal cylinder is made of “Ti-4.5Al-
The processing conditions for superplastic gas pressure forming in the case of “3V-2Fe-2Mo” alloy include a forming temperature of 780 ° C. ± 50 ° C., a strain rate of 1 × 10 −2 / s or less, and an inert gas pressure of 2
The method for manufacturing a rotor using a titanium alloy according to claim 2, wherein the rotor is set to 0 to 120 MPa.
【請求項5】 チタン金属円筒が「Ti−6Al−4
V」合金の場合の超塑性ガス圧成形加工の処理条件とし
て、成形温度880℃±50℃、ひずみ速度は1×10
-2/s以下、不活性ガスの圧力は20〜120MPaと
したことを特徴とする請求項2又は請求項3の何れか1
項に記載のチタン合金を用いた回転子の製造方法。
5. The titanium metal cylinder is made of “Ti-6Al-4”.
The processing conditions for the superplastic gas pressing in the case of the “V” alloy include a forming temperature of 880 ° C. ± 50 ° C. and a strain rate of 1 × 10
-2 / s or less, claim 2 or claim 3 pressure of the inert gas is characterized in that the 20~120MPa 1
14. A method for manufacturing a rotor using the titanium alloy described in the item 6.
【請求項6】 超塑性ガス圧成形加工法により形成した
シャフト部とロータ外周部補強環からなる異径円筒部材
を、補強環の部分で円周方向に2分割に切断した後、補
強環内にチタン合金円板を中心として両側に希土類磁石
を組み合わせて配置し、異径円筒部材を高温に加熱して
シャフト部の両端部に軸方向の圧縮負荷を加えた状態で
焼ばめを行い、補強環の突合わせ部を隙間なく合わせて
から軸方向に圧縮負荷を加えた状態で回転させながら補
強環の突合わせ部とチタン合金円板とを電子ビーム溶接
により全周にわたって一体接合することを特徴とする、
チタン合金を用いた回転子の製造方法。
6. A cylindrical member formed of a shaft portion and a rotor outer peripheral portion reinforcing ring formed by a superplastic gas pressure forming method is cut into two portions in a circumferential direction at a portion of the reinforcing ring. Rare earth magnets are combined and arranged on both sides centering on a titanium alloy disk, and the different diameter cylindrical members are heated to a high temperature and shrink-fitted with an axial compressive load applied to both ends of the shaft part. The butt of the reinforcing ring and the titanium alloy disc are joined together by electron beam welding while rotating the butt of the reinforcing ring and the titanium alloy disk while rotating with the compressive load applied in the axial direction, without any gap. Features,
A method for manufacturing a rotor using a titanium alloy.
【請求項7】 前記補強環内に、チタン合金円板を中心
として両側に希土類磁石と非磁性シャフトを組み合わせ
て配置したことを特徴とする請求項6に記載のチタン合
金を用いた回転子の製造方法。
7. The rotor according to claim 6, wherein a rare-earth magnet and a non-magnetic shaft are combined on both sides of the titanium alloy disk in the reinforcing ring. Production method.
【請求項8】 超塑性ガス圧成形加工法により形成した
シャフト部とロータ外周部補強環からなる異径円筒部材
を、補強環の部分で円周方向に2分割に切断した後、補
強環内にチタン合金円板を中心として両側に鉄心を配置
し、この鉄心の周縁部長手方向に沿って設けた鉄心溝部
内に希土類磁石を挿入して拘束し、異径円筒部材を高温
に加熱してシャフト部の両端部に軸方向の圧縮負荷を加
えた状態で焼ばめを行い、補強環の突合わせ部を隙間な
く合わせてから軸方向に圧縮負荷を加えた状態で回転さ
せながら補強環の突合わせ部とチタン合金円板とを電子
ビーム溶接により全周にわたって一体接合することを特
徴とする、チタン合金を用いた回転子の製造方法。
8. A cylindrical member formed of a shaft portion and a rotor outer peripheral portion reinforcing ring formed by superplastic gas pressure forming method is cut into two parts in a circumferential direction at a part of the reinforcing ring, and then cut inside the reinforcing ring. The iron core is placed on both sides centering on the titanium alloy disk, and a rare earth magnet is inserted and restrained in the iron core groove provided along the peripheral edge longitudinal direction of this iron core, and the different diameter cylindrical member is heated to a high temperature. Perform shrink-fit with the axial compression load applied to both ends of the shaft, align the butting portions of the reinforcement ring with no gap, and rotate the reinforcement ring while applying the compression load in the axial direction. A method of manufacturing a rotor using a titanium alloy, comprising joining an abutting portion and a titanium alloy disk integrally over an entire circumference by electron beam welding.
【請求項9】 鉄心として2層中実シャフトを用いたこ
とを特徴とする請求項8に記載のチタン合金を用いた回
転子の製造方法。
9. The method for manufacturing a rotor using a titanium alloy according to claim 8, wherein a two-layer solid shaft is used as an iron core.
【請求項10】 鉄心として純鉄,低炭素鋼,低合金鋼
等の強磁性材でなるバルク材を用いたことを特徴とする
請求項8に記載のチタン合金を用いた回転子の製造方
法。
10. The method for manufacturing a rotor using a titanium alloy according to claim 8, wherein a bulk material made of a ferromagnetic material such as pure iron, low carbon steel, and low alloy steel is used as the iron core. .
【請求項11】 鉄心としてケイ素鋼板を積層した積層
材を用いたことを特徴とする請求項8に記載のチタン合
金を用いた回転子の製造方法。
11. The method for producing a rotor using a titanium alloy according to claim 8, wherein a laminated material obtained by laminating silicon steel plates is used as the iron core.
【請求項12】 超塑性ガス圧成形加工法により形成し
たシャフト部とロータ外周部補強環からなる異径円筒部
材を、補強環の部分で円周方向に2分割に切断した後、
補強環内にチタン合金円板を中心として鉄心を強磁性シ
ャフトに圧入して配置し、この鉄心の周縁部長手方向に
沿って設けた鉄心溝部内に希土類磁石を挿入して拘束
し、異径円筒部材を高温に加熱してシャフト部の両端部
に軸方向の圧縮負荷を加えた状態で焼ばめを行い、補強
環の突合わせ部を隙間なく合わせてから軸方向に圧縮負
荷を加えた状態で回転させながら補強環の突合わせ部と
チタン合金円板とを電子ビーム溶接により全周にわたっ
て一体接合することを特徴とする、チタン合金を用いた
回転子の製造方法。
12. A cylindrical member having a shaft portion and a rotor outer peripheral portion reinforcing ring formed by superplastic gas pressure forming is cut into two parts in the circumferential direction at the reinforcing ring portion.
An iron core is pressed into a ferromagnetic shaft centered on a titanium alloy disk in the reinforcing ring, and a rare earth magnet is inserted and restrained in a core groove provided along a peripheral edge longitudinal direction of the iron core, thereby forming a different diameter. The cylindrical member was heated to a high temperature and shrink-fitted in a state where an axial compressive load was applied to both ends of the shaft, and the compressive load was applied in the axial direction after aligning the butting portions of the reinforcing ring with no gap. A method of manufacturing a rotor using a titanium alloy, comprising joining an abutting portion of a reinforcing ring and a titanium alloy disk integrally over the entire circumference by electron beam welding while rotating in a state.
【請求項13】 超塑性ガス圧成形加工法により形成し
たシャフト部とロータ外周部補強環からなる異径円筒部
材を、補強環の部分で円周方向に2分割に切断した後、
補強環内にチタン合金円板を中心として鉄心と非磁性端
板を強磁性シャフトに圧入して配置し、この鉄心の周縁
部長手方向に沿って設けた鉄心溝部内に希土類磁石を挿
入して拘束し、異径円筒部材を高温に加熱してシャフト
部の両端部に軸方向の圧縮負荷を加えた状態で焼ばめを
行い、補強環の突合わせ部を隙間なく合わせてから軸方
向に圧縮負荷を加えた状態で回転させながら補強環の突
合わせ部とチタン合金円板とを電子ビーム溶接により全
周にわたって一体接合することを特徴とする、チタン合
金を用いた回転子の製造方法。
13. A cylindrical member formed of a shaft portion and a rotor outer peripheral portion reinforcing ring formed by a superplastic gas pressure forming method is cut into two parts in a circumferential direction at a portion of the reinforcing ring.
The iron core and the non-magnetic end plate are press-fitted into the ferromagnetic shaft and arranged around the titanium alloy disk in the reinforcing ring, and the rare earth magnet is inserted into the core groove provided along the peripheral edge longitudinal direction of this iron core. Restrain, heat the different diameter cylindrical member to high temperature, shrink fit with axial compression load applied to both ends of the shaft part, fit the butt portion of the reinforcing ring without gap, and then axially A method for manufacturing a rotor using a titanium alloy, comprising joining an abutting portion of a reinforcing ring and a titanium alloy disk integrally over an entire circumference by electron beam welding while rotating while applying a compressive load.
【請求項14】 強磁性シャフトとして溝付き強磁性シ
ャフトを用いたことを特徴とする請求項13に記載のチ
タン合金を用いた回転子の製造方法。
14. The method according to claim 13, wherein a grooved ferromagnetic shaft is used as the ferromagnetic shaft.
【請求項15】 強磁性シャフトとしてアルミダイキャ
スト製のシャフトを用いたことを特徴とする請求項1
2,13の何れか1項に記載のチタン合金を用いた回転
子の製造方法。
15. A ferromagnetic shaft comprising an aluminum die-cast shaft.
A method of manufacturing a rotor using the titanium alloy according to any one of Items 2 and 13.
【請求項16】 超塑性ガス圧成形加工法により形成し
たシャフト部とロータ外周部補強環からなる異径円筒部
材を、補強環の部分で円周方向に2分割に切断した後、
補強環内に希土類磁石を中心として両側に磁性端板を配
置し、異径円筒部材を高温に加熱してシャフト部の両端
部に軸方向の圧縮負荷を加えた状態で補強環部分の外周
から非磁性金属円筒を焼ばめすることによって2分割さ
れたチタン合金円筒を機械的に拘束して一体接合するこ
とを特徴とする、チタン合金を用いた回転子の製造方
法。
16. A cylindrical member formed of a shaft portion and a rotor outer peripheral portion reinforcing ring formed by a superplastic gas pressure forming method is cut into two parts in a circumferential direction at a portion of the reinforcing ring,
Magnetic end plates are arranged on both sides centering on the rare earth magnet in the reinforcing ring, and the different diameter cylindrical member is heated to a high temperature, and an axial compressive load is applied to both ends of the shaft portion from the outer periphery of the reinforcing ring portion. A method of manufacturing a rotor using a titanium alloy, wherein a titanium alloy cylinder divided into two parts is mechanically restrained and integrally joined by shrink-fitting a nonmagnetic metal cylinder.
【請求項17】 ロータ外周部補強環内に奇数の複数個
に分割された希土類磁石を配置したことを特徴とする請
求項16に記載のチタン合金を用いた回転子の製造方
法。
17. The method for manufacturing a rotor using a titanium alloy according to claim 16, wherein an odd number of divided rare earth magnets are arranged in a rotor outer peripheral reinforcing ring.
【請求項18】 超塑性ガス圧成形加工法により形成し
たシャフト部とロータ外周部補強環からなる異径円筒部
材を、補強環の部分で円周方向に2分割に切断した後、
補強環内に積層型鉄心を強磁性シャフトに圧入して配置
し、この鉄心の周縁部長手方向に沿って設けた鉄心溝部
内に希土類磁石を挿入して拘束し、異径円筒部材を高温
に加熱してシャフト部の両端部に軸方向の圧縮負荷を加
えた状態で補強環部分の外周から非磁性金属円筒を焼ば
めすることによって2分割されたチタン合金円筒を機械
的に拘束して一体接合することを特徴とする、チタン合
金を用いた回転子の製造方法。
18. After cutting a cylindrical member formed of a shaft portion and a rotor outer peripheral portion reinforcing ring formed by superplastic gas pressure forming into two parts in a circumferential direction at a portion of the reinforcing ring,
The laminated core is press-fitted into the ferromagnetic shaft and placed in the reinforcing ring, and a rare earth magnet is inserted and restrained in the core groove provided along the longitudinal direction of the periphery of the core, and the cylindrical member having a different diameter is heated to a high temperature. By heating and shrink-fitting the non-magnetic metal cylinder from the outer periphery of the reinforcing ring part while applying an axial compressive load to both ends of the shaft part, the titanium alloy cylinder divided into two parts is mechanically restrained. A method of manufacturing a rotor using a titanium alloy, which comprises integrally joining.
【請求項19】 前記非磁性金属円筒として、アルミ合
金、チタン合金、オーステナイト系ステンレス鋼、高マ
ンガン鋼機械加工部材等の非磁性金属材料を用いたこと
を特徴とする請求項16,17,18項の何れか1項に
記載のチタン合金を用いた回転子の製造方法。
19. The non-magnetic metal cylinder is made of a non-magnetic metal material such as an aluminum alloy, a titanium alloy, an austenitic stainless steel, or a high-manganese steel machined member. A method for manufacturing a rotor using the titanium alloy according to any one of the above items.
【請求項20】 超塑性ガス圧成形法として、金型の一
方側に不活性ガス導入パイプを連結するとともに、金型
の他方側にガス溜めタンクを設け、金型内方にチタン合
金円筒を挿入固定し、ヒータによりチタン合金円筒を加
熱しながら不活性ガス導入パイプから金型内に高温高圧
の不活性ガスを導入してチタン金属円筒の内方から加圧
処理を行うことにより、該チタン金属円筒に超塑性ガス
圧成形加工を施して、シャフト部とロータ外周部補強環
からなる異径円筒形状に成形したことを特徴とする、チ
タン合金を用いた回転子の製造方法。
20. As a superplastic gas pressure forming method, an inert gas introduction pipe is connected to one side of a mold, a gas reservoir tank is provided on the other side of the mold, and a titanium alloy cylinder is placed inside the mold. By inserting and fixing the titanium alloy cylinder with a heater while introducing a high-temperature and high-pressure inert gas into the mold from an inert gas introduction pipe while heating the titanium alloy cylinder, and performing a pressure treatment from inside the titanium metal cylinder, the titanium A method of manufacturing a rotor using a titanium alloy, wherein a metal cylinder is subjected to superplastic gas pressure forming to form a cylindrical shape having a different diameter comprising a shaft portion and a rotor outer circumferential reinforcing ring.
【請求項21】 超塑性ガス圧成形法として、金型の他
方側に蓋部材を設けて閉止したことを特徴とする請求項
20に記載のチタン合金を用いた回転子の製造方法。
21. The method for manufacturing a rotor using a titanium alloy according to claim 20, wherein a lid member is provided on the other side of the mold and closed as a superplastic gas pressure molding method.
【請求項22】 超塑性ガス圧成形法として、金型の一
方側と他方側に不活性ガス導入パイプを設けて、両側か
ら金型内に高温高圧の不活性ガスを導入することを特徴
とする請求項20に記載のチタン合金を用いた回転子の
製造方法。
22. A superplastic gas pressure forming method comprising providing an inert gas introduction pipe on one side and the other side of a mold, and introducing a high-temperature and high-pressure inert gas into the mold from both sides. A method for manufacturing a rotor using the titanium alloy according to claim 20.
【請求項23】 金型の内径側に波型の溝部を設けて、
チタン合金円筒に高温高圧のアルゴンガスを導入して所
定の圧力と温度をかけて超塑性ガス圧成形加工を施すこ
とにより、チタン合金製のベローズを形成することを特
徴とする請求項20,21,22項の何れか1項に記載
のチタン合金を用いた回転子の製造方法。
23. A corrugated groove is provided on the inner diameter side of the mold,
22. A titanium alloy bellows is formed by introducing a high-temperature and high-pressure argon gas into a titanium alloy cylinder and applying superplastic gas pressure forming at a predetermined pressure and temperature. 23. A method of manufacturing a rotor using the titanium alloy according to any one of items 22.
JP25948097A 1997-09-25 1997-09-25 Method for manufacturing rotor using titanium alloy Expired - Fee Related JP3817858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25948097A JP3817858B2 (en) 1997-09-25 1997-09-25 Method for manufacturing rotor using titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25948097A JP3817858B2 (en) 1997-09-25 1997-09-25 Method for manufacturing rotor using titanium alloy

Publications (2)

Publication Number Publication Date
JPH1198777A true JPH1198777A (en) 1999-04-09
JP3817858B2 JP3817858B2 (en) 2006-09-06

Family

ID=17334670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25948097A Expired - Fee Related JP3817858B2 (en) 1997-09-25 1997-09-25 Method for manufacturing rotor using titanium alloy

Country Status (1)

Country Link
JP (1) JP3817858B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002521200A (en) * 1998-07-21 2002-07-16 アクアフォーム・インコーポレーテッド Hydraulic tube forming die and manufacturing method thereof
JP2012205443A (en) * 2011-03-28 2012-10-22 Mitsuba Corp Electric motor and method for manufacturing electric motor
CN103769820A (en) * 2013-10-22 2014-05-07 北京航星机器制造有限公司 Global superplastic forming method of titanium alloy thin-wall deformed closed part
WO2016051568A1 (en) * 2014-10-02 2016-04-07 三菱電機株式会社 Rotor of rotating electrical machine and method for producing rotor of rotating electrical machine
WO2016143008A1 (en) * 2015-03-06 2016-09-15 三菱電機株式会社 Rotor of rotary electric machine, and method for manufacturing rotor of rotary electric machine
CN107695624A (en) * 2017-09-29 2018-02-16 北京科勒有限公司 The preparation method of bathroom hardware housing
CN109848315A (en) * 2019-03-01 2019-06-07 西格迈股份有限公司 The split type moulding stamper and forming method of special-shaped surge drum

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002521200A (en) * 1998-07-21 2002-07-16 アクアフォーム・インコーポレーテッド Hydraulic tube forming die and manufacturing method thereof
JP2012205443A (en) * 2011-03-28 2012-10-22 Mitsuba Corp Electric motor and method for manufacturing electric motor
CN103769820A (en) * 2013-10-22 2014-05-07 北京航星机器制造有限公司 Global superplastic forming method of titanium alloy thin-wall deformed closed part
WO2016051568A1 (en) * 2014-10-02 2016-04-07 三菱電機株式会社 Rotor of rotating electrical machine and method for producing rotor of rotating electrical machine
JP6087427B2 (en) * 2014-10-02 2017-03-01 三菱電機株式会社 Rotating electric machine rotor and method of manufacturing rotating electric machine rotor
KR20170066481A (en) * 2014-10-02 2017-06-14 미쓰비시덴키 가부시키가이샤 Rotor of rotating electrical machine and method for producing rotor of rotating electrical machine
CN107078572A (en) * 2014-10-02 2017-08-18 三菱电机株式会社 The manufacture method of the rotor of electric rotating machine and the rotor of electric rotating machine
WO2016143008A1 (en) * 2015-03-06 2016-09-15 三菱電機株式会社 Rotor of rotary electric machine, and method for manufacturing rotor of rotary electric machine
JP6049897B1 (en) * 2015-03-06 2016-12-21 三菱電機株式会社 Rotating electric machine rotor and method of manufacturing rotating electric machine rotor
CN107695624A (en) * 2017-09-29 2018-02-16 北京科勒有限公司 The preparation method of bathroom hardware housing
CN109848315A (en) * 2019-03-01 2019-06-07 西格迈股份有限公司 The split type moulding stamper and forming method of special-shaped surge drum

Also Published As

Publication number Publication date
JP3817858B2 (en) 2006-09-06

Similar Documents

Publication Publication Date Title
US6331214B1 (en) Monolithically bonded construct of rare-earth magnet and metal material and method for bonding same
US6047461A (en) Rotor for permanent magnet excited, high-speed electric rotary machine, manufacturing method of the same and electric rotary machine including the same
EP0956634B1 (en) Improvements in high speed rotor shafts
EP0786854B1 (en) Rotor for rotating machine, method of manufacturing same, and magnet unit
EP0418304B1 (en) Method of forming a permanent magnet rotor
US20120293036A1 (en) Induction rotor assembly and method of manufacturing same
JP3817858B2 (en) Method for manufacturing rotor using titanium alloy
US20090121560A1 (en) Borealis Technical Limited
US3670397A (en) Method of fabricating a laminated metal member
JPH11234975A (en) Assembly for rotor of generator
CN110149034B (en) Preparation method of permanent magnet rotor assembly
JP3701413B2 (en) Solid rotor for vertical induction motor and method for manufacturing the same
JP2004128302A (en) Rare earth sintered magnet
JP2001087805A (en) Composite sleeve made of sintered hard alloy
US20230170776A1 (en) Motor rotor and methods of manufacture
JP3308580B2 (en) Method of manufacturing damper for superconducting generator
JP2002367799A (en) Manufacturing method of superconducting clad molding body and superconducting clad molding body manufactured by the method
JPH08226443A (en) Superconductive magnetic bearing device
JPS62185541A (en) Manufacture of shrinkable ring for permanent magnet rotor
AU735783B2 (en) Improvements in high speed rotor shafts
GB2613461A (en) Motor rotor and methods of manufacture
JP4320699B2 (en) Composite roll for rolling
JPS62185542A (en) Manufacture of shrinkable ring for permanent magnet rotor
JPH081356A (en) Hot isotropic pressurizing vessel
JPH049209A (en) Manufacture of damper for superconducting generator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees